Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
2.
Sci Rep ; 10(1): 2490, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051514

RESUMO

Minimal hepatic encephalopathy (MHE) is characterized by diffuse abnormalities in cerebral structure, such as reduced cortical thickness and altered brain parenchymal volume. This study tested the potential of gray matter (GM) volumetry to differentiate between cirrhotic patients with and without MHE using a support vector machine (SVM) learning method. High-resolution, T1-weighted magnetic resonance images were acquired from 24 cirrhotic patients with MHE and 29 cirrhotic patients without MHE (NHE). Voxel-based morphometry was conducted to evaluate the GM volume (GMV) for each subject. An SVM classifier was employed to explore the ability of the GMV measurement to diagnose MHE, and the leave-one-out cross-validation method was used to assess classification accuracy. The SVM algorithm based on GM volumetry achieved a classification accuracy of 83.02%, with a sensitivity of 83.33% and a specificity of 82.76%. The majority of the most discriminative GMVs were located in the bilateral frontal lobe, bilateral lentiform nucleus, bilateral thalamus, bilateral sensorimotor areas, bilateral visual regions, bilateral temporal lobe, bilateral cerebellum, left inferior parietal lobe, and right precuneus/posterior cingulate gyrus. Our results suggest that SVM analysis based on GM volumetry has the potential to help diagnose MHE in cirrhotic patients.

3.
Mol Carcinog ; 2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32064687

RESUMO

Colorectal cancer (CRC) is a kind of malignant cancer with high morbidity and mortality. The purpose of this study was to explore potential regulated key genes involved in CRC through bioinformatics analysis and experimental verification. The gene expression profile data were downloaded from the Gene Expression Omnibus, and the differential expression genes were detected in cancerous and paracancerous samples of CRC patients, respectively. Then functional enrichment analysis, such as the Kyoto Encyclopedia of Genes and Genomes pathway analysis as well as the protein-protein interaction network were constructed, and the highly related genes were clustered by Molecular COmplex DEtection algorithm to find out the core interaction in different genes' crosstalk. The genes affecting CRC prognosis were screened by the Human Protein Atlas database. In addition, the expression level of core genes was detected by GEPIA database, and the core genes' changes in large-scale cancer genome data set were directly analyzed by cBioPortal database. The expression of the predicted hub genes DSN1, AHCY, and ERCC6L was verified by reverse-transcription quantitative polymerase chain reaction in CRC cells. The gene function of DSN1 was analyzed by wound healing and colony formation assays. The results showed that silencing of DSN1 could significantly reduce the migration and proliferation of CRC cells. Further, BUB1B, the potential interacting protein of DSN1, was also predicted via bioinformatics analysis. Above all, this study shows that bioinformatics analysis combined with experimental method verification provide more potential vital genes for the prevention and therapy of CRC.

4.
J Hazard Mater ; 388: 122113, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31972436

RESUMO

Coal ash (CA) becomes the most significant industrial solid waste and attracts much attention due to its potential environmental risk and reuse as the supplementary material. In this study, experiments were conducted to investigate the mode of occurrence and the leaching behavior of valuable trace metals (U, V, and Ga) from CA and (NH4)2SO4-treated CA (NCA), based on the recovery of aluminum. Integrations of Fe- and K-oxide with Si-Al glass increased the ash strength and obstructed the activation of NH4+ on amorphous Al-bearing phases, resulting in a limited improvement in the leaching efficiency of trace metals. On the other side, a higher liquidus temperature, contributing to the dissolutions of Al3+ and Ca2+, could promote the leaching of U from NCA as well, whereas the water-leaching behaviors of V and Ga involved a sophisticated trend with temperature > 40℃. Water-leached V/Ga tended to transfer into Fe-Mn oxide-bound and residual V/Ga owing to the noticeable hydrolysis of Fe and Ti ions that facilitated the formation of coprecipitation. However, 0.1 M H2SO4 could re-dissolve that coprecipitation, and thus leaching efficiencies of U, V, and Ga were 1.9, 1.3, and 5.0 times higher than those by directly leaching CA, respectively.

5.
Mol Carcinog ; 59(2): 168-178, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31763724

RESUMO

It is reported that black raspberry (BRB) anthocyanins could act as a potential chemopreventive agent for colorectal cancer (CRC). However, the underlying mechanism by which BRB anthocyanins inhibits the carcinogenesis of CRC cells has not been elucidated. The abnormal expression of microRNAs (miRNAs) that target important tumor suppressor genes is usually associated with CRC development. In this study, we explored whether BRB anthocyanins could affect the expression of certain miRNAs in an azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced CRC mouse model and human CRC cell lines. miRNA microarray analysis was used to determine the differences in miRNA expression between AOM/DSS-induced mice fed with a diet supplemented without or with BRB anthocyanins. The expression of one particular miRNA, miR-483-3p, was found to decrease dramatically in AOM/DSS-induced mice that were fed with a diet supplemented with BRB anthocyanins. Subsequent quantitative real-time polymerase chain reaction and Western blot analyses showed that the reduced expression of miR-483-3p was accompanied by an increased expression of Dickkopf 3 (DKK3), a potential target of miR-483-3p as predicted by bioinformatic analysis. The protein and messenger RNA levels of DKK3 were significantly upregulated when the miR-483-3p level was reduced by a miR-483-3p-specific inhibitor, suggesting that DKK3 might be the target gene of miR-483-3p. In addition, the downstream factors of the DKK3 signaling pathway, which included Wnt/ß-catenin, also played a role in the miR-483-3p-mediated anticancer effect of BRB anthocyanins. Thus, miR-483-3p might be a potential target in BRB anthocyanin-mediated prevention of CRC.

6.
Acta Biomater ; 102: 394-402, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31809883

RESUMO

A retrograde transportation nerve probe, Au nanodots-cholera toxin B subunit (AuNDs-CTB), are prepared and fully characterized, which emit bright red fluorescence and show high quantum yield (7.2%) and good stability. The fluorescence emitted by the AuNDs is constant across a wide pH range (4-10) and after prolonged UV irradiation (>4 h). Previously, CTB has shown targeting characteristic for nerve cells with high sensitivity and effectiveness. After linking CTB to AuNDs through amidation reactions, AuNDs-CTB are obtained with excellent fluorescence property, nerve target characteristic, and, particularly, neural retrograde transportation feature. The red emission of the AuNDs-CTB is well distinguished from the blue autofluorescence of normal tissues, which provides potential for detection by naked eyes. Further, the fluorescence emission intensity maintains for 10 days in vivo, suggesting great utility for long-time monitoring and sensing of the nerve tissue. Furthermore, the AuNDs-CTB with bright red fluorescence can travel through the peripheral nerve to the spinal cord rapidly by retrograde transportation. The transportation occurs for a long distance (>5 cm) within only 2 days after injection of the AuNDs-CTB into the sciatic nerve. The present study exhibits a novel method for nerve visualization and drug delivery. STATEMENT OF SIGNIFICANCE: Au nanodots (AuNDs) conjugated with cholera toxin subunit B (CTB) have been developed for nerve labeling and neural retro-transporting. The red fluorescence from AuNDs-CTB is stable in vitro (pH 4-10 and 4 h UV irradiation) and in vivo (for a long time, more than 10 days). When injecting AuNDs-CTB into the sciatic nerve located at the midpiece of the thigh, the targeted nerve emits bright red fluorescence under UV light. Furthermore, the nerve can retrograde transport the AuNDs-CTB to the spinal cord for a distance of more than 5 cm just in 2 days. This work exhibits a novel method for nerve visualization by naked eyes and demonstrates the potential for intraoperative navigation.

7.
Ann Noninvasive Electrocardiol ; 25(1): e12694, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31565860

RESUMO

INTRODUCTION: Long QT syndrome (LQTS) increases the risk of life-threatening arrhythmia in young individuals with structurally normal hearts. Sixteen genes such as the KCNQ1, KCNH2, and SCN5A have been reported for association with LQTS. CASE PRESENTATION: We identified the compound heterozygous mutations in the KCNQ1 gene at c. G527A (p.W176X) and c.G1765A (p.G589S) predicted as "damaging." The in-silico analysis showed that when compared to the characteristics of mRNA and protein of wild-type KCNQ1, the mRNA of c.G527A mutation was significantly different in the centroid secondary structure. The subunit coded by W176X would lose the transmembrane domains S3-S6 and helices A-D. The protein secondary structure of G589S was slightly shortened in helix structure; the protein physics-chemical parameters of W176X and G589S significantly and slightly changed, respectively. CONCLUSIONS: The compound heterozygous mutations of W176X and G589S coexisting in KCNQ1 gene of homologous chromosomes, resulting in more severe phenotype, are the likely pathogenic and genetic risks of LQTS and USD in this Chinese family.

8.
IEEE Trans Neural Netw Learn Syst ; 31(1): 309-320, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30932852

RESUMO

We present a novel method for concept drift detection, based on: 1) the development and continuous updating of online sequential extreme learning machines (OS-ELMs) and 2) the quantification of how much the updated models are modified by the newly collected data. The proposed method is verified on two synthetic case studies regarding different types of concept drift and is applied to two public real-world data sets and a real problem of predicting energy production from a wind plant. The results show the superiority of the proposed method with respect to alternative state-of-the-art concept drift detection methods. Furthermore, updating the prediction model when the concept drift has been detected is shown to allow improving the overall accuracy of the energy prediction model and, at the same time, minimizing the number of model updatings.

9.
J Hazard Mater ; 381: 120977, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31437802

RESUMO

Uranium-enriched coal ash (CA) receives a significant attention as a supplementary nuclear resource also due to its potential environmental risk. Combining with CA, the changing trend of uranium occurrence in synthetic coal ash (SCA) was described at CaO-Al2O3-Fe2O3 ternary phase diagrams with a fixed SiO2 (wt. %, 30%, 50% and 70%) and Na2O (2%) content. This study reveals that the mode of uranium occurrence proposes a three-stage changing process during coal combustion including uranium oxidation, combination and encapsulation. Furthermore, a high frequency of encapsulated uranium resulted from the complicated interactions among major components with a medium SiO2 content, whereas the degree was higher at a higher SiO2, resulting in the decrease of uranium mobility. Uranium was encapsulated by Si-Al matrix and Fe-Si depletion if provided the high Al2O3 and Fe2O3 but low CaO contents. However, with the development of calcium looping and biomass co-firing process, the change of element mobility should be considered in industry owing to the extra-added alkaline metals. As the activation of Ca2+ induces a significant susceptibility of acid attack, cautions must be paid in CA with a higher Ca/Si ratio to avoid its utilization as constructive materials for the potential environmental risk.

10.
Nanoscale ; 12(5): 2992-2998, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31840699

RESUMO

Artificial molecular machines synthesized in supramolecular chemistry have attracted great interest over the past decades. DNA origami presents an alternative approach to construct nano-machines by directly designing its thermodynamically stable state by DNA sequences. Here, we construct a molecular device, named NanoMuscle, with mechanically interlocked DNA origami. NanoMuscle's configuration - either extended or contracted - can be controlled by adding specific DNA strands. We monitored NanoMuscle's multistep synthesis with gel electrophoresis, and verified that monomers of the NanoMuscle are interlocked at correct orientation with transmission electron microscopy (TEM). We then validated that NanoMuscle can switch between extended and contracted configuration. By converting binding energy from DNA hybridization and Brownian motion to mechanical movements, NanoMuscle may serve as a novel building block for future mesoscale machinery.

11.
Mol Ecol Resour ; 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31869503

RESUMO

Sponge gourd (Luffa cylindrica (L.) Roem.) or luffa is a diploid herbaceous plant with 26 chromosomes (2n = 26) and belongs to the family Cucurbitaceae. To address the limited knowledge of the genome of Luffa species, the chromosome-level genome of L. cylindrica was assembled and analysed using PacBio long reads and Hi-C data. We combined Hi-C data with a draft genome assembly to generate chromosome-length scaffolds. Thirteen scaffolds corresponding to the 13 chromosomes were assembled from 1,156 contigs to a final size of 669 Mb with a contig N50 size of 5 Mb and a scaffold N50 size of 53 Mb. After removing redundant sequences, 416.31 Mb (62.18% of the genome) of repeat sequences was detected. Subsequently, 31,661 protein-coding genes with an average of 5.69 exons per gene were identified in the L. cylindrica genome using de novo methods, transcriptome data and homologue-based approaches. In addition, 27,552 protein-coding genes (87.02%) were annotated in five databases. According to the phylogenetic analysis, L. cylindrica is closely related to Cucurbita and Cucumis species and diverged from their common ancestor ~28.6-67.1 million years ago. Genome collinearity analysis was performed in Cucurbita moschata, Cucumis sativus and L. cylindrica, and it demonstrated a high degree of conserved gene order in these three species. The completeness of the genome will provide high-quality genomic knowledge on breeding and reveal genetic variation in L. cylindrica.

12.
Cancer Med ; 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31851786

RESUMO

BACKGROUND: Definitive chemoradiation therapy (dCRT) is the standard treatment for patients with nonsurgical esophageal squamous cell carcinoma (ESCC), yet patients have demonstrated great variations in their responses to dCRT and inevitably progressed following treatment. METHODS: To identify prognostic biomarkers, we performed targeted next-generation sequencing of 416 cancer-related genes on primary tumors from 47 nonsurgical ESCC patients prior to dCRT treatment. The association between genetic alterations and patients' local recurrence-free survival (LRFS), progression-free survival (PFS), and overall survival (OS) was analyzed. RESULTS: TP53 (78% of patients), NOTCH1 (32%), ARID1A (13%), FAT1 (13%), and CDKN2A (13%) were commonly mutated in ESCC patients, while gene amplifications frequently occurred in MCL1 (36%), FGF19 (34%), MYC (32%), CCND1 (27%), ZNF217 (15%), CDKN2A (13%), and YAP1 (11%). Univariate and multivariate analyses of clinical factors and genetic alterations indicated that sex is an independent prognostic factor, with males tending to have better LRFS (hazard ratio [HR], 0.25; 95%CI, 0.08-0.77, P = .015) and progression-free survival (PFS) (HR, 0.35; 95%CI, 0.13-0.93, P = .030) following dCRT. Meanwhile, YAP1 amplification (n = 7) was an adverse prognostic factor, and patients with this alteration demonstrated a tendency toward worse outcomes with shorter LRFS (HR, 4.06; 95%CI, 1.26-13.14, P = .019) and OS (HR, 2.78; 95%CI, 0.95-8.17, P = .062). In a subgroup analysis, while sex and M-stage were controlled, a much stronger negative effect of YAP1 amplification vs wild-type in LRFS was observed (log-rank P = .0067). CONCLUSION: The results suggested that YAP1 amplification is a potentially useful biomarker for predicting treatment outcomes and identifying patients with a high risk of relapse who should be closely monitored.

13.
J Oncol ; 2019: 5935640, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772580

RESUMO

Inflammation and immunity are thought as risk factors for uterine leiomyoma; however, detailed reports on this topic are scarce. The present study aimed to analyze the characteristics of immune function and clinical significance of circulating CD4/CD8 T, NK, and γδ T cells in reproductive females with uterine leiomyoma. We analyzed the above-mentioned cells in 30 reproductive females with uterine leiomyoma and 68 healthy females using flow cytometry. After that, the correlation between function of immune cells and clinical phenotypes was analyzed. Compared with healthy controls, central memory (CM) CD4/CD8 T cells as well as Treg and Tfh cells were notably increased in leiomyoma patients; however, NK and γδ T cells were decreased in patients. Moreover, such alterations of these cells in patients with leiomyoma were associated with shorter menstrual cycles, longer menstrual period, anemia, pelvic lesions, more and larger myomas, and higher levels of CA125. Additionally, the increased Tfh1/Tfh2 ratio and Tfh17 were significantly associated with longer menstrual period, more myomas, and higher CA125 levels independent of age in patients with uterine leiomyoma. In conclusion, hallmarks of peripheral immune function are remarkably correlated with clinical phenotypes in reproductive females with uterine leiomyoma. This preliminary work may provide proof-of-concept for evaluating efficacy of treatment and prognosis of reproductive females with uterine leiomyoma with the help of quantitative analysis of peripheral immune function, which may inspire performing further investigations on the relevance of immune function with different diseases.

14.
Food Sci Nutr ; 7(11): 3664-3674, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31763015

RESUMO

Flavor compounds, including total polyphenols, amino acids, and protein, in beer with extruded black rice as adjunct were detected and analyzed. Beer brewing technique has been intensively investigated in the past century. The chase of beer quality, including the color, flavor, foam, nutrition, and functionality, attracted considerable attention. Hence, headspace solid-phase microextraction in combination with a gas chromatography coupled to mass spectrometry (HS-SPME-GC-MS) was used to analyze flavor compounds qualitatively and quantitatively. A total of one organic acid, one aromatic, ten alcohols and 23 esters were present in extruded black rice adjunct beer. Protein components and molecular weight were analyzed, and the results were consistent with those of traditional beer in terms of content of foam-stabilizing protein. The contents of essential amino acid which is an important nutritive index were higher than those in traditional rice adjunct beer, especially valine (70.9 mg/L) and threonine (42.8 mg/L). The representative ingredients of extruded black rice adjunct beer were polyphenols, nerolidol, geraniol, and geranylgeraniol which affected the functionality and antioxidant ability.

16.
J Inorg Biochem ; 203: 110911, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31734539

RESUMO

Here, we show that mesna (sodium-2-mercaptoethane sulfonate), primarily used to prevent nephrotoxicity and urinary tract toxicity caused by chemotherapeutic agents such as cyclophosphamide and ifosfamide, modulates the catalytic activity of lactoperoxidase (LPO) by binding tightly to the enzyme, functioning either as a one electron substrate for LPO Compounds I and II, destabilizing Compound III. Lactoperoxidase is a hemoprotein that utilizes hydrogen peroxide (H2O2) and thiocyanate (SCN-) to produce hypothiocyanous acid (HOSCN), an antimicrobial agent also thought to be associated with carcinogenesis. Our results revealed that mesna binds stably to LPO within the SCN- binding site, dependent of the heme iron moiety, and its combination with LPO-Fe(III) is associated with a disturbance in the water molecule network in the heme cavity. At low concentrations, mesna accelerated the formation and decay of LPO compound II via its ability to serve as a one electron substrate for LPO compounds I and II. At higher concentrations, mesna also accelerated the formation of Compound II but it decays to LPO-Fe(III) directly or through the formation of an intermediate, Compound I*, that displays characteristic spectrum similar to that of LPO Compound I. Mesna inhibits LPO's halogenation activity (IC50 value of 9.08 µM) by switching the reaction from a 2e- to a 1e- pathway, allowing the enzyme to function with significant peroxidase activity (conversion of H2O2 to H2O without generation of HOSCN). Collectively, mesna interaction with LPO may serve as a potential mechanism for modulating its steady-state catalysis, impacting the regulation of local inflammatory and infectious events.

17.
Front Mol Biosci ; 6: 121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737645

RESUMO

Macromolecular complexes are essential to intracellular signal transduction by creating signaling niches and enabling a chain of reactions that transmit external signals into various cellular responses. Analysis of SMYD3 interactome indicates this protein lysine methyltransferase might be involved in calcium dependent signaling pathways through forming complexes with the phospholipase PLCB3, calcium/calmodulin dependent kinase CAMK2B, or calcineurin inhibitor RCAN3. SMYD3 is well-known as a histone H3K4 methyltransferase involved in epigenetic transcriptional regulation; however, any roles SMYD3 may play in signaling transduction remain unknown. KEGG pathway enrichment analysis reveals the SMYD3 interacting proteins are overrepresented in several signaling pathways such as estrogen signaling pathway, NOD-like receptor signaling pathway, and WNT signaling pathway. Sequence motif scanning reveals a significant enrichment of PXLXP motif in SMYD3 interacting proteins. The MYND domain of SMYD3 is known to bind to the PXLXP motif. The enrichment of the PXLXP motif suggests that the MYND domain is likely to be a key interaction module that mediates formation of some SMYD3 complexes. The presence of the PXLXP motifs in PLCB3 and CAMK2B indicates the potential role of the MYND domain in mediating complex formation in signaling. The structural basis of SMYD3 MYND domain-mediated interactions is unknown. The only available MYND-peptide complex structure suggests the MYND domain-mediated interaction is likely transient and dynamic. The transient nature will make this domain well-suited to mediate signaling transduction processes where it may allow rapid responses to cellular perturbations and changes in environment.

18.
Jpn J Clin Oncol ; 49(12): 1143-1150, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31612912

RESUMO

OBJECTIVE: As an aggressive subtype of lung cancer, small-cell lung cancer (SCLC) presents a poor prognosis. Although molecular and clinical characteristics have been established for SCLC, limited investigation has been performed for predicting survival of SCLC patients. METHODS: Genomic alterations were profiled in Chinese SCLC patients (N = 37) using targeted sequencing. Clonal mutation burden (CMB) integrated the number of mutations with the clonal structure of the tumor. Specific pathways involving DNA damage repair (DDR) and cell cycle as well as CMB were studied as potential biomarkers for prognosis of SCLC. RESULTS: TP53 and RB1 gene mutations were the most common alterations (91.9% and 83.8%, respectively), followed by LRP1B, FAM135B, SPTA1, KMT2D, FAT1, and NOTCH3. Survival analysis revealed that mutation status of the DDR pathway was associated with worse OS in our cohort. Importantly, patients with higher CMB exhibited worse OS in our cohort and this observation was successfully validated in the cBioportal cohort. Moreover, multivariate analysis demonstrated CMB as a promising independent prognostic factor for OS in Chinese SCLC patients. Interestingly, patients with loss of function of RB1, validated by immunohistochemistry staining, appeared to have worse OS. CONCLUSIONS: The mutational profiling of Chinese SCLC patients signified an ethnicity dependent component. CMB was firstly found to be associated with OS of Chinese SCLC patients and could be regarded as a prognostic marker for SCLC.

19.
ACS Nano ; 13(11): 12638-12652, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31625721

RESUMO

Photodynamic therapy (PDT) is a clinical cancer treatment modality based on the induction of therapeutic reactive oxygen species (ROS), which can trigger immunogenic cell death (ICD). With the aim of simultaneously improving both PDT-mediated intracellular ROS production and ICD levels, we designed a serum albumin (SA)-coated boehmite ("B"; aluminum hydroxide oxide) organic-inorganic scaffold that could be loaded with chlorin e6 (Ce6), a photosensitizer, and a honey bee venom melittin (MLT) peptide, denoted Ce6/MLT@SAB. Ce6/MLT@SAB was anchored by a boehmite nanorod structure and exhibited particle size of approximately 180 nm. Ce6/MLT@SAB could significantly reduce hemolysis relative to that of free MLT, while providing MLT-enhanced PDT antitumor effects in vitro. Compared with Ce6@SAB, Ce6/MLT@SAB improved Ce6 penetration of cancer cells both in vitro and in vivo, thereby providing enhanced intracellular ROS generation with 660 nm light treatment. Following phototreatment, Ce6/MLT@SAB-treated cells displayed significantly improved levels of ICD and abilities to activate dendritic cells. In the absence of laser irradiation, multidose injection of Ce6/MLT@SAB could delay the growth of subcutaneous murine tumors by more than 60%, compared to controls. When combined with laser irradiation, a single injection and phototreatment with Ce6/MLT@SAB eradicated one-third of subcutaneous tumors in treated mice. The addition of an immune checkpoint blockade to Ce6/MLT@SAB phototreatment further augmented antitumor effects, generating increased numbers of CD4+ and CD8+ T cells in tumors with concomitant reduction of myeloid-derived suppressor cells.

20.
ACS Nano ; 13(10): 11891-11900, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31542919

RESUMO

Although the lithium-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2, as a promising cathode material, has a high specific capacity, it suffers from capacity decay and discharge voltage decay during cycling. In this work, the specific capacity and discharge voltage of Li1.2Mn0.54Ni0.13Co0.13O2 are stabilized by surface-functionalized LiCeO2 coating. We have conducted LiCeO2 coating via a mild synchronous lithium strategy to protect the electrode surface from electrolyte attack. This optimized LiCeO2 coating has high Li+ conductivity and abundant oxygen vacancies. The results demonstrate that 3% LiCeO2-coated Li1.2Mn0.54Ni0.13Co0.13O2 exhibits the highest capacity retention rate at 1, 2, and 5 C after 200 cycles, which were 84.3%, 85.4%, and 86.3%, respectively. The discharge specific capacity was almost 1.3, 1.4, and 1.4 times that of the pristine electrode. In addition, the 3% LiCeO2 electrode exhibited the least voltage decay of 0.409, 0.497, and 0.494 V at 1, 2, and 5 C, which was only about half of the pristine electrode. It should not be overlooked that the 3% LiCeO2 electrode still exhibits a high capacity at high current densities of 1250 mA g-1 (5 C) and 2500 mA g-1 (10 C), and its specific discharge capacities are 190.5 and 160.6 mAh g-1, respectively. These outstanding electrochemical properties benefit from surface-functionalized LiCeO2 coatings. To better understand the mechanism of oxygen loss of lithium-rich materials, we propose the lattice oxygen migration path of the LiCeO2-coated electrodes during the cycle. Our research provides a possible solution to the poor rate capability and cycle performance of cathode materials through surface-functionalized coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA