Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.694
Filtrar
1.
Pest Manag Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578108

RESUMO

BACKGROUND: Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS: A series of novel ß-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an EC50 value of 0.28 µg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analyses of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity:71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION: Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. This article is protected by copyright. All rights reserved.

2.
Adv Mater ; : e2313939, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578586

RESUMO

Achieving radar-infrared compatible camouflage with dynamic adaptability has been a long-sought goal, but faces significant challenges owing to the limited dispersion relations of conventional material systems operating in different wavelength ranges. Here, we propose the concept of pneumatic multiscale shape morphing and design a periodically arranged pneumatic unit consisting of MXene-based morphable conductors and intake platforms. During gas actuation, the morphable conductor transforms centimeter-scale 2D flat sheets into 3D balloon shapes to enhance microwave absorption behavior, and also reconfigures micrometer-scale MXene wrinkles into smooth planes in combination with cavity-induced low heat transfer to minimize infrared (IR) signatures. Through theory-guided reverse engineering, the final pneumatic matrix shows remarkable frequency tunability (2.64-18.0 GHz), moderate IR emissivity regulation (0.14 at 7-16.5 µm), rapid responsiveness (∼30 ms), wide-angle operation (> 45 °), and excellent environmental tolerance. Additionally, the multiplexed pneumatic matrix enables over 14 programmable coding sequences that independently alter thermal radiation without compromising radar stealth, and allows multimodal camouflage switching between three distinct compatible states. The approach may facilitate the evolution of camouflage techniques and electromagnetic functional materials towards multispectral, adaptability and intelligence. This article is protected by copyright. All rights reserved.

3.
Sci Adv ; 10(14): eadk9754, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578994

RESUMO

The lack of bacterial-targeting function in antibiotics and their prophylactic usage have caused overuse of antibiotics, which lead to antibiotic resistance and inevitable long-term toxicity. To overcome these issues, we develop neutrophil-bacterial hybrid cell membrane vesicle (HMV)-coated biofunctional lipid nanoparticles (LNP@HMVs), which are designed to transport antibiotics specifically to bacterial cells at the infection site for the effective treatment and prophylaxis of bacterial infection. The dual targeting ability of HMVs to inflammatory vascular endothelial cells and homologous Gram-negative bacterial cells results in targeted accumulation of LNP@HMVs in the site of infections. LNP@HMVs loaded with the antibiotic norfloxacin not only exhibit enhanced activity against planktonic bacteria and bacterial biofilms in vitro but also achieve potent therapeutic efficacy in treating both systemic infection and lung infection. Furthermore, LNP@HMVs trigger the activation of specific humoral and cellular immunity to prevent bacterial infection. Together, LNP@HMVs provide a promising strategy to effectively treat and prevent bacterial infection.


Assuntos
Infecções Bacterianas , Nanopartículas , Humanos , Células Endoteliais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Lipossomos
4.
Biomed Environ Sci ; 37(3): 233-241, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582988

RESUMO

Objective: Hypertriglyceridemic waist (HW), hypertriglyceridemic waist-to-height ratio (HWHtR), and waist-to-hip ratio (WHR) have been shown to be indicators of cardiometabolic risk factors. However, it is not clear which indicator is more suitable for children and adolescents. We aimed to investigate the relationship between HW, HWHtR, WHR, and cardiovascular risk factors clustering to determine the best screening tools for cardiometabolic risk in children and adolescents. Methods: This was a national cross-sectional study. Anthropometric and biochemical variables were assessed in approximately 70,000 participants aged 6-18 years from seven provinces in China. Demographics, physical activity, dietary intake, and family history of chronic diseases were obtained through questionnaires. ANOVA, χ 2 and logistic regression analysis was conducted. Results: A significant sex difference was observed for HWHtR and WHR, but not for HW phenotype. The risk of cardiometabolic health risk factor clustering with HW phenotype or the HWHtR phenotype was significantly higher than that with the non-HW or non-HWHtR phenotypes among children and adolescents (HW: OR = 12.22, 95% CI: 9.54-15.67; HWHtR: OR = 9.70, 95% CI: 6.93-13.58). Compared with the HW and HWHtR phenotypes, the association between risk of cardiometabolic health risk factors (CHRF) clustering and high WHR was much weaker and not significant (WHR: OR = 1.14, 95% CI: 0.97-1.34). Conclusion: Compared with HWHtR and WHR, the HW phenotype is a more convenient indicator withhigher applicability to screen children and adolescents for cardiovascular risk factors.


