Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.893
Filtrar
1.
Nano Lett ; 24(15): 4625-4632, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568748

RESUMO

Transport probes the motion of quasi-particles in response to external excitations. Apart from the well-known electric and thermoelectric transport, acoustoelectric transport induced by traveling acoustic waves has rarely been explored. Here, by adopting hybrid nanodevices integrated with piezoelectric substrates, we establish a simple design of acoustoelectric transport with gate tunability. We fabricate dual-gated acoustoelectric devices based on hBN-encapsulated graphene on LiNbO3. Longitudinal and transverse acoustoelectric voltages are generated by launching a pulsed surface acoustic wave. The gate dependence of zero-field longitudinal acoustoelectric signal presents strikingly similar profiles to that of Hall resistivity, providing a valid approach for extracting carrier density without magnetic field. In magnetic fields, acoustoelectric quantum oscillations appear due to Landau quantization, which are more robust and pronounced than Shubnikov-de Haas oscillations. Our work demonstrates a feasible acoustoelectric setup with gate tunability, which can be extended to the broad scope of various van der Waals materials.

2.
Methods Mol Biol ; 2782: 113-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622396

RESUMO

Mitochondria-associated membranes (MAMs) are regions where the endoplasmic reticulum (ER) interacts with mitochondria and regulate lipid trafficking, calcium signaling, ER stress, and inflammation activation. Isolation of MAMs from endothelial cells is vital for studying insight into the immune regulation of many inflammatory diseases. Endothelial cells (ECs) are critical innate immune cells due to their paracrine function of secreting interleukins, chemokines, cytokines, and growth factors, as well as expressing levels of pattern recognition receptors including toll-like receptors (TLRs). Furthermore, ECs regulate and recruit monocytes by expressing adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin, and E-selectin, to facilitate monocyte diapedesis in areas of damage and inflammation. This protocol consists of step-by-step instructions on isolating pure MAMs and other subcellular fractions from endothelial cells, which is critical to understanding ER and mitochondria crosstalks in endothelial functions in health and disease.


Assuntos
Células Endoteliais , 60482 , Povidona , Dióxido de Silício , Humanos , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo
3.
Fish Physiol Biochem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625478

RESUMO

This study aims to explore whether glycerol monolaurate (GML) can improve reproductive performance of female zebrafish (Danio rerio) and the survival percentage of their offspring. Three kinds of isonitrogenous and isolipid diets, including basal diet (control) and basal diet containing 0.75 g/kg GML (L_GML) and 1.5 g/kg GML (H_GML), were prepared for 4 weeks feeding trial. The results show that GML increased the GSI of female zebrafish. GML also enhanced reproductive performance of female zebrafish. Specifically, GML increased spawning number and hatching rate of female zebrafish. Moreover, GML significantly increased the levels of triglycerides (TG), lauric acid, and estradiol (E2) in the ovary (P < 0.05). Follicle-stimulating hormone (FSH) levels in the ovary and brain also significantly increased in the L_GML group (P < 0.05). Besides, dietary GML regulated the hypothalamus-pituitary-gonad (HPG) axis evidenced by the changed expression levels of HPG axis-related genes in the brain and ovary of the L_GML and H_GML groups compared with the control group. Furthermore, compared with the control group, the expression levels of HPG axis-related genes (kiss2, kiss1r, kiss2r, gnrh3, gnrhr1, gnrhr3, lhß, and esr2b) in the brain of the L_GML group were significantly increased (P < 0.05), and the expression levels of HPG axis-related genes (kiss1, kiss2, kiss2r, gnrh2, gnrh3, gnrhr4, fshß, lhß, esr1, esr2a, and esr2b) in the brain of the H_GML group were significantly increased (P < 0.05). These results suggest that GML may stimulate the expression of gnrh2 and gnrh3 by increasing the expression level of kiss1 and kiss2 genes in the hypothalamus, thus promoting the synthesis of FSH and E2. The expression levels of genes associated with gonadotropin receptors (fshr and lhr) and gonadal steroid hormone synthesis (cyp11a1, cyp17, and cyp19a) in the ovary were also significantly upregulated by dietary GML (P < 0.05). The increasing expression level of cyp19a also may promote the FSH synthesis. Particularly, GML enhanced the richness and diversity and regulated the species composition of intestinal microbiota in female zebrafish. Changes in certain intestinal microorganisms may be related to the expression of certain genes involved in the HPG axis. In addition, L_GML and H_GML both significantly decreased larvae mortality at 96 h post fertilization and their mortality during the first-feeding period (P < 0.05), revealing the enhanced the starvation tolerance of zebrafish larvae. In summary, dietary GML regulated genes related to HPG axis to promote the synthesis of E2 and FSH and altered gut microbiota in female zebrafish, and improved the survival percentage of their offspring.

