Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(19): 8698-8709, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38688036

RESUMO

Li3Y1-xInxCl6 undergoes a phase transition from trigonal to monoclinic via an intermediate orthorhombic phase. Although the trigonal yttrium containing the end member phase, Li3YCl6, synthesized by a mechanochemical route, is known to exhibit stacking fault disorder, not much is known about the monoclinic phases of the serial composition Li3Y1-xInxCl6. This work aims to shed light on the influence of the indium substitution on the phase evolution, along with the evolution of stacking fault disorder using X-ray and neutron powder diffraction together with solid-state nuclear magnetic resonance spectroscopy, studying the lithium-ion diffusion. Although Li3Y1-xInxCl6 with x ≤ 0.1 exhibits an ordered trigonal structure like Li3YCl6, a large degree of stacking fault disorder is observed in the monoclinic phases for the x ≥ 0.3 compositions. The stacking fault disorder materializes as a crystallographic intergrowth of faultless domains with staggered layers stacked in a uniform layer stacking, along with faulted domains with randomized staggered layer stacking. This work shows how structurally complex even the "simple" series of solid solutions can be in this class of halide-based lithium-ion conductors, as apparent from difficulties in finding a consistent structural descriptor for the ionic transport.

2.
ACS Appl Mater Interfaces ; 16(15): 19792-19805, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572658

RESUMO

Sodium all-solid-state batteries may become a novel storage technology overcoming the safety and energy density issues of (liquid-based) sodium ion batteries at low cost and good resource availability. However, compared to liquid electrolyte cells, contact issues and capacity losses due to interface reactions leading to high cell resistance are still a problem in solid-state batteries. In particular, sulfide-based electrolytes, which show very high ionic conductivity and good malleability, exhibit degradation reactions at the interface with electrode materials and carbon additives. A new group of solid electrolytes, i.e., sodium halides, shows wider potential windows and better stability at typical cathode potentials. A detailed investigation of the interface reactions of Na3SbS4 and Na2.4Er0.4Zr0.6Cl6 as catholytes in cathodes and their cycling performance in full cells is performed. X-ray spectroscopy, time-of-flight spectrometry, and impedance spectroscopy are used to study the interface of each catholyte with a transition metal oxide cathode active material. In addition, impedance measurements were used to study the separator electrolyte Na3SbS4 with the catholyte Na2.4Er0.4Zr0.6Cl6. In conclusion, cathodes with Na2.4Er0.4Zr0.6Cl6 show a higher stability at low C-rates, resulting in lower interfacial resistance and improved cycling performance.

3.
J Am Chem Soc ; 146(2): 1710-1721, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175928

RESUMO

The influence of the microstructure on the ionic conductivity and cell performance is a topic of broad scientific interest in solid-state batteries. The current understanding is that interfacial decomposition reactions during cycling induce local strain at the interfaces between solid electrolytes and the anode/cathode, as well as within the electrode composites. Characterizing the effects of internal strain on ion transport is particularly important, given the significant local chemomechanical effects caused by volumetric changes of the active materials during cycling. Here, we show the effects of internal strain on the bulk ionic transport of the argyrodite Li6PS5Br. Internal strain is reproducibly induced by applying pressures with values up to 10 GPa. An internal permanent strain is observed in the material, indicating long-range strain fields typical for dislocations. With increasing dislocation densities, an increase in the lithium ionic conductivity can be observed that extends into improved ionic transport in solid-state battery electrode composites. This work shows the potential of strain engineering as an additional approach for tuning ion conductors without changing the composition of the material itself.

4.
Molecules ; 28(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959770

RESUMO

A series of four regioisomeric Pt(II) complexes (PtLa-n and PtLb-n) bearing tetradentate luminophores as dianionic ligands were synthesized. Hence, both classes of cyclometallating chelators were decorated with three n-hexyl (n = 6) or n-dodecyl (n = 12) chains. The new compounds were unambiguously characterized by means of multiple NMR spectroscopies and mass spectrometry. Steady-state and time-resolved photoluminescence spectroscopy as well quantum chemical calculations show that the effect of the regioisomerism on the emission colour and on the deactivation rate constants can be correlated with the participation of the Pt atom on the excited state. The thermal properties of the complexes were studied by DSC, POM and temperature-dependent steady-state photoluminescence spectroscopy. Three of the four complexes (PtLa-12, PtLb-6 and PtLb-12) present an intriguing thermochromism resulting from the responsive metal-metal interactions involving adjacent monomeric units. Each material has different transition temperatures and memory capabilities, which can be tuned at the intermolecular level. Hence, dipole-dipole interactions between the luminophores and disruption of the crystalline packing by the alkyl groups are responsible for the final properties of the resulting materials.

5.
ACS Appl Mater Interfaces ; 15(43): 50457-50468, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856165

RESUMO

This paper presents a suitable combination of different sodium solid electrolytes to surpass the challenge of highly reactive cell components in sodium batteries. The focus is laid on the introduction of ceramic Na3.4Zr2Si2.4P0.6O12 serving as a protective layer for sulfide-based separator electrolytes to avoid the high reactivity with the sodium metal anode. The chemical instability of the anode|sulfide solid electrolyte interface is demonstrated by impedance spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The Na3.4Zr2Si2.4P0.6O12 disk shows chemical stability with the sodium metal anode as well as the sulfide solid electrolyte. Impedance analysis suggests an electrochemically stable interface. Electron microscopy points to a reaction at the Na3.4Zr2Si2.4P0.6O12 surface toward the sulfide solid electrolyte, which does not seem to affect the performance negatively. The results presented prove the chemical stabilization of the anode-separator interface using a Na3.4Zr2Si2.4P0.6O12 interlayer, which is an important step toward a sodium all-solid-state battery. Due to the applied pressure that is mandatory for battery cells with sulfide-based cathode composite, the use of a brittle ceramic in such cells remains challenging.

6.
Inorg Chem ; 62(30): 11737-11745, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37466299

RESUMO

Motivated by the significant transport property improvement of the anion-substituted lithium metal halides, a series of anion mixed solid solutions of Na3InCl6-xBrx (0 ≤ x ≤ 2) are successfully synthesized by ball milling and subsequent annealing. By milling, the Na3InCl6-xBrx solid solution series crystallizes in a monoclinic P21/n phase, while the subsequently annealed Na3InCl6-xBrx series transforms into a trigonal P3̅1c phase. Through annealing and changes of the structure type, greater anion solubility can be achieved. The halide substitution slightly improves the ionic conductivity in the Na3InCl6-xBrx series, indicating that mixed halide compositions and their structural changes affect the ionic transport albeit less strongly than in the lithium analogues such as Li3YCl6-xBrx and Li3InCl6-xBrx.

7.
J Am Chem Soc ; 145(13): 7147-7158, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946557

RESUMO

Aliovalent substitution is a common strategy to improve the ionic conductivity of solid electrolytes for solid-state batteries. The substitution of SbS43- by WS42- in Na2.9Sb0.9W0.1S4 leads to a very high ionic conductivity of 41 mS cm-1 at room temperature. While pristine Na3SbS4 crystallizes in a tetragonal structure, the substituted Na2.9Sb0.9W0.1S4 crystallizes in a cubic phase at room temperature based on its X-ray diffractogram. Here, we show by performing pair distribution function analyses and static single-pulse 121Sb NMR experiments that the short-range order of Na2.9Sb0.9W0.1S4 remains tetragonal despite the change in the Bragg diffraction pattern. Temperature-dependent Raman spectroscopy revealed that changed lattice dynamics due to the increased disorder in the Na+ substructure leads to dynamic sampling causing the discrepancy in local and average structure. While showing no differences in the local structure, compared to pristine Na3SbS4, quasi-elastic neutron scattering and solid-state 23Na nuclear magnetic resonance measurements revealed drastically improved Na+ diffusivity and decreased activation energies for Na2.9Sb0.9W0.1S4. The obtained diffusion coefficients are in very good agreement with theoretical values and long-range transport measured by impedance spectroscopy. This work demonstrates the importance of studying the local structure of ionic conductors to fully understand their transport mechanisms, a prerequisite for the development of faster ionic conductors.

8.
Phys Chem Chem Phys ; 25(2): 1169-1176, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36519415

RESUMO

Understanding the correlation between ionic motion and crystal structure is crucial for improving solid electrolyte conductivities. Several substitution series in the Li10GeP2S12 structure have shown a favorable impact on the ionic conductivity, e.g. the replacement of P(+V) by Sb(+V) in Li10GeP2S12. However, here the interplay between the structure and ionic motion remains elusive. X-Ray diffraction, high-resolution neutron diffraction, Raman spectroscopy and potentionstatic impedance spectroscopy are employed to explore the impact of Sb(+V) on the Li10GeP2S12 structure. The introduction of antimony elongates the unit cell in the c-direction and increases the M(1)/P(1) and Li(2) polyhedral volume. Over the solid solution range, the Li+ distribution remains similar, an inductive effect seems to be absent and the ionic conductivity is comparable for all compositions. The effect of introducing Sb(+V) in Li10GeP2S12 cannot be corroborated.

9.
Adv Mater ; 35(2): e2208698, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284487

RESUMO

A diode requires the combination of p- and n-type semiconductors or at least the defined formation of such areas within a given compound. This is a prerequisite for any IT application, energy conversion technology, and electronic semiconductor devices. Since the discovery of the pnp-switchable compound Ag10 Te4 Br3 in 2009, it is in principle possible to fabricate a diode from a single material without adjusting the semiconduction type by a defined doping level. Often a structural phase transition accompanied by a dynamic change of charge carriers or a charge density wave within certain substructures are responsible for this effect. Unfortunately, the high pnp-switching temperature between 364 and 580 K hinders the application of this phenomenon in convenient devices. This effect is far removed from a suitable operation temperature at ambient conditions. Ag18 Cu3 Te11 Cl3  is a room temperature pnp-switching material and the first single-material position-independent diode. It shows the highest ever reported Seebeck coefficient drop that takes place within a few Kelvin. Combined with its low thermal conductivity, it offers great application potential within an accessible and applicable temperature window. Ag18 Cu3 Te11 Cl3 and pnp-switching materials have the potential for applications and processes where diodes, transistors, or any defined charge separation with junction formation are utilized.

10.
J Phys Chem Lett ; 13(25): 5938-5945, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35731950

RESUMO

We employ terahertz-range temperature-dependent Raman spectroscopy and first-principles lattice dynamical calculations to show that the undoped sodium ion conductors Na3PS4 and isostructural Na3PSe4 both exhibit anharmonic lattice dynamics. The anharmonic effects in the compounds involve coupled host lattice-Na+ ion dynamics that drive the tetragonal-to-cubic phase transition in both cases, but with a qualitative difference in the anharmonic character of the transition. Na3PSe4 shows an almost purely displacive character with the soft modes disappearing in the cubic phase as the change in symmetry shifts these modes to the Raman-inactive Brillouin zone boundary. Na3PS4 instead shows an order-disorder character in the cubic phase, with the soft modes persisting through the phase transition and remaining Raman active in the cubic phase, violating Raman selection rules for that phase. Our findings highlight the important role of coupled host lattice-mobile ion dynamics in vibrational instabilities that are coincident with the exceptional conductivity of these Na+ ion conductors.

11.
J Am Chem Soc ; 144(4): 1795-1812, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35057616

RESUMO

Solid electrolytes are at the heart of future energy storage systems. Li-bearing argyrodites are frontrunners in terms of Li+ ion conductivity. Although many studies have investigated the effect of elemental substitution on ionic conductivity, we still do not fully understand the various origins leading to improved ion dynamics. Here, Li6+xP1-xGexS5I served as an application-oriented model system to study the effect of cation substitution (P5+ vs Ge4+) on Li+ ion dynamics. While Li6PS5I is a rather poor ionic conductor (10-6 S cm-1, 298 K), the Ge-containing samples show specific conductivities on the order of 10-2 S cm-1 (330 K). Replacing P5+ with Ge4+ not only causes S2-/I- anion site disorder but also reveals via neutron diffraction that the Li+ ions do occupy several originally empty sites between the Li rich cages in the argyrodite framework. Here, we used 7Li and 31P NMR to show that this Li+ site disorder has a tremendous effect on both local ion dynamics and long-range Li+ transport. For the Ge-rich samples, NMR revealed several new Li+ exchange processes, which are to be characterized by rather low activation barriers (0.1-0.3 eV). Consequently, in samples with high Ge-contents, the Li+ ions have access to an interconnected network of pathways allowing for rapid exchange processes between the Li cages. By (i) relating the changes of the crystal structure and (ii) measuring the dynamic features as a function of length scale, we were able to rationalize the microscopic origins of fast, long-range ion transport in this class of electrolytes.

12.
ChemSusChem ; 15(4): e202200078, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35099111

RESUMO

Invited for this month's cover is a combined work of the Helmholtz Institute Münster together with the MEET Battery Research Center and the Universities of Münster and Mainz. The cover shows multiple treatment choices for the modification of cathode active materials for lithium-ion batteries. Similar to a car wash program, the treatment will typically result in an improvement of the status quo. However, the best treatment procedure will only become clear if all modification pathways are explored. The Research Article itself is available at 10.1002/cssc.202102220.

13.
ChemSusChem ; 15(4): e202102220, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34784118

RESUMO

Ni-rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium-ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitution ("doping") and surface coating. Although both approaches separately benefit the cycling stability, there are only few reports investigating the combination of two of such approaches. Herein, the combination of Zr as common dopant in commercial materials with effective Li2 WO4 and WO3 coatings was investigated with special focus on the impact of different material processing conditions on structural parameters and electrochemical performance in nickel-cobalt-manganese (NCM) || graphite cells. Results indicated that the Zr4+ dopant diffusing to the surface during annealing improved the electrochemical performance compared to samples without additional coatings. This work emphasizes the importance to not only investigate the effect of individual dopants or coatings but also the influences between both.

14.
Inorg Chem ; 60(24): 18975-18980, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34851091

RESUMO

The lithium argyrodites Li6PS5X (X = Cl, Br, and I) have attracted interest as fast solid ionic conductors for solid-state batteries. Within this class of materials, it has been previously suggested that more polarizable anions and larger substituents should influence the ionic conductivity (e.g., substituting S by Se). Building upon this work, we explore the influence of Sn substitution in lithium argyrodites Li6+xSnxP1-xSe5I in direct comparison to the previously reported Li6+xSnxP1-xS5I series. The (P5+/Sn4+)Se43/4- polyhedral volume, unit cell volume, and lithium coordination tetrahedra Li(48h)-(S/Se)3-I increase with Sn substitution in this new selenide series. Impedance spectroscopy reveals that increasing Sn4+ substitution results in a fivefold improvement in the ionic conductivity when compared to Li6PSe5I. This work provides further understanding of compositional influences for optimizing the ionic conductivity of solid electrolytes.

15.
ACS Mater Lett ; 3(5): 652-657, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34476400

RESUMO

State-of-the-art oxides and sulfides with high Li-ion conductivity and good electrochemical stability are among the most promising candidates for solid-state electrolytes in secondary batteries. Yet emerging halides offer promising alternatives because of their intrinsic low Li+ migration energy barriers, high electrochemical oxidative stability, and beneficial mechanical properties. Mechanochemical synthesis has enabled the characterization of LiAlX4 compounds to be extended and the iodide, LiAlI4, to be synthesized for the first time (monoclinic P21/c, Z = 4; a = 8.0846(1) Å; b = 7.4369(1) Å; c = 14.8890(2) Å; ß = 93.0457(8)°). Of the tetrahaloaluminates, LiAlBr4 exhibited the highest ionic conductivity at room temperature (0.033 mS cm-1), while LiAlCl4 showed a conductivity of 0.17 mS cm-1 at 333 K, coupled with the highest thermal and oxidative stability. Modeling of the diffusion pathways suggests that the Li-ion transport mechanism in each tetrahaloaluminate is closely related and mediated by both halide polarizability and concerted complex anion motions.

16.
Chem Sci ; 12(18): 6238-6263, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-34084423

RESUMO

The development of high-performance inorganic solid electrolytes is central to achieving high-energy- density solid-state batteries. Whereas these solid-state materials are often prepared via classic solid-state syntheses, recent efforts in the community have shown that mechanochemical reactions, solution syntheses, microwave syntheses, and various post-synthetic heat treatment routines can drastically affect the structure and microstructure, and with it, the transport properties of the materials. On the one hand, these are important considerations for the upscaling of a materials processing route for industrial applications and industrial production. On the other hand, it shows that the influence of the different syntheses on the materials' properties is neither well understood fundamentally nor broadly internalized well. Here we aim to review the recent efforts on understanding the influence of the synthetic procedure on the synthesis - (micro)structure - transport correlations in superionic conductors. Our aim is to provide the field of solid-state research a direction for future efforts to better understand current materials properties based on synthetic routes, rather than having an overly simplistic idea of any given composition having an intrinsic conductivity. We hope this review will shed light on the underestimated influence of synthesis on the transport properties of solid electrolytes toward the design of syntheses of future solid electrolytes and help guide industrial efforts of known materials.

17.
Angew Chem Int Ed Engl ; 60(33): 17952-17956, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129261

RESUMO

Given the inherent performance limitations of intercalation-based lithium-ion batteries, solid-state conversion batteries are promising systems for future energy storage. A high specific capacity and natural abundancy make iron disulfide (FeS2 ) a promising cathode-active material. In this work, FeS2 nanoparticles were prepared solvothermally. By adjusting the synthesis conditions, samples with average particle diameters between 10 nm and 35 nm were synthesized. The electrochemical performance was evaluated in solid-state cells with a Li-argyrodite solid electrolyte. While the reduction of FeS2 was found to be irreversible in the initial discharge, a stable cycling of the reduced species was observed subsequently. A positive effect of smaller particle dimensions on FeS2 utilization was identified, which can be attributed to a higher interfacial contact area and shortened diffusion pathways inside the FeS2 particles. These results highlight the general importance of morphological design to exploit the promising theoretical capacity of conversion electrodes in solid-state batteries.

18.
Acc Chem Res ; 54(12): 2717-2728, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032414

RESUMO

ConspectusAs the world transitions away from fossil energy to green and renewable energy, electrochemical energy storage increasingly becomes a vital component of the mix to conduct this transition. The central goal in developing next-generation batteries is to maximize the gravimetric and volumetric energy density and battery cycle life and improve safety. All solid-state batteries using a solid electrolyte and a lithium metal anode represent one of the most promising technologies that can achieve this goal. Highly conductive solid electrolytes (>10 mS·cm-1) are the key component to remove the safety concerns inherent with flammable organic liquid electrolytes and achieve high energy density by enabling high active material loading. Considering a range of inorganic solid electrolytes that have been developed to date, sulfide solid electrolytes exhibit the highest ionic conductivities, which even surpass those of conventional organic liquid electrolytes. Argyrodite-structured sulfide solid electrolytes are among the most promising materials in this class and are currently the dominantly used solid electrolytes for all-solid-state battery fabrication. Argyrodite solid electrolytes are particularly appealing because of their ultrahigh Li-ion conductivity, quasi-stable solid-electrolyte interphase (SEI) formed with Li metal, and ability to be prepared via scalable solution-assisted synthesis approaches. These factors are all vital for commercial applications.In this Account, we afford an overview of our recent development of several argyrodite superionic conductors, including Li6.6Si0.6Sb0.5S5I (24 mS·cm-1), Li6.6Ge0.6P0.4S5I (18 mS·cm-1), and Li5.5PS4.5Cl1.5 (12 mS·cm-1), and a comprehensive understanding of the origin of the underlying high conductivity, namely, sulfide/halide anion site disorder and Li cation site disorder. A high degree of sulfide/halide anion site disorder (changes in anion distribution) modifies the anionic charge, which in turn strongly influences the lithium distribution. A more inhomogeneous charge distribution in anion-disordered systems generates a spatially diffuse and delocalized lithium density, resulting in faster ionic transport. Lithium cation site disorder generated by increasing Li carrier concentration through aliovalent substitution creates high-energy interstitial sites for Li ion diffusion, which activate concerted ion migration and flatten the energy landscape for Li ion diffusion. This enables high conductivity in Li-rich argyrodite superionic conductors. These concepts are also expected to promote the design of rational new solid electrolytes and fundamental understanding of the structure-ion transport relationships in inorganic ionic conductors.Collectively, a comprehensive and deep understanding of the interphase formation between argyrodite solid electrolytes and cathode active materials/Li metal and the failure mechanism of all-solid-state batteries with argyrodite solid electrolytes will lead to the bottom-up engineering of the cathode/anode-solid electrolyte interfaces, which will accelerate the development of safe, high-energy-density all-solid-state lithium batteries.

19.
J Phys Chem C Nanomater Interfaces ; 125(4): 2306-2317, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33584937

RESUMO

Solid electrolytes are key elements for next-generation energy storage systems. To design powerful electrolytes with high ionic conductivity, we need to improve our understanding of the mechanisms that are at the heart of the rapid ion exchange processes in solids. Such an understanding also requires evaluation and testing of methods not routinely used to characterize ion conductors. Here, the ternary Li4MCh4 system (M = Ge, Sn; Ch = Se, S) provides model compounds to study the applicability of 7Li nuclear magnetic resonance (NMR) spin-alignment echo (SAE) spectroscopy to probe slow Li+ exchange processes. Whereas the exact interpretation of conventional spin-lattice relaxation data depends on models, SAE NMR offers a model-independent, direct access to motional correlation rates. Indeed, the jump rates and activation energies deduced from time-domain relaxometry data perfectly agree with results from 7Li SAE NMR. In particular, long-range Li+ diffusion in polycrystalline Li4SnS4 as seen by NMR in a dynamic range covering 6 orders of magnitude is determined by an activation energy of E a = 0.55 eV and a pre-exponential factor of 3 × 1013 s-1. The variation in E a and 1/τ0 is related to the LiCh4 volume that changes within the four Li4MCh4 compounds studied. The corresponding volume of Li4SnS4 seems to be close to optimum for Li+ diffusivity.

20.
ChemSusChem ; 14(1): 441-448, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-32860491

RESUMO

The demand for lithium-ion batteries has risen dramatically over the years. Unfortunately, many of the essential component materials, such as cobalt and lithium, are both costly and of limited abundance. For this reason, the recycling of lithium-ion battery electrodes is crucial to ensuring the availability of such resources and protecting the environment. Herein, a simple and scalable recycling process was developed for the prototypical cathode active material Li1.02 (Ni0.8 Co0.1 Mn0.1 )0.98 O2 (NCM-811). By a combination of thermal decomposition and dissolution steps, spent NCM could be converted into Li2 CO3 and a transition metal oxalate blend, which served as precursors for new NCM. Importantly, it was also possible to individually separate each transition metal during the recycling process, thereby extending the utility of this method to a wide variety of NCM compositions. Each intermediate in the process was investigated by scanning electron microscopy and X-ray diffraction. Additionally, the elemental composition of the recycled NCM-811 was confirmed using inductively coupled plasma optical emission spectroscopy and energy-dispersive X-ray spectroscopy. The electrochemical performance of the recycled NCM-811 exhibited up to 80 % of the initial capacity of pristine NCM-811. The method presented herein serves as an efficient and environmentally benign alternative to existing recycling methods for lithium-ion battery electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...