Assuntos
Doenças Cardiovasculares , Cintura Hipertrigliceridêmica , Criança , Humanos , Masculino , Feminino , Adolescente , Cintura Hipertrigliceridêmica/complicações , Cintura Hipertrigliceridêmica/epidemiologia , Relação Cintura-Quadril , Fatores de Risco Cardiometabólico , Fatores de Risco , Estudos Transversais , Análise por Conglomerados , Razão Cintura-Estatura , China/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Circunferência da Cintura , Índice de Massa Corporal
5.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586033

RESUMO

Monounsaturated fatty acids (MUFAs) play a pivotal role in maintaining endoplasmic reticulum (ER) homeostasis, an emerging hallmark of cancer. However, the role of polyunsaturated fatty acid (PUFAs) desaturation in persistent ER stress driven by oncogenic abnormalities remains elusive. Fatty Acid Desaturase 1 (FADS1) is a rate-limiting enzyme controlling the bioproduction of long-chain PUFAs. Our previous research has demonstrated the significant role of FADS1 in cancer survival, especially in kidney cancers. We explored the underlying mechanism in this study. We found that pharmacological inhibition or knockdown of the expression of FADS1 effectively inhibits renal cancer cell proliferation and induces cell cycle arrest. The stable knockdown of FADS1 also significantly inhibits tumor formation in vivo . Mechanistically, we show that while FADS1 inhibition induces ER stress, its expression is also augmented by ER-stress inducers. Notably, FADS1-inhibition sensitized cellular response to ER stress inducers, providing evidence of FADS1's role in modulating the ER stress response in cancer cells. We show that, while FADS1 inhibition-induced ER stress leads to activation of ATF3, ATF3-knockdown rescues the FADS1 inhibition-induced ER stress and cell growth suppression. In addition, FADS1 inhibition results in the impaired biosynthesis of nucleotides and decreases the level of UPD-N-Acetylglucosamine, a critical mediator of the unfolded protein response. Our findings suggest that PUFA desaturation is crucial for rescuing cancer cells from persistent ER stress, supporting FADS1 as a new therapeutic target.

6.
Org Lett ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587334

RESUMO

A facile and efficient radical tandem vinylogous aldol and intramolecular [2 + 2] cycloaddition reaction for direct synthesis of cyclobutane-containing benzocyclobutenes (BCBs) under extremely mild conditions without using any photocatalysts is reported. This approach exhibited definite compatibility with functional groups and afforded new BCBs with excellent regioselectivity and high yields. Moreover, detailed mechanism studies were carried out both experimentally and theoretically. The readily accessible, low-cost, and ecofriendly nature of the developed strategy will endow it with attractive applications in organic and medicinal chemistry.

7.
Environ Pollut ; : 123913, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582189

RESUMO

Cigarette smoke (CS), the main source of indoor air pollution and the primary risk factor for respiratory diseases, contains chemicals that can perturb microbiota through antibiotic effects. Although smoking induces a disturbance of microbiota in the lower respiratory tract, whether and how it contributes to initiation or promotion of emphysema are not well clarified. Here, we demonstrated an aberrant microbiome in lung tissue of patients with smoking-related COPD. We found that Stenotrophomonas maltophilia (S. maltophilia) was expanded in lung tissue of patients with smoking-related COPD. We revealed that S. maltophilia drives PANoptosis in alveolar epithelial cells and represses formation of alveolar organoids through IRF1 (interferon regulatory factor 1). Mechanistically, IRF1 accelerated transcription of ZBP1 (Z-DNA Binding Protein 1) in S. maltophilia-infected alveolar epithelial cells. Elevated ZBP1 served as a component of the PANoptosome, which triggered PANoptosis in these cells. By using of alveolar organoids infected by S. maltophilia, we found that targeting of IRF1 mitigated S. maltophilia-induced injury of these organoids. Moreover, the expansion of S. maltophilia and the expression of IRF1 negatively correlated with the progression of emphysema. Thus, the present study provides insights into the mechanism of lung dysbiosis in smoking-related COPD, and presents a potential target for mitigation of COPD progression.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38564351

RESUMO

This paper delves into the challenges of achieving scalable and effective multi-object modeling for semi-supervised Video Object Segmentation (VOS). Previous VOS methods decode features with a single positive object, limiting the learning of multi-object representation as they must match and segment each target separately under multi-object scenarios. Additionally, earlier techniques catered to specific application objectives and lacked the flexibility to fulfill different speed-accuracy requirements. To address these problems, we present two innovative approaches, Associating Objects with Transformers (AOT) and Associating Objects with Scalable Transformers (AOST). In pursuing effective multi-object modeling, AOT introduces the IDentification (ID) mechanism to allocate each object a unique identity. This approach enables the network to model the associations among all objects simultaneously, thus facilitating the tracking and segmentation of objects in a single network pass. To address the challenge of inflexible deployment, AOST further integrates scalable long short-term transformers that incorporate scalable supervision and layer-wise ID-based attention. This enables online architecture scalability in VOS for the first time and overcomes ID embeddings' representation limitations. Given the absence of a benchmark for VOS involving densely multi-object annotations, we propose a challenging Video Object Segmentation in the Wild (VOSW) benchmark to validate our approaches. We evaluated various AOT and AOST variants using extensive experiments across VOSW and five commonly used VOS benchmarks, including YouTube-VOS 2018 & 2019 Val, DAVIS-2017 Val & Test, and DAVIS-2016. Our approaches surpass the state-of-the-art competitors and display exceptional efficiency and scalability consistently across all six benchmarks. Moreover, we notably achieved the 1st position in the 3 rd Large-scale Video Object Segmentation Challenge. Project page: https://github.com/yoxu515/aot-benchmark.

9.
Cell Death Dis ; 15(4): 250, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582754

RESUMO

Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Transdução de Sinais , Apoptose , Células-Tronco Mesenquimais/metabolismo
10.
World J Clin Cases ; 12(9): 1622-1633, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38576744

RESUMO

BACKGROUND: The pathogenesis of ulcerative colitis (UC) is complex, and recent therapeutic advances remain unable to fully alleviate the condition. AIM: To inform the development of novel UC treatments, bioinformatics was used to explore the autophagy-related pathogenesis associated with the active phase of UC. METHODS: The GEO database was searched for UC-related datasets that included healthy controls who met the screening criteria. Differential analysis was conducted to obtain differentially expressed genes (DEGs). Autophagy-related targets were collected and intersected with the DEGs to identiy differentially expressed autophagy-related genes (DEARGs) associated with active UC. DEARGs were then subjected to KEGG, GO, and DisGeNET disease enrichment analyses using R software. Differential analysis of immune infiltrating cells was performed using the CiberSort algorithm. The least absolute shrinkage and selection operator algorithm and protein-protein interaction network were used to narrow down the DEARGs, and the top five targets in the Dgree ranking were designated as core targets. RESULTS: A total of 4822 DEGs were obtained, of which 58 were classified as DEARGs. SERPINA1, BAG3, HSPA5, CASP1, and CX3CL1 were identified as core targets. GO enrichment analysis revealed that DEARGs were primarily enriched in processes related to autophagy regulation and macroautophagy. KEGG enrichment analysis showed that DEARGs were predominantly associated with NOD-like receptor signaling and other signaling pathways. Disease enrichment analysis indicated that DEARGs were significantly linked to diseases such as malignant glioma and middle cerebral artery occlusion. Immune infiltration analysis demonstrated a higher presence of immune cells like activated memory CD4 T cells and follicular helper T cells in active UC patients than in healthy controls. CONCLUSION: Autophagy is closely related to the active phase of UC and the potential targets obtained from the analysis in this study may provide new insight into the treatment of active UC patients.

11.
Nature ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570688

RESUMO

The pursuit of materials with enhanced functionality has led to the emergence of metamaterials-artificially engineered materials whose properties are determined by their structure rather than composition. Traditionally, the building blocks of metamaterials are arranged in fixed positions within a lattice structure1-19. However, recent research has revealed the potential of mixing disconnected building blocks in a fluidic medium20-27. Inspired by these recent advances, here we show that by mixing highly deformable spherical capsules into an incompressible fluid, we can realize a 'metafluid' with programmable compressibility, optical behaviour and viscosity. First, we experimentally and numerically demonstrate that the buckling of the shells endows the fluid with a highly nonlinear behaviour. Subsequently, we harness this behaviour to develop smart robotic systems, highly tunable logic gates and optical elements with switchable characteristics. Finally, we demonstrate that the collapse of the shells upon buckling leads to a large increase in the suspension viscosity in the laminar regime. As such, the proposed metafluid provides a promising platform for enhancing the functionality of existing fluidic devices by expanding the capabilities of the fluid itself.

12.
Mol Cancer ; 23(1): 71, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575922

RESUMO

It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.


Assuntos
Carcinogênese , Neoplasias , Humanos , Transformação Celular Neoplásica/genética , Morte Celular , Nutrientes , Oxigênio , Apoptose
13.
Inorg Chem ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557029

RESUMO

With increasing global industrialization, it is urgent and challenging to develop multifunctional species for detection and adsorption in the environment. For this purpose, a novel anionic heterometallic organic framework, [(CH3)2NH2][CaEu(CAM)2(H2O)2]·4H2O·4DMF (CaEuCAM), is hydrothermally synthesized based on chelidamic acid (H3CAM). Single crystal analysis shows that CaEuCAM features two different oxygen-rich channels along the c-axis in which one CAM3- bridges two sextuple-coordinated Ca2+ and two octuple-coordinated Eu3+ with a µ4-η1: η1: η1: η1: η1: η1 new chelating and bridging mode. The characteristic bright red emission and superior hydrostability of CaEuCAM under harsh acidic and basic conditions benefit it by acting as a highly sensitive sensor for Fe3+ and 3-nitrophenol (3-NP) with extremely low LODs through remarkable quenching. The combination of experiments and theoretical calculations for sensing mechanisms shows that the competitive absorption and interaction are responsible for Fe3+-induced selective emission quenching, while that for 3-NP is the result of the synergism of host-guest chemistry and the inner filter effect. Meanwhile, the assimilation of negative charge plus channels renders CaEuCAM a highly selective adsorbent for methylene blue (MB) due to a synergy of electrostatic affinity, ion-dipole interaction, and size matching. Of note is the reusability of CaEuCAM toward Fe3+/3-NP sensing and MB adsorption besides its fast response. These findings could be very useful in guiding the development of multifunctional Ln-MOFs for sensing and adsorption applications in water media.

14.
Aging (Albany NY) ; 162024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568089

RESUMO

BACKGROUND: Studies have shown that coagulation and fibrinolysis (CFR) are correlated with Hepatocellular carcinoma (HCC) progression and prognosis. We aim to build a model based on CFR-correlated genes for risk assessment and prediction of HCC patient. METHODS: HCC samples were selected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases respectively. The Molecular Signatures Database (MSigDB) was used to select the CFR genes. RiskScore model were established by single sample gene set enrichment analysis (ssGSEA), weighted correlation network analysis (WGCNA), multivariate Cox regression analysis, LASSO regression analysis. RESULTS: PCDH17, PGF, PDE2A, FAM110D, FSCN1, FBLN5 were selected as the key genes and designed a RiskScore model. Those key genes were Differential expressions in HCC cell and patients. Overexpression PDE2A inhibited HCC cell migration and invasion. The higher the RiskScore, the lower the probability of survival. The model has high AUC values in the first, third and fifth year prediction curves, indicating that the model has strong prediction performance. The difference analysis of clinicopathological features found that a great proportion of high clinicopathological grade samples showed higher RiskScore. RiskScore were positively correlated with immune scores and TIDE scores. High levels of immune checkpoints and immunomodulators were observed in high RiskScore group. High RiskScore groups may benefit greatly from taking traditional chemotherapy drugs. CONCLUSIONS: We screened CFR related genes to design a RiskScore model, which could accurately evaluate the prognosis and survival status of HCC patients, providing certain value for optimizing the clinical treatment of cancer in the future.

15.
Gut Microbes ; 16(1): 2333413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38561312

RESUMO

Urinary tract infections (UTIs) are among the most common late-onset infections in preterm infants, characterized by nonspecific symptoms and a pathogenic spectrum that diverges from that of term infants and older children, which present unique diagnostic and therapeutic challenges. Existing data on the role of gut microbiota in UTI pathogenesis in this demographic are limited. This study aims to investigate alterations in gut microbiota and fecal calprotectin levels and their association with the development of UTIs in hospitalized preterm infants. A longitudinal case-control study was conducted involving preterm infants admitted between January 2018 and October 2020. Fecal samples were collected weekly and analyzed for microbial profiles and calprotectin levels. Propensity score matching, accounting for key perinatal factors including age and antibiotic use, was utilized to match samples from UTI-diagnosed infants to those from non-UTI counterparts. Among the 151 preterm infants studied, 53 were diagnosed with a UTI, predominantly caused by Enterobacteriaceae (79.3%) and Enterococcaceae (19.0%). Infants with UTIs showed a significantly higher abundance of these families compared to non-UTI infants, for both Gram-negative and positive pathogens, respectively. Notably, there was a significant pre-UTI increase in the abundance of pathogen-specific taxa in infants later diagnosed with UTIs, offering high predictive value for early detection. Shotgun metagenomic sequencing further confirmed the dominance of specific pathogenic species pre-UTI and revealed altered virulence factor profiles associated with Klebsiella aerogenes and Escherichia coli infections. Additionally, a decline in fecal calprotectin levels was observed preceding UTI onset, particularly in cases involving Enterobacteriaceae. The observed pathogen-specific alterations in the gut microbiota preceding UTI onset offer novel insight into the UTI pathogenesis and promising early biomarkers for UTIs in preterm infants, potentially enhancing the timely management of this common infection. However, further validation in larger cohorts is essential to confirm these findings.


Assuntos
Microbioma Gastrointestinal , Infecções Urinárias , Lactente , Criança , Humanos , Recém-Nascido , Adolescente , Estudos de Casos e Controles , Escherichia coli , Recém-Nascido Prematuro , Antibacterianos/uso terapêutico , Enterobacteriaceae , Complexo Antígeno L1 Leucocitário
16.
Circulation ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557054

RESUMO

BACKGROUND: An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-ß (transforming growth factor-ß) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-ß family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-ßR2/R1, and receptor-regulated (R) Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-ß-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS: Bioinformatic analyses were used to explore the mechanism of BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-ß signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS: BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9 (Smad1/5/9), which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-ß signaling by downregulating TGF-ß expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS: These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-ß signaling in PASMCs. Such rebalance of BMP/TGF-ß pathways is translationally important for PAH alleviation.

17.
Ann Anat ; 254: 152262, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582236

RESUMO

BACKGROUND: The perforator flap has garnered significant interest since its inception due to its advantage of not needing a vascular network at the deep fascial level. Perforator flaps are commonly utilized in different flap transplant surgeries, and the thigh flap is presently the most widely used perforator flap. Is it possible for the calf to replace the thigh as a more suitable site for harvesting materials? Currently, there is a lack of relevant anatomical research. This study aims to address this question from an anatomical and imaging perspective. METHODS: This study used cadavers to observe the branches and courses of perforators on the calf and the distribution of skin branches using microdissection techniques, digital X-ray photography, and micro-computed tomography techniques. RESULTS: The perforators had three main branches: the vertical cutaneous branch, the oblique cutaneous branch, and the superficial fascial branch. The superficial fascial branch traveled in the superficial fascia and connected with the nearby perforators. The vertical and oblique cutaneous branches entered the subdermal layer and connected with each other to create the subdermal vascular network. CONCLUSIONS: We observed an intact calf cutaneous branch chain between the cutaneous nerve and the perforator of the infrapopliteal main artery at the superficial vein site. Utilizing this anatomical structure, the calfskin branch has the potential to serve as a substitute for thigh skin flap transplantation and may be applied to perforator flap transplantation in more locations.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38587963

RESUMO

Despite providing high-performance solutions for computer vision tasks, the deep neural network (DNN) model has been proved to be extremely vulnerable to adversarial attacks. Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked. Besides, commonly used adaptive learning and fine-tuning technique is unsuitable for adversarial defense since it is essentially a zero-shot problem when deployed. Thus, to tackle this challenge, we propose an attack-agnostic defense method named Meta Invariance Defense (MID). Specifically, various combinations of adversarial attacks are randomly sampled from a manually constructed Attacker Pool to constitute different defense tasks against unknown attacks, in which a student encoder is supervised by multi-consistency distillation to learn the attack-invariant features via a meta principle. The proposed MID has two merits: 1) Full distillation from pixel-, feature- and prediction-level between benign and adversarial samples facilitates the discovery of attack-invariance. 2) The model simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration. Theoretical and empirical studies on numerous benchmarks such as ImageNet verify the generalizable robustness and superiority of MID under various attacks.

19.
Front Oncol ; 14: 1327834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590658

RESUMO

Atypical Chronic Myeloid Leukemia (aCML), a myeloproliferative neoplasm with poor prognosis, was reclassified as aCML by the ICC classification, and as MDS/MPN with neutrophilia by the WHO 2022 classification. Due to the heterogeneity of its clinical features and the lack of unique biomarkers, as well as limited treatment options, aCML currently lacks a standardized treatment protocol. In this case report, we reviewed a young man diagnosed with aCML who achieved complete clinical and hematologic remission subsequent to receiving a therapeutic regimen combining Venetoclax and Azacitidine.

20.
World J Gastrointest Surg ; 16(3): 689-699, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38577093

RESUMO

BACKGROUND: Radical surgery combined with systemic chemotherapy offers the possibility of long-term survival or even cure for patients with pancreatic ductal adenocarcinoma (PDAC), although tumor recurrence, especially locally, still inhibits the treatment efficacy. The TRIANGLE technique was introduced as an extended dissection procedure to improve the R0 resection rate of borderline resectable or locally advanced PDAC. However, there was a lack of studies concerning postoperative complications and long-term outcomes of this procedure on patients with resectable PDAC. AIM: To compare the prognosis and postoperative morbidities between standard pancreaticoduodenectomy (PD) and the TRIANGLE technique for resectable PDAC. METHODS: Patients with resectable PDAC eligible for PD from our hospital between June 2018 and December 2021 were enrolled in this retrospective cohort study. All the patients were divided into PDstandard and PDTRIANGLE groups according to the surgical procedure. Baseline characteristics, surgical data, and postoperative morbidities were recorded. All of the patients were followed up, and the date and location of tumor recurrence, and death were recorded. The Kaplan-Meier method and log-rank test were used for the survival analysis. RESULTS: There were 93 patients included in the study and 37 underwent the TRIANGLE technique. Duration of operation was longer in the PDTRIANGLE group compared with the PDstandard group [440 (410-480) min vs 320 (265-427) min] (P = 0.001). Intraoperative blood loss [700 (500-1200) mL vs 500 (300-800) mL] (P = 0.009) and blood transfusion [975 (0-1250) mL vs 400 (0-800) mL] (P = 0.009) were higher in the PDTRIANGLE group. There was a higher incidence of surgical site infection (43.2% vs 12.5%) (P = 0.001) and postoperative diarrhea (54.1% vs 12.5%) (P = 0.001) in the PDTRIANGLE group. The rates of R0 resection and local recurrence, overall survival, and disease-free survival did not differ significantly between the two groups. CONCLUSION: The TRIANGLE technique is safe, with acceptable postoperative morbidities compared with standardized PD, but it does not improve prognosis for patients with resectable PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...