4.
Front Mol Biosci ; 11: 1366020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633216

RESUMO

Objective: Diabetic retinopathy (DR) is a severe diabetic complication that leads to severe visual impairment or blindness. He-Ying-Qing-Re formula (HF), a traditional Chinese medicinal concoction, has been identified as an efficient therapy for DR with retinal vascular dysfunction for decades and has been experimentally reported to ameliorate retinal conditions in diabetic mice. This study endeavors to explore the therapeutic potential of HF with key ingredients in DR and its underlying novel mechanisms. Methods: Co-expression gene modules and hub genes were calculated by weighted gene co-expression network analysis (WGCNA) based on transcriptome sequencing data from high-glucose-treated adult retinal pigment epithelial cell line-19 (ARPE-19). The chromatographic fingerprint of HF was established by ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-Q-TOF-MS). The molecular affinity of the herbal compound was measured by molecular docking. Reactive oxygen species (ROS) was measured by a DCFDA/H2DCFDA assay. Apoptosis was detected using the TUNEL Assay Kit, while ELISA, Western blot, and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used for detecting the cytokine, protein, and mRNA expressions, respectively. Results: Key compounds in HF were identified as luteolin, paeoniflorin, and nobiletin. For WGCNA, ME-salmon ("protein deacetylation") was negatively correlated with ME-purple ("oxidative impairment") in high-glucose-treated ARPE-19. Luteolin has a high affinity for SIRT1 and P53, as indicated by molecular docking. Luteolin has a hypoglycemic effect on type I diabetic mice. Moreover, HF and luteolin suppress oxidative stress production (ROS and MDA), inflammatory factor expression (IL-6, TNF-α, IL1-ß, and MCP-1), and apoptosis, as shown in the in vivo and in vitro experiments. Concurrently, treatment with HF and luteolin led to an upregulation of SIRT1 and a corresponding downregulation of P53. Conclusion: Using HF and its active compound luteolin as therapeutic agents offers a promising approach to diabetic retinopathy treatment. It primarily suppressed protein acetylation and oxidative stress via the SIRT1/P53 pathway in retinal pigment epithelial cells.

5.
Nat Commun ; 15(1): 3157, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605044

RESUMO

Large-scale stretchable strain sensor arrays capable of mapping two-dimensional strain distributions have gained interest for applications as wearable devices and relating to the Internet of Things. However, existing strain sensor arrays are usually unable to achieve accurate directional recognition and experience a trade-off between high sensing resolution and large area detection. Here, based on classical Mie resonance, we report a flexible meta-sensor array that can detect the in-plane direction and magnitude of preloaded strains by referencing a dynamically transmitted terahertz (THz) signal. By building a one-to-one correspondence between the intrinsic electrical/magnetic dipole resonance frequency and the horizontal/perpendicular tension level, arbitrary strain information across the meta-sensor array is accurately detected and quantified using a THz scanning setup. Particularly, with a simple preparation process of micro template-assisted assembly, this meta-sensor array offers ultrahigh sensor density (~11.1 cm-2) and has been seamlessly extended to a record-breaking size (110 × 130 mm2), demonstrating its promise in real-life applications.

6.
Chemosphere ; : 142024, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38614396

RESUMO

Indoor formaldehyde (HCHO) pollution poses a major risk to human health. Low-temperature catalytic oxidation is an effective method for HCHO removal. The high activity and selectivity of single atomic catalysts provide a possibility for the development of efficient non-precious metal catalysts. In this study, the most stable single-atom catalyst Ti-Ti4C3O2 was screened by density functional theory among many single atomic catalysts with two-dimensional (2D) monolayer Ti4C3O2 as the support. The computational results show that Ti-Ti4C3O2 is highly selective to HCHO and O2 in complex environments. The HCHO oxidation reaction pathways are proposed based on the Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. According to the reaction energy and energy span models, the E-R mechanism has a lower maximum energy barrier and higher catalytic efficiency than the L-H mechanism. In addition, the stability of the Ti-Ti4C3O2 structure and active center was verified by diffusion energy barrier and ab initio molecular dynamics simulations. The above results indicate that Ti-Ti4C3O2 is a promising non-precious metal catalyst. The present study provides detailed theoretical insights into the catalytic oxidation of HCHO by Ti-Ti4C3O2, as well as an idea for the development of efficient non-precious metal catalysts based on 2D materials.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38631936

RESUMO

BACKGROUND: Coronary microvascular dysfunction (CMD) is a prevalent condition among patients with cardiovascular risk factors, leading to a reduced quality of life and an increased risk of major adverse cardiovascular events. Novel invasive techniques have emerged to more accurately diagnose CMD. However, CMD's natural history remains poorly understood due to limited data. To address this knowledge gap, the Coronary Microvascular Disease Registry (CMDR) was established with the primary aim of standardizing comprehensive coronary functional testing and understanding of CMD. DESIGN: CMDR is a prospective, multicenter registry enrolling an unlimited number of consecutive subjects who undergo comprehensive invasive hemodynamic assessment of the entire coronary arterial vasculature. Patients undergoing acetylcholine provocation test for coronary vasospasm will also be included. Follow-up assessments will be conducted at 30 days and annually for up to 5 years. The primary endpoint is Canadian Cardiovascular Society angina grade over time. Secondary endpoints, including all-cause mortality, cardiovascular death, acute myocardial infarction, stroke, hospitalizations, medication changes, and subsequent coronary interventions, will be analyzed to establish long-term safety and clinical outcomes in patients undergoing invasive CMD assessment. SUMMARY: CMDR aims to characterize the clinical and physiologic profile of patients undergoing comprehensive invasive coronary functional testing, simultaneously providing crucial longitudinal information on the natural history and outcomes of these patients. This will shed light on CMD's course and clinical implications, which, in turn, holds the potential to significantly improve diagnostic and treatment strategies for CMD patients, ultimately leading to the enhancement of their overall prognosis and quality of life. CLINICAL TRIAL REGISTRATION: clinicaltrials.gov, NCT05960474.

8.
ACS Appl Mater Interfaces ; 16(15): 19094-19102, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38571376

RESUMO

Due to the spontaneous transport of small-sized cations and redox reactions under open circuit conditions, the currently reported coloring electrochromic devices (ECDs) may self-bleach easily. The resulting ECDs exhibit poor open-circuit memory, which limits their applications in static display advertisement. By constructing energy barriers to effectively control small-sized cation transport, the redox reaction could be suppressed, thereby inhibiting the self-bleaching of ECDs. In this study, phosphate glass is used as an electrolyte to construct high-energy barriers. Sodium ions in phosphate glass absorb external heat to cross energy barriers and become conductive charge carriers. In this case, the electrochromism of ECDs is allowed. On the contrary, after the absorbed heat energy is released, sodium ions are immediately trapped by oxygen ions in the PO4 unit, becoming frozen ions. At this point, the electrochromization of ECDs is prohibited. Based on the ionic conductive feature of phosphate glass, ECDs absorb heat and are colored by applying an electric field first. Then, ECDs release the thermal energy and the sodium ions transport in the electrolyte is blocked to cut off the self-bleaching pathway. The prepared inorganic all-solid-state ECDs maintained the colored state for several months using the method mentioned above, which solved the problem of the poor open-circuit memory of ECDs.

9.
Adv Mater ; : e2402001, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597787

RESUMO

Molecular semiconductor (MSC) is a promising candidate for spintronic applications benefiting from its long spin lifetime caused by light elemental-composition essence and thus weak spin-orbit coupling (SOC). According to current knowledge, the SOC effect, normally dominated by the elemental composition, is the main spin-relaxation causation in MSCs, and thus the molecular structure-induced SOC change is one of the most concerned issues. In theoretical study, molecular isomerism, a most prototype phenomenon, has long been considered to possess little difference on spin transport previously, since elemental compositions of isomers are totally the same. However, here in this study, quite different spin-transport performances are demonstrated in ITIC and its structural isomers BDTIC experimentally, for the first time, though the charge transport and molecular stacking of the two films are very similar. By further experiments of electron-paramagnetic resonance and density-functional-theory calculations, it is revealed that noncovalent-conformational locks (NCLs) formed in BDTIC can lead to enhancement of SOC and thus decrease the spin lifetime. Hence, this study suggests the influences from the structural-isomeric effect must be considered for developing highly efficient spin-transport MSCs, which also provides a reliable theoretical basis for solving the great challenge of quantificational measurement of NCLs in films in the future.

10.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618952

RESUMO

N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.


Assuntos
Adenina , Carcinoma de Células Renais , Neoplasias Renais , Adulto , Humanos , Carcinogênese/genética , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Expressão Gênica , Neoplasias Renais/genética , Metiltransferases/genética , Fosfatidilinositol 3-Quinases/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-38634863

RESUMO

ASH1L potentially contributes to Tourette syndrome (TS) and other neuropsychiatric disorders, as our previous studies have shown. It regulates essential developmental genes by counteracting polycomb-mediated transcriptional repression, which restricts chromatin accessibility at target genes. ASH1L is highly expressed in the adult brain, playing a crucial role in the early stage. However, it remains unclear how ASH1L mutations carried by patients with TS participate in regulating neuronal growth processes leading to TS traits. Five TS families recruited in our study underwent comprehensive physical examinations and questionnaires to record clinical phenotypes and environmental impact factors. We validated the variants via Sanger sequencing and constructed two mutants near the catalytic domain of ASH1L. We conducted molecular modeling, in vitro assays, and primary neuron cultures to find the role of ASH1L in neuronal development and its correlation with TS. In this study, we validated five pathogenic ASH1L rare variants and observed symptoms in patients with simple tics and behavioral comorbidities. Mutations near the catalytic domain of TS patients cause mental state abnormalities and disrupt ASH1L function by destabilizing its spatial conformation, leading to decreased activity of catalytic H3K4, thereby affecting the neurite growth. We need to conduct larger-scale studies on TS patients and perform additional neurological evaluations on mature neurons. We first reported the effects of ASH1L mutations in TS patients, including phenotypic heterogeneity, protein function, and neurological growth. This information contributes to understanding the neurodevelopmental pathogenesis of TS in patients with ASH1L mutations.

12.
NPJ Syst Biol Appl ; 10(1): 37, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589404

RESUMO

Immunomodulatory peptides, while exhibiting potential antimicrobial, antifungal, and/or antiviral properties, can play a role in stimulating or suppressing the immune system, especially in pathological conditions like breast cancer (BC). Thus, deregulation of these peptides may serve as an immunotherapeutic strategy to enhance the immune response. In this meta-analysis, we utilized single-cell RNA sequencing data and known therapeutic peptides to investigate the deregulation of these peptides in malignant versus normal human breast epithelial cells. We corroborated our findings at the chromatin level using ATAC-seq. Additionally, we assessed the protein levels in various BC cell lines. Moreover, our in-house drug repositioning approach was employed to identify potential drugs that could positively impact the relapse-free survival of BC patients. Considering significantly deregulated therapeutic peptides and their role in BC pathology, our approach aims to downregulate B2M and SLPI, while upregulating PIGR, DEFB1, LTF, CLU, S100A7, and SCGB2A1 in BC epithelial cells through our drug repositioning pipeline. Leveraging the LINCS L1000 database, we propose BRD-A06641369 for B2M downregulation and ST-4070043 and BRD-K97926541 for SLPI downregulation without negatively affecting the MHC complex as a significantly correlated pathway with these two genes. Furthermore, we have compiled a comprehensive list of drugs for the upregulation of other selected immunomodulatory peptides. Employing an immunotherapeutic approach by integrating our drug repositioning pipeline with single-cell analysis, we proposed potential drugs and drug targets to fortify the immune system against BC.


Assuntos
Neoplasias da Mama , beta-Defensinas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Reposicionamento de Medicamentos , Imunoterapia , Análise de Célula Única , Peptídeos
13.
Heliyon ; 10(7): e28718, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590885

RESUMO

The demand for innovative and cost-effective in-situ consolidation technologies in soft clay stimulated the effort to employ electrokinetic phenomena in soils under an electric field. This work explains the principles of electrophoresis and electroosmosis in soft clay under an electric field and discusses the implacations of these results for field implementation of the technique. The experimental work reported here was carried out to shed light on the principles by considering various influencing factors. The results show that there is a threshold current (about 15 mA) for electroosmosis and electrophoresis in soft clay. Below the threshold current, electrophoresis plays a major role and is accompanied by weak electroosmosis. The particle size, dry density, and boundary rise height of electrophoretic soil in anode chamber are mainly affected by soil moisture content, electrode in electrolyte length, and bottom of electrode to soil surface distance. The closer the soil moisture content is to the average value of the liquid limit and plastic limit, the denser the electrophoretic soil will be. Above the threshold current, almost only electroosmosis occurs. The greater the current, the greater the electroosmosis. In practical engineering application, electrodes are usually directly inserted into the soft clay. This results in the current usually being much greater than the threshold current, meaning the electrophoretic phenomenon in the soil can be negligible.

14.
Nat Commun ; 15(1): 3017, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589414

RESUMO

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light.

15.
Mol Cancer ; 23(1): 74, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582885

RESUMO

BACKGROUND AND AIMS: Sorafenib is a major nonsurgical option for patients with advanced hepatocellular carcinoma (HCC); however, its clinical efficacy is largely undermined by the acquisition of resistance. The aim of this study was to identify the key lncRNA involved in the regulation of the sorafenib response in HCC. MATERIALS AND METHODS: A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) single-guide RNA (sgRNA) synergistic activation mediator (SAM)-pooled lncRNA library was applied to screen for the key lncRNA regulated by sorafenib treatment. The role of the identified lncRNA in mediating the sorafenib response in HCC was examined in vitro and in vivo. The underlying mechanism was delineated by proteomic analysis. The clinical significance of the expression of the identified lncRNA was evaluated by multiplex immunostaining on a human HCC microtissue array. RESULTS: CRISPR/Cas9 lncRNA library screening revealed that Linc01056 was among the most downregulated lncRNAs in sorafenib-resistant HCC cells. Knockdown of Linc01056 reduced the sensitivity of HCC cells to sorafenib, suppressing apoptosis in vitro and promoting tumour growth in mice in vivo. Proteomic analysis revealed that Linc01056 knockdown in sorafenib-treated HCC cells induced genes related to fatty acid oxidation (FAO) while repressing glycolysis-associated genes, leading to a metabolic switch favouring higher intracellular energy production. FAO inhibition in HCC cells with Linc01056 knockdown significantly restored sensitivity to sorafenib. Mechanistically, we determined that PPARα is the critical molecule governing the metabolic switch upon Linc01056 knockdown in HCC cells and indeed, PPARα inhibition restored the sorafenib response in HCC cells in vitro and HCC tumours in vivo. Clinically, Linc01056 expression predicted optimal overall and progression-free survival outcomes in HCC patients and predicted a better sorafenib response. Linc01056 expression indicated a low FAO level in HCC. CONCLUSION: Our study identified Linc01056 as a critical epigenetic regulator and potential therapeutic target in the regulation of the sorafenib response in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Camundongos , Animais , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , RNA Longo não Codificante/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , RNA Guia de Sistemas CRISPR-Cas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/uso terapêutico , Proteômica , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica
16.
BMC Genomics ; 25(1): 346, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580907

RESUMO

BACKGROUND: The yak (Bos grunniens) is a large ruminant species that lives in high-altitude regions and exhibits excellent adaptation to the plateau environments. To further understand the genetic characteristics and adaptive mechanisms of yak, we have developed a multi-omics database of yak including genome, transcriptome, proteome, and DNA methylation data. DESCRIPTION: The Yak Genome Database ( http://yakgenomics.com/ ) integrates the research results of genome, transcriptome, proteome, and DNA methylation, and provides an integrated platform for researchers to share and exchange omics data. The database contains 26,518 genes, 62 transcriptomes, 144,309 proteome spectra, and 22,478 methylation sites of yak. The genome module provides access to yak genome sequences, gene annotations and variant information. The transcriptome module offers transcriptome data from various tissues of yak and cattle strains at different developmental stages. The proteome module presents protein profiles from diverse yak organs. Additionally, the DNA methylation module shows the DNA methylation information at each base of the whole genome. Functions of data downloading and browsing, functional gene exploration, and experimental practice were available for the database. CONCLUSION: This comprehensive database provides a valuable resource for further investigations on development, molecular mechanisms underlying high-altitude adaptation, and molecular breeding of yak.


Assuntos
Multiômica , Proteoma , Animais , Bovinos/genética , Proteoma/genética , Genoma , Transcriptoma , Anotação de Sequência Molecular
17.
Food Chem ; 449: 139163, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38604024

RESUMO

Precipitation was an important obstacle to improving zinc's bioavailability. Therefore, zinc-whey protein hydrolysate-chitosan oligosaccharide (Zn-WPH-COS) complexes (167 nm) were prepared by linking Zn-WPH (zinc: 18.4%) with COS (1:1, 2 h) to enhance zinc's bioaccessibility. Fourier-transform infrared showed Zn-WPH formed with zinc replaced hydrogen (from 3274 to 3279 cm-1) and reacted with COO- (C-N: from 1394 to 1402 cm-1), a new peak at 1025 cm-1 proved COS can be successful cross-linked (Zn-WPH-COS). Fluorescence spectra showed zinc and COS reduced WPH hydrophobicity (28.0 and 39.0%, respectively). Circular dichroism showed zinc decreased WPH α-helix (from 13.7 to 11.5%), in contrast with COS to Zn-WPH. Zinc solubility and dialyzability were increased (64.5/ 54.2% vs 50.2/ 41.2% vs 29.5/ 21.7%) in Zn-WPH-COS, compared with Zn-WPH and ZnSO4·7H2O, respectively, due to the smallest size (167 nm) and COS protection on Zn-WPH (gastric digestion). These results indicate Zn-WPH-COS could significantly improve the digestion and absorption of zinc.

18.
J Nucl Med ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604764

RESUMO

68Ga-labeled nanobody (68Ga-NC-BCH) is a single-domain antibody-based PET imaging agent. We conducted a first-in-humans study of 68Ga-NC-BCH for PET to determine its in vivo biodistribution, metabolism, radiation dosimetry, safety, and potential for quantifying claudin-18 isoform 2 (CLDN18.2) expression in gastrointestinal cancer patients. Methods: Initially, we synthesized the probe 68Ga-NC-BCH and performed preclinical evaluations on human gastric adenocarcinoma cell lines and xenograft mouse models. Next, we performed a translational study with a pilot cohort of patients with advanced gastrointestinal cancer on a total-body PET/CT scanner. Radiopharmaceutical biodistribution, radiation dosimetry, and the relationship between tumor uptake and CLDN18.2 expression were evaluated. Results: 68Ga-NC-BCH was stably prepared and demonstrated good radiochemical properties. According to preclinical evaluation,68Ga-NC-BCH exhibited rapid blood clearance, high affinity for CLDN18.2, and high specific uptake in CLDN18.2-positive cells and xenograft mouse models. 68Ga-NC-BCH displayed high uptake in the stomach and kidney and slight uptake in the pancreas. Compared with 18F-FDG, 68Ga-NC-BCH showed significant differences in uptake in lesions with different levels of CLDN18.2 expression. Conclusion: A clear correlation was detected between PET SUV and CLDN18.2 expression, suggesting that 68Ga-NC-BCH PET could be used as a companion diagnostic tool for optimizing treatments that target CLDN18.2 in tumors.

19.
Langmuir ; 40(15): 7982-7991, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38569012

RESUMO

In this study, we explored an innovative application of heat-assisted solution electrospinning, a technique that significantly advances the control of phase separation in polystyrene (PS) fibers. Our experimental approach involved the use of direct heating and a convection air sheath applied through a coaxial needle, focusing on solvents with varying vapor pressures. This method enabled a detailed investigation into how solvent evaporation rates affect the morphology of the electrospun fibers. SEM and AFM measurements revealed that the application of direct heating and a heated air sheath offered precise control over the fiber morphology, significantly influencing both the surface and internal structure of the fibers. Additionally, we observed notable changes in fiber diameter, indicating that heat-assisted electrospinning can be effectively utilized to tailor fiber dimensions according to specific application requirements. Moreover, our research demonstrated the critical role of solvent properties, particularly vapor pressure, in determining the final characteristics of the electrospun fibers. By comparing fibers produced with different solvents, we gained insights into the complex interplay between solvent dynamics and heat application in fiber formation. The implications of these findings are far-reaching, offering new possibilities for the fabrication of nanofibers with customized properties. Furthermore, this could have profound impacts on various applications, from biomedical to environmental, where specific fiber characteristics are crucial. This study not only contributes to the understanding of phase separation in electrospinning but also opens avenues for further research on the optimization of fiber properties for diverse industrial and scientific applications.

20.
Front Immunol ; 15: 1370516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605946

RESUMO

Background: Abdominal aortic calcification (AAC) pathogenesis is intricately linked with inflammation. The pan-immune-inflammation value (PIV) emerges as a potential biomarker, offering reflection into systemic inflammatory states and assisting in the prognosis of diverse diseases. This research aimed to explore the association between PIV and AAC. Methods: Employing data from the National Health and Nutrition Examination Survey (NHANES), this cross-sectional analysis harnessed weighted multivariable regression models to ascertain the relationship between PIV and AAC. Trend tests probed the evolving relationship among PIV quartiles and AAC. The study also incorporated subgroup analysis and interaction tests to determine associations within specific subpopulations. Additionally, the least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression were used for characteristics selection to construct prediction model. Nomograms were used for visualization. The receiver operator characteristic (ROC) curve, calibration plot and decision curve analysis were applied for evaluate the predictive performance. Results: From the cohort of 3,047 participants, a distinct positive correlation was observed between PIV and AAC. Subsequent to full adjustments, a 100-unit increment in PIV linked to an elevation of 0.055 points in the AAC score (ß=0.055, 95% CI: 0.014-0.095). Categorizing PIV into quartiles revealed an ascending trend: as PIV quartiles increased, AAC scores surged (ß values in Quartile 2, Quartile 3, and Quartile 4: 0.122, 0.437, and 0.658 respectively; P for trend <0.001). Concurrently, a marked rise in SAAC prevalence was noted (OR values for Quartile 2, Quartile 3, and Quartile 4: 1.635, 1.842, and 2.572 respectively; P for trend <0.01). Individuals aged 60 or above and those with a history of diabetes exhibited a heightened association. After characteristic selection, models for predicting AAC and SAAC were constructed respectively. The AUC of AAC model was 0.74 (95%CI=0.71-0.77) and the AUC of SAAC model was 0.84 (95%CI=0.80-0.87). According to the results of calibration plots and DCA, two models showed high accuracy and clinical benefit. Conclusion: The research findings illuminate the potential correlation between elevated PIV and AAC presence. Our models indicate the potential utility of PIV combined with other simple predictors in the assessment and management of individuals with AAC.


Assuntos
Calcificação Vascular , Humanos , Estudos Transversais , Inquéritos Nutricionais , Fatores de Risco , Calcificação Vascular/epidemiologia , Calcificação Vascular/patologia , Inflamação/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...