Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.296
Filtrar
1.
Food Chem ; 334: 127615, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711261

RESUMO

In this review article, the state of the art of gas sensors based on quartz crystal microbalance (QCM) for fruit freshness detection is overviewed from the aspects of development history, working principle, selection and modification of sensitive materials, and volatile organic compounds detection of fruits. According to the characteristics of respiratory intensity at the stage of fruit ripening, fruits can be divided into respiration climacteric fruits and non-climacteric fruits. In recent years, research has mainly focused on respiration climacteric fruits, such as bananas and mangoes, etc., while related studies on non-climacteric fruits have been rarely reported, except for citrus fruits. The preparation methods and structure design of sensitive materials based on physical/chemical adsorption mechanisms are further discussed according to the odor components that affect the freshness of fruits, namely alkenes, esters, aldehydes and alcohols.

2.
Bioorg Med Chem ; 28(22): 115780, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-33007560

RESUMO

We have synthesized several conformationally constrained dipeptide analogues as possible substrates for incorporation into proteins. These have included three cyclic dipeptides formed from Boc derivatives of 2,4-diaminobutyric acid, ornithine and lysine, having 5-, 6-, and 7-membered lactam rings, respectively. These dipeptides were used to activate a suppressor tRNA transcript, the latter of which had been prepared by in vitro transcription. Using modified E. coli ribosomes described previously, these activated suppressor tRNAs enabled the incorporation of the three cyclic dipeptides into dihydrofolate reductase (DHFR) at positions 18 and 49. The suppression yields increased with increasing lactam ring size and were found to proceed in suppression yields ranging from 3.4 to 8.9% at two different protein sites for the 5-, 6- and 7-membered lactam dipeptides. The greater facility of incorporation of the 7-membered lactam prompted us to prepare two 7-membered cyclic acylhydrazides (4 and 5) by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI)-mediated cyclization of amino acids having selectively protected hydrazine functional groups in their side chains. In common with the lactam dipeptides, acylhydrazide dipeptides 4 and 5 could be used to activate the same suppressor tRNA transcript and to incorporate the cyclic dipeptides into DHFR. They were incorporated into the same two DHFR sites in suppression yields ranging from 8.3 to 11.2%.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33042860

RESUMO

Objectives: To evaluate metagenomic next-generation sequencing (mNGS) as a diagnostic tool in detecting pathogens from osteoarticular infection (OAI) samples. Methods: 130 samples of joint fluid, sonicate fluid, and tissue were prospectively collected from 92 patients with OAI. The performance of mNGS and microbiology culture was compared pairwise. Results: The overall sensitivity of mNGS was 88.5% (115/130), significantly higher than that of microbiological culture, which had a sensitivity of 69.2% (90/130, p < 0.01). Sensitivity was significantly higher for joint fluid (mNGS: 86.7% vs. microbiology culture: 68.7%, p < 0.01) and sonicate fluid (mNGS: 100% vs. microbiology culture: 66.7%, p < 0.05) samples. mNGS detected 12 pathogenic strains undetected by microbiological culture. Additional pathogens detected by mNGS were Coagulase-negative Staphylococci, Gram-negative Bacillus, Streptococci, Anaerobe, non-tuberculosis mycobacterium, MTCP (p > 0.05), and Mycoplasma (OR = ∞, 95% confidence interval, 5.12-∞, p < 0.001). Additionally, sensitivity by mNGS was higher in antibiotic-treated samples compared to microbiological culture (89.7 vs. 61.5%, p < 0.01). Conclusions: mNGS is a robust diagnostic tool for pathogenic detection in samples from OAI patients, compared to routine cultures. The mNGS technique is particularly valuable to diagnose pathogens that are difficult to be cultured, or to test samples from patients previously treated with antibiotics.

4.
Nucleic Acids Res ; 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045748

RESUMO

The three-dimensional configuration of the chromatin architecture is known to be crucial for alterations in the transcriptional network; however, the underlying mechanisms of epigenetic control of senescence-related gene expression by modulating the chromatin architecture remain unknown. Here, we demonstrate frequent chromosomal compartment switching during mouse embryonic fibroblasts (MEFs) replicative senescence as characterized by senescence-inactivated (SIAEs) and -activated enhancers (SAEs) in topologically associated domains (TADs). Mechanistically, SAEs are closely correlated with senescence-associated secretory phenotype (SASP) genes, which are a key transcriptional feature of an aging microenvironment that contributes to tumor progression, aging acceleration, and immunoinflammatory responses. Moreover, SAEs can positively regulate robust changes in SASP expression. The transcription factor CCAAT/enhancer binding protein α (C/EBPα) is capable of enhancing SAE activity, which accelerates the emergence of SAEs flanking SASPs and the secretion of downstream factors, contributing to the progression of senescence. Our results provide novel insight into the TAD-related control of SASP gene expression by revealing hierarchical roles of the chromatin architecture, transcription factors, and enhancer activity in the regulation of cellular senescence.

5.
J Am Soc Nephrol ; 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046531

RESUMO

BACKGROUND: Mutations in PKD1 and PKD2, which encode the transmembrane proteins polycystin-1 and polycystin-2, respectively, cause autosomal dominant polycystic kidney disease (ADPKD). Polycystins are expressed in the primary cilium, and disrupting cilia structure significantly slows ADPKD progression following inactivation of polycystins. The cellular mechanisms of polycystin- and cilia-dependent cyst progression in ADPKD remain incompletely understood. METHODS: Unbiased transcriptional profiling in an adult-onset Pkd2 mouse model before cysts formed revealed significant differentially expressed genes (DEGs) in Pkd2 single-knockout kidneys, which were used to identify candidate pathways dysregulated in kidneys destined to form cysts. In vivo studies validated the role of the candidate pathway in the progression of ADPKD. Wild-type and Pkd2/Ift88 double-knockout mice that are protected from cyst growth served as controls. RESULTS: The RNASeq data identified cell proliferation as the most dysregulated pathway, with 15 of 241 DEGs related to cell cycle functions. Cdk1 appeared as a central component in this analysis. Cdk1 expression was similarly dysregulated in Pkd1 models of ADPKD, and conditional inactivation of Cdk1 with Pkd1 markedly improved the cystic phenotype and kidney function compared with inactivation of Pkd1 alone. The Pkd1/Cdk1 double knockout blocked cyst cell proliferation that otherwise accompanied Pkd1 inactivation alone. CONCLUSIONS: Dysregulation of Cdk1 is an early driver of cyst cell proliferation in ADPKD due to Pkd1 inactivation. Selective targeting of cyst cell proliferation is an effective means of slowing ADPKD progression caused by inactivation of Pkd1.

6.
Plants (Basel) ; 9(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080882

RESUMO

PHT1 (phosphate transporter 1) family genes play important roles in regulating plant growth and responding to stress. However, there has been little research on the role of the PHT1 family in potatoes. In this study, using molecular and bioinformatic approaches, 8 PHT1 family genes were identified from the potato genome. StPHT1;7 was highly expressed in the whole potato plants. The overexpression and silence vectors of StPHT1;7 were constructed and transformed into the potato cultivar Desiree. Consequently, StPHT1;7 overexpression (with a relative expression 2-7-fold that in the control) and silence lines (with a relative expression of 0.3%-1% that in the control) were obtained. Their growth vigor was ranked in the order overexpression line > wild type > silence line. In the absence of phosphorus, the root length of the overexpression line was approximately 2.6 times that of the wild type, while the root length of the silence line was approximately 0.6 times that of the wild type. Furthermore, their tolerance to drought stress was ranked as wild type > overexpression line > silence line. These results suggest that StPHT1;7 affects growth and stress tolerance in potato plants.

7.
Biomed Res Int ; 2020: 2102645, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083454

RESUMO

Objective: At present, no effective noninvasive method is currently available for the differential diagnosis of high-grade glioma and intracranial lymphoma. In the present study, we aimed to screen microRNA (miRNA) markers in serum exosomes for differential diagnosis of high-grade glioma and intracranial lymphoma using high-throughput sequencing technology. Methods: Patients with intracranial lymphoma or high-grade glioma and healthy controls were included in this study (training cohort (n = 10) and validation cohort: intracranial lymphoma (n = 10), high-grade glioma (n = 32), and healthy controls (n = 20)). After RNA was extracted from serum exosomes, the high-throughput sequencing was used to determine the expression profiles of serum exosomal miRNAs and screen the differentially expressed miRNAs. RT-qPCR was used to verify the expressions of the selected miRNAs. The differences of miRNA expressions between groups were assessed by the Kruskal-Wallis test. The diagnostic value was analyzed using the receiver operating characteristic (ROC) curve. Results: High-throughput sequencing demonstrated that 170 miRNAs, including 109 upregulated ones and 61 downregulated ones, were differentially expressed in serum exosomes between the patients with intracranial lymphoma and high-grade glioma. Compared with the healthy controls, the number of differential serum exosomal miRNAs in the high-grade glioma group and intracranial lymphoma group was 130 and 173, respectively. RT-qPCR proved that both miR-766-5p and miR-376b-5p were significantly downregulated in high-grade glioma and intracranial lymphoma patients compared with the healthy controls (all p < 0.001), and the expression of serum exosomal miR-766-5p in the intracranial lymphoma group was lower compared with the high-grade glioma group (p < 0.05). The areas under ROC curve (AUCs) of serum exosomal miR-766-5p and miR-376b-5p for the diagnosis of glioma were 0.8883 (p < 0.001) and 0.7688 (p = 0.001), respectively, and they were 0.9271 (p < 0.001) and 0.8542 (p < 0.001), respectively, for the diagnosis of intracranial lymphoma. Moreover, the AUC value of serum exosomal miR-766-5p for the differential diagnosis of glioma and intracranial lymphoma was 0.7201 (p = 0.026). Conclusions: miR-766-5p and miR-376b-5p in serum exosomes might be used as auxiliary diagnostic indicators for high-grade glioma and intracranial lymphoma, and miR-766-5p might be used as a differential diagnostic marker for both diseases.

8.
Arch Virol ; 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057930

RESUMO

Here, we report the molecular characterization of a novel partitivirus from Phomopsis vexans strain PvHZ002, a plant-pathogenic fungus infecting eggplant. The virus was designated "Phomopsis vexans partitivirus 1" (PvPV1). PvPV1 contains two dsRNA segments, dsRNA1 and dsRNA2, which are 1,662 bp and 1,628 bp long, respectively. Each segment contains a single open reading frame, putatively encoding RNA-dependent RNA polymerase (dsRNA 1) and capsid protein (dsRNA 2). A homology search and phylogenetic analysis showed that PvPV1 clustered with viruses of the genus Deltapartitivirus of the family Partitiviridae.

9.
Int J Nanomedicine ; 15: 6945-6960, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061361

RESUMO

Background: Natural clay nanomaterials are an emerging class of biomaterial with great potential for tissue engineering and regenerative medicine applications, most notably for osteogenesis. Materials and Methods: Herein, for the first time, novel tissue engineering scaffolds were prepared by 3D bioprinter using nontoxic and bioactive natural attapulgite (ATP) nanorods as starting materials, with polyvinyl alcohol as binder, and then sintered to obtain final scaffolds. The microscopic morphology and structure of ATP particles and scaffolds were observed by transmission electron microscope and scanning electron microscope. In vitro biocompatibility and osteogenesis with osteogenic precursor cell (hBMSCs) were assayed using MTT method, Live/Dead cell staining, alizarin red staining and RT-PCR. In vivo bone regeneration was evaluated with micro-CT and histology analysis in rat cranium defect model. Results: We successfully printed a novel porous nano-ATP scaffold designed with inner channels with a dimension of 500 µm and wall structures with a thickness of 330 µm. The porosity of current 3D-printed scaffolds ranges from 75% to 82% and the longitudinal compressive strength was up to 4.32±0.52 MPa. We found firstly that nano-ATP scaffolds with excellent biocompatibility for hBMSCscould upregulate the expression of osteogenesis-related genes bmp2 and runx2 and calcium deposits in vitro. Interestingly, micro-CT and histology analysis revealed abundant newly formed bone was observed along the defect margin, even above and within the 3D bioprinted porous ATP scaffolds in a rat cranial defect model. Furthermore, histology analysis demonstrated that bone was formed directly following a process similar to membranous ossification without any intermediate cartilage formation and that many newly formed blood vessels are within the pores of 3D-printed scaffolds at four and eight weeks. Conclusion: These results suggest that the 3D-printed porous nano-ATP scaffolds are promising candidates for bone tissue engineering by osteogenesis and angiogenesis.

10.
Int J Biol Sci ; 16(15): 3085-3099, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061820

RESUMO

Well-orchestrated epigenetic modifications during early development are essential for embryonic survival and postnatal growth. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, DNA methylation defects are of great concern. Despite the critical role of DNA methylation in determining embryonic development potential, the mechanisms underlying IVF-associated DNA methylation defects, however, remains largely elusive. We reported herein that repression of fibroblast growth factor (FGF) signaling as the main reason for IVF-associated DNA methylation defects. Comparative methylome analysis by postimplantation stage suggested that IVF mouse embryos undergo impaired de novo DNA methylation during implantation stage. Further analyses indicated that Dnmt3b, the main de novo DNA methyltransferase, was consistently inhibited during the transition from the blastocyst to postimplantation stage (Embryonic day 7.5, E7.5). Using blastocysts and embryonic stem cells (ESCs) as the model, we showed repression of FGF signaling is responsible for Dnmt3b inhibition and global hypomethylation during early development, and MEK/ERK-SP1 pathway plays an essential mediating role in FGF signaling-induced transcriptional activation of Dnmt3b. Supplementation of FGF2, which was exclusively produced in the maternal oviduct, into embryo culture medium significantly rescued Dnmt3b inhibition. Our study, using mouse embryos as the model, not only identifies FGF signaling as the main target for correcting IVF-associated epigenetic errors, but also highlights the importance of oviductal paracrine factors in supporting early embryonic development and improving in vitro culture system.

11.
Comput Intell Neurosci ; 2020: 8835852, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061949

RESUMO

In evolutionary algorithms, genetic operators iteratively generate new offspring which constitute a potentially valuable set of search history. To boost the performance of offspring generation in the real-coded genetic algorithm (RCGA), in this paper, we propose to exploit the search history cached so far in an online style during the iteration. Specifically, survivor individuals over the past few generations are collected and stored in the archive to form the search history. We introduce a simple yet effective crossover model driven by the search history (abbreviated as SHX). In particular, the search history is clustered, and each cluster is assigned a score for SHX. In essence, the proposed SHX is a data-driven method which exploits the search history to perform offspring selection after the offspring generation. Since no additional fitness evaluations are needed, SHX is favorable for the tasks with limited budget or expensive fitness evaluations. We experimentally verify the effectiveness of SHX over 15 benchmark functions. Quantitative results show that our SHX can significantly enhance the performance of RCGA, in terms of both accuracy and convergence speed. Also, the induced additional runtime is negligible compared to the total processing time.

12.
Fish Shellfish Immunol ; 107(Pt A): 26-35, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011434

RESUMO

Activating transcription factor 2 (ATF2), a member of the bZIP transcription factor family, is involved in multiple physiological and developmental processes, yet its role in the innate immunity remains unclear. In this study, two isoforms (named as MnATF2a and MnATF2b) of ATF2 gene were identified in Macrobrachium nipponense and were produced by exon skipping. The full length of MnATF2a is 2328 bp with an open reading frame of 2079 bp that encode 692 amino acids. MnATF2a has 237 bp nucleotides more than MnATF2b and the extra 237 bp is a complete exon. MnATF2a and MnATF2b proteins contain the same conserved and typical bZIP domain at the C-terminus. MnATF2a has 79 amino acids more than MnATF2b. MnATF2a and MnATF2b are widely distributed in a variety of immune tissues. After Vibrio parahaemolyticus and Staphylococcus aureus infection, the expression levels of MnATF2a and MnATF2b were significant up-regulated in the gills and stomach at 12 h. RNA interference analysis showed that knockdown of the total MnATF2 gene significantly inhibits the transcription of tumor necrosis factor (TNF) and promotes the expression of crustins (including Cru3, Cru4, and Cru7). Further study showed that knockdown of MnTNF evidently increase the expression of Cru3, Cru4, and Cru7. Our research indicates that ATF2 negatively regulate the expression of AMPs by regulating the transcription of TNF in M. nipponense. This study provides valuable information about the function of ATF2 family in the innate immunity in crustacean.

13.
Medicine (Baltimore) ; 99(41): e21562, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33031255

RESUMO

The importance of monocyte/lymphocyte ratio (MLR) has been indicated in the initiation and progression of coronary artery disease. However, few previous researches demonstrated the relationship between MLR and plaque vulnerability. We aimed to investigate coronary non-culprit plaque vulnerability in patients with acute coronary syndrome (ACS) by optical coherence tomography (OCT).A total of 72 ACS patients who underwent coronary angiography and OCT test in Beijing Anzhen Hospital were included in this retrospective study. The plaque vulnerability and plaque morphology were assessed by OCT.The non-culprit plaque in high MLR group exhibited more vulnerable features, characterizing as thinner thickness of fibrous cap (P = .013), greater maximum lipid core angle (P = .010) and longer lipid plaque length (P = .041). A prominently negative liner relation was found between MLR and thickness of fibrous cap (R = -0.225, P = .005). Meanwhile, the proportion of OCT-detected thin cap fibro-atheroma (TCFA) (P = .014) and plaque rupture (P = .017) were higher in high MLR group. Most importantly, multivariable logistic regression analysis showed MLR level was identified as an independent contributor to the presence of TCFA (OR:3.316, 95%: 1.448-7.593, P = .005). MLR could differentiate TCFA with a sensitivity of 60.0% and a specificity of 85.1%.Circulating MLR level has potential value in identifying the presence of vulnerable plaque in patients with ACS. MLR, as a non- invasive biomarker of inflammation, may be valuable in revealing plaque vulnerability.


Assuntos
Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/diagnóstico por imagem , Placa Aterosclerótica/sangue , Placa Aterosclerótica/diagnóstico por imagem , Tomografia de Coerência Óptica , Angiografia Coronária , Feminino , Humanos , Linfócitos , Masculino , Pessoa de Meia-Idade , Monócitos
15.
Artigo em Inglês | MEDLINE | ID: mdl-33078353

RESUMO

To date, research evidence suggests that extreme ambient temperatures may lead to preterm birth. Since the results of studies in subtropical humid monsoon climate are inconclusive, we investigated the association between extreme ambient temperatures and the risk of preterm birth in Xuzhou, China. We analyzed the association between the birth data of 103,876 singleton deliveries (from July 1, 2016 to June 30, 2019) and ambient temperature. We used a quasi-Poisson model with distributed lag nonlinear models (DLNM) to investigate the delay and nonlinear effects of temperature, taking into account the effects of air pollutants and relative humidity. During the study period, the number of hospitalizations for preterm birth was 4623. Taking the median temperature (16.8 °C) as a reference, the highest risk estimate at extreme cold temperature (- 2.8 °C, 1st percentile) was found at lag 0-1 days. Exposure to extreme cold (- 2.8 °C, 1st percentile), or moderate cold (6.8 °C, 25th percentile) were associated with 1.659 (95% confidence interval [CI] 1.177-2.338) and 1.456 (95% CI 1.183-1.790) increased risks of preterm birth, respectively. In the further stratified analysis of the age of pregnant women, we found that there were significant associations between cold temperatures and preterm birth in both groups (older group ≥ 35; younger group < 35). In a subtropical humid monsoon climate, low ambient temperatures may lead to preterm birth, suggesting that women should stay away from low temperatures during pregnancy.

16.
Protoplasma ; 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33079225

RESUMO

Drought is the main factor that significantly affects plant growth and has devastating effects on crop production of jute. NAC (NAM, ATAF, and CUC2) transcription factors (TFs) are a large gene family in plants that have been shown to play many important roles in regulating developmental processes and abiotic stress resistance. In this study, a NAC transcription factor, CcNAC1, was cloned and characterized its function in jute. RT-qPCR analysis showed that CcNAC1 expression peaks after 8 h of drought stress. CcNAC1 overexpression and knockdown plants were created by Agrobacterium-mediated genetic transformation. PCR and southern hybridization results indicate that the CcNAC1 gene was integrated into the genome of jute. Overexpression of the CcNAC1 gene sped up the plant growth, promoted early flowering, and increased drought tolerance compared to the control plants. 3-Ketoacyl-CoA synthase (KCS) gene expression level increased significantly in the CcNAC1-overexpression plants and decreased in knockdown plants, which showed that CcNAC1 transcription factor regulated KCS gene expression. Yeast-2-Hybrid (Y2H) assays validated the physical interaction between CcNAC1 and KCS. The results provide relatively comprehensive information on the molecular mechanisms of CcNAC1 gene underlying the regulation of plant growth and drought stress resistance, and indicate that CcNAC1 acts as a positive regulator in drought tolerance in jute (Corchorus capsularis L.).

17.
Drug Metab Dispos ; 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051247

RESUMO

Pharmacological interventions for hepatocellular carcinoma (HCC) are hindered by complex factors, and rational combination therapy may be developed to improve therapeutic outcomes. Very recently, we have identified a bioengineered microRNA let-7c-5p (or let-7c) agent as an effective inhibitor against HCC in vitro and in vivo In this study, we sought to identify small-molecule drugs that may synergistically act with let-7c against HCC. Interestingly, we found that let-7c exhibited a strong synergism with 5-fluorouracil (5-FU) in the inhibition of HCC cell viability, as manifested by average combination indices of 0.3 and 0.5 in Hep3B and Huh7 cells, respectively. By contrast, co-administration of let-7c with doxorubicin or sorafenib inhibited HCC cell viability with rather surprisingly no or minimal synergy. Further studies showed that protein levels of multidrug resistance-associated protein 5 (MRP5/ABCC5), a 5-FU efflux transporter, were reduced around 50% by let-7c in HCC cells. This led to a greater degree of intracellular accumulation of 5-FU in Huh7 cells, as well as the second messenger cyclic adenosine monophosphate, an endogenous substrate of MRP5. Since 5-FU is an irreversible inhibitor of thymidylate synthetase (TS), we investigated the interactions of let-7c with 5-FU at pharmacodynamic level. Interestingly, our data revealed that let-7c significantly reduced TS protein levels in Huh7 cells, which was associated with the suppression of upstream transcriptional factors as well as other regulatory factors. Collectively, these results indicate that let-7c interacts with 5-FU at both pharmacokinetic and pharmacodynamic levels, and these findings shall offer insight into molecular mechanisms of synergistic drug combinations. Significance Statement Combination therapy is a common strategy that generally involves pharmacodynamic interactions. After identifying a strong synergism between let-7c-5p and 5-FU against HCC cell viability, we reveal the involvement of both pharmacokinetic and pharmacodynamic mechanisms. In particular, let-7c enhances 5-FU exposure (via suppressing ABCC5/MRP5 expression) and co-targets thymidylate synthase with 5-FU (let-7c reduces protein expression while 5-FU irreversibly inactivates enzyme). These findings provide insight into developing rational combination therapies based on pharmacological mechanisms.

18.
Mol Pharmacol ; 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051382

RESUMO

Cancer cells are dysregulated and addicted to continuous supply and metabolism of nutritional glucose and amino acids (e.g., arginine) to drive the synthesis of critical macromolecules for uncontrolled growth. Recent studies have revealed that genome-derived microRNA-1291-5p (miR-1291-5p or miR-1291) may modulate the expression of argininosuccinate synthase (ASS1) and glucose transporter protein type 1 (GLUT1). We also developed a novel approach to produce recombinant miR-1291 agents for research, which are distinguished from conventional chemo-engineered miRNA mimics. Herein, we firstly demonstrated that bioengineered miR-1291 agent was selectively processed to high levels of target miR-1291-5p in human pancreatic cancer (PC) cells. Following the suppression of ASS1 protein levels, miR-1291 perturbed arginine homeostasis and preferably sensitized ASS1-abundant L3.3 cells to arginine deprivation therapy. In addition, miR-1291 treatment reduced the protein levels of GLUT1 in both AsPC-1 and PANC-1 cells, leading to a lower glucose uptake (deceased > 40%) and glycolysis capacity (reduced approximately 50%). As a result, miR-1291 largely improved cisplatin efficacy in the inhibition of PC cell viability. Our results demonstrated that miR-1291 was effective to sensitize PC cells to arginine deprivation treatment and chemotherapy through targeting ASS1- and GLUT1-mediated arginolysis and glycolysis, respectively, which may provide insights into understanding miRNA signaling underlying cancer cell metabolism and development of new strategies for the treatment of lethal PC. Significance Statement Many anticancer drugs in clinical use and under investigations exert pharmacological effects or improve efficacy of co-administered medications by targeting cancer cell metabolism. Using new recombinant miR-1291 agent, we revealed that miR-1291 acts as a metabolism modulator in pancreatic carcinoma cells through the regulation of ASS1- and GLUT1-mediated arginolysis and glycolysis. Consequently, miR-1291 was effective to enhance the efficacy of arginine deprivation (PEG-ADI) and chemotherapy (cisplatin), offering new insights into development of rational combination therapies.

19.
Mol Cancer Ther ; 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037138

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a prominent fibrotic stroma, which is a result of interactions between tumor, immune and pancreatic stellate cells (PSC) or cancer associated fibroblasts (CAF). Targeting inflammatory pathways present within the stroma may improve access of effector immune cells to PDAC and response to immunotherapy. Heat shock protein-90 (Hsp90), is a chaperone protein and a versatile target in pancreatic cancer. Hsp90 regulates a diverse array of cellular processes of relevance to both the tumor and the immune system. However, to date the role of Hsp90 in PSC/CAF has not been explored in detail. We hypothesized that Hsp90 inhibition would limit inflammatory signals, thereby reprogramming the PDAC tumor microenvironment to enhance sensitivity to PD-1 blockade. Treatment of immortalized and primary patient PSC/CAF with the Hsp90 inhibitor XL888 decreased IL-6, a key cytokine that orchestrates immune changes in PDAC at the transcript and protein level in vitro. XL888 directly limited PSC/CAF growth, and reduced Jak/STAT and MAPK signaling intermediates and alpha-SMA expression as determined via immunoblot. Combined therapy with XL888 and anti-PD-1 was efficacious in C57BL/6 mice bearing syngeneic subcutaneous (Panc02) or orthotopic (KPC Luc) tumors. Tumors from mice treated with both XL888 and anti-PD-1 had a significantly increased CD8+ and CD4+ T cell infiltrate and a unique transcriptional profile characterized by upregulation of genes associated with immune response and chemotaxis. These data demonstrate that Hsp90 inhibition directly impacts PSC/CAF in vitro and enhances the efficacy of anti-PD-1 blockade in vivo.

20.
J Med Chem ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030342

RESUMO

Abnormal activation of the fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR4) signaling pathway has been shown to drive the proliferation of a significant portion of hepatocellular carcinoma (HCC). Resistance and toxicity are serious drawbacks that have been observed upon use of the current first- and second-line treatment options for HCC, therefore warranting the investigation of alternative therapeutic approaches. We report the development and biological characterization of a covalent inhibitor that is highly potent and exquisitely specific to FGFR4. The crystal structure of this inhibitor in complex with FGFR4 was solved, confirming its covalent binding and revealing its binding mode. We also describe the first clickable probe for FGFR4 that can be used to directly measure target engagement in cells. Our compound exhibited great antitumor activity in HCC cell lines and tumor xenograft models. These results provide evidence of a promising therapeutic lead for the treatment of a subset of HCC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA