Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.298
Filtrar
1.
Neural Regen Res ; 18(2): 258-266, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900400

RESUMO

Central nervous system (CNS) trauma, including traumatic brain injury and spinal cord injury, has a high rate of disability and mortality, and effective treatment is currently lacking. Previous studies have revealed that neural inflammation plays a vital role in CNS trauma. As the initial enzyme in neuroinflammation, cytosolic phospholipase A2 (cPLA2) can hydrolyze membranous phosphatides at the sn-2 position in a preferential way to release lysophospholipids and ω3-polyunsaturated fatty acid dominated by arachidonic acid, thereby inducing secondary injuries. Although there is substantial fresh knowledge pertaining to cPLA2, in-depth comprehension of how cPLA2 participates in CNS trauma and the potential methods to ameliorate the clinical results after CNS trauma are still insufficient. The present review summarizes the latest understanding of how cPLA2 participates in CNS trauma, highlighting novel findings pertaining to how cPLA2 activation initiates the potential mechanisms specifically, neuroinflammation, lysosome membrane functions, and autophagy activity, that damage the CNS after trauma. Moreover, we focused on testing a variety of drugs capable of inhibiting cPLA2 or the upstream pathway, and we explored how those agents might be utilized as treatments to improve the results following CNS trauma. This review aimed to effectively understand the mechanism of cPLA2 activation and its role in the pathophysiological processes of CNS trauma and provide clarification and a new referential framework for future research.

2.
Food Chem ; 398: 133847, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969997

RESUMO

In this study, waxy corn starch (WCS) was enzymatically modified by amylosucrase, followed by complexation with lauric acid (LA) to produce starch-lipid complexes. Compared to the native WCS with average chain length (CL¯) of 25.4, the amylosucrease-modified WCSs showed a significantly higher CL¯ ranging from 29.3 to 52.5. The complexation with lauric acid inhibited the reassociation of starch chains, producing V-type complexes with crystallinity reached as much as 42.4 %. Besides, the melting of V-type complexes presented endothermic peaks at Tp of 55.1-60.4 °C, and thermal stability of V-type complexes had a negative correlation with the V-type crystallinity. In vitro digestion implies that the formation of V-type complexes gradually increased the content of rapidly digestible starch and accordingly decreased the content of resistant starch. This study may provide an efficient technology to produce V-type starch-lipid complexes with controllable physical and digestion properties using waxy starch as substrate.


Assuntos
Amido , Zea mays , Amilopectina/química , Amido/química , Zea mays/química
4.
ACS Nano ; 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075101

RESUMO

Flexible solid-state zinc-air batteries (ZABs) with low cost, excellent safety, and high energy density has been considered as one of ideal power sources for portable and wearable electronic devices, while their practical applications are still hindered by the kinetically sluggish cathodic oxygen reduction and oxygen evolution reactions (ORR/OER). Herein, a Janus-structured flexible free-standing bifunctional oxygen electrocatalyst, with OER-active O, N co-coordinated Ni single atoms and ORR-active Co3O4@Co1-xS nanosheet arrays being separately integrated at the inner and outer walls of flexible hollow carbon nanofibers (Ni-SAs/HCNFs/Co-NAs), is reported. Benefiting from the sophisticated topological structure and atomic-level-designed chemical compositions, Ni-SAs/HCNFs/Co-NAs exhibits outstanding bifunctional catalytic activity with the ΔE index of 0.65 V, representing the current state-of-the-art flexible free-standing bifunctional ORR/OER electrocatalyst. Impressively, the Ni-SAs/HCNFs/Co-NAs-based liquid ZAB show a high open-circuit potential (1.45 V), high capacity (808 mAh g-1 Zn), and extremely long life (over 200 h at 10 mA cm-2), and the assembled flexible all-solid-state ZABs have excellent cycle stability (over 80 h). This work provides an efficient strategy for developing high-performance bifunctional ORR/OER electrocatalysts for commercial applications.

6.
Adv Mater ; : e2206991, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36081338

RESUMO

The CO2 cycloaddition of epoxides to cyclic carbonates is of great industrial importance owing to the high economical values of its products. Single-atom catalysts (SACs) have great potential in CO2 cycloaddition by virtue of their high atom utilization efficiency and desired activity, but they are generally suffered from poor reaction stability and catalytic activity arising from the weak interaction between the active centers and the supports. Here, we develop Ir single atoms stably anchored on the WO3 support (Ir1 -WO3 ) with a strong electronic metal-support interaction (EMSI). Supeirior CO2 cycloaddition is realized in the Ir1 -WO3 catalyst via the EMSI effect: 100% conversion efficiency for the CO2 cycloaddition of styrene oxide to styrene carbonate after 15 h at 40 °C and excellent stability with no degradation even after 10 reaction cycles for a total of more than 150 h. Density functional theory calculations reveal that the EMSI effect results in significant charge redistribution between the Ir single atoms and the WO3 support, and consequently lowers the energy barrier associated with epoxide ring opening. This work furnishes new insights into the catalytic mechanism of CO2 cycloaddition and would guide the design of stable SACs for efficient CO2 cycloaddition reactions. This article is protected by copyright. All rights reserved.

7.
Cell Discov ; 8(1): 85, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068205

RESUMO

Determination of malignancy in thyroid nodules remains a major diagnostic challenge. Here we report the feasibility and clinical utility of developing an AI-defined protein-based biomarker panel for diagnostic classification of thyroid nodules: based initially on formalin-fixed paraffin-embedded (FFPE), and further refined for fine-needle aspiration (FNA) tissue specimens of minute amounts which pose technical challenges for other methods. We first developed a neural network model of 19 protein biomarkers based on the proteomes of 1724 FFPE thyroid tissue samples from a retrospective cohort. This classifier achieved over 91% accuracy in the discovery set for classifying malignant thyroid nodules. The classifier was externally validated by blinded analyses in a retrospective cohort of 288 nodules (89% accuracy; FFPE) and a prospective cohort of 294 FNA biopsies (85% accuracy) from twelve independent clinical centers. This study shows that integrating high-throughput proteomics and AI technology in multi-center retrospective and prospective clinical cohorts facilitates precise disease diagnosis which is otherwise difficult to achieve by other methods.

8.
J Environ Manage ; 320: 115951, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36056502

RESUMO

In this study, the effect of rhamnolipids (RL) on m-dichlorobenzene (m-DCB) removal and biofilm was investigated in two biotrickling filters (BTF) (BTF1: blank control; BTF2: RL addition). The critical micelle concentration (CMC) value of RL was 75.6 mg L-1, and the RL could significantly improve the solubilization of m-DCB. The results showed that the optimal concentration of RL was 180 mg L-1. The removal efficiency (RE) of m-DCB dropped by 42.4% for BTF1 no fed with RL and only 28.2% for BTF2 fed with RL when the inlet concentration increased from 200 to 1400 mg m-3 at an empty bed time (EBRT) of 60 s. RL increased the secretion of extracellular polymers (EPS) and the ratio of Protein/Polysaccharide, which improved the mass transfer of m-DCB to the biofilm. RL also had a facilitating effect on catechol-1,2-dioxygenase (C12O) enzyme activity. Furthermore, RL increased Zeta potential and facilitated microorganisms to form biofilm. The dominant microorganisms of microbial community were increased and the application of RL promoted the enrichment of them.


Assuntos
Poluentes Atmosféricos , Filtração , Poluentes Atmosféricos/análise , Biodegradação Ambiental , Reatores Biológicos , Clorobenzenos , Filtração/métodos , Glicolipídeos
9.
Front Cardiovasc Med ; 9: 950628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051282

RESUMO

Primary cardiac calcification is a rare benign mass in patients with end-stage renal disease. A few cases have been reported in the literatures. In this case study, during a routine checkup for hemodialysis, a transthoracic echocardiography on a 19-year-old male showed a cardiac mass in the right atrium that was partially obstructing the tricuspid valve. Cardiac magnetic resonance imaging showed a well-circumscribed, homogeneous "shadow" in the right atrium; it measured 29 × 27 mm, had equal T1- and T2-weighted signal intensities, and was adjacent to the tricuspid valve. According to 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography, there was a dense circular shadow in the right atrium abutting the tricuspid valve, but there was no increase in glucose metabolism. Median sternotomy was performed for the surgical resection of the mass, and a cardiopulmonary bypass was completed. The mass was completely removed. The patient recovered well and was discharged 10 days after the surgery. Histological examination showed that the mass contained multiple calcified nodules. No mass recurrence was found by echocardiography during the 12th-month follow-up.

10.
Orthop Surg ; 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36054510

RESUMO

OBJECTIVE: Pre-implantation sterilization procedures for tendons are important measures to reduce the risk of disease transmission, however these procedures may compromise tendon microarchitecture and biomechanical properties to varying degrees. We explore the effects of different sterilization procedures on the micro-histology, biomechanical strength and biochemical properties of human tendon allografts in vitro study. METHODS: The tendon allografts were harvested from cadaveric donors after the donors were serologically screened by antibody or nucleic acid testing of infectious agents. All samples were divided into five groups, which were fresh-frozen group (control group), 15 kGy gamma irradiation group, 25 kGy gamma irradiation group, 70% ethanol group, and peracetic acid-ethanol group. Each group included 10 tendons for testing. Histological staining and transmission electron microscopy were applied to observe the internal structure and arrangement of tendon collagen fibers, while the machine learning classifier was trained to distinguish the darker cross-sections of collagen fibers and brighter backgrounds of the electron micrograph to detect the distribution of diameters of tendon collagen fibers. The viscoelasticity, mechanical properties and material properties of tendon allografts were examined to detect the influence of different intervention factors on the biomechanical properties of tendons. RESULTS: Histological staining and transmission electron microscopy showed that the structure of fresh-frozen tendons was similar to the structures of other experimental groups, and no obvious fiber disorder or delamination was observed. In the uniaxial cyclic test, the cyclic creep of 25 kGy irradiation group (1.5%) and peracetic acid-ethanol group (1.5%) were significantly lower than that of the control group (3.6%, F = 1.52, P = 0.039) while in the load-to-failure test, the maximum elongation and maximum strain of the peracetic acid-ethanol group were significantly higher than those of the control group (F = 4.60, P = 0.010), and there was no significant difference in other biomechanical indicators. According to the experimental results of denatured collagen, it could be seen that no matter which disinfection procedure was used, the denaturation of the tendon sample would be promoted (F = 1.97, P = 0.186), and high-dose irradiation seemed to cause more damage to collagen fibers than the other two disinfection procedures (296.2 vs 171.1 vs 212.9 µg/g). CONCLUSION: Biomechanical experiments and collagen denaturation tests showed that 15 kGy gamma irradiation and 70% ethanol can preserve the biomechanical strength and biochemical properties of tendons to the greatest extent, and these two sterilization methods are worthy of further promotion.

11.
Pest Manag Sci ; 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-36054519

RESUMO

BACKGROUND: The fall armyworm (FAW) Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) invaded Myanmar and China in 2018 and greatly impacted agricultural production and ecosystem balance in these areas. FAW is a migratory insect, but its seasonal migration pattern between the two countries has been largely unknown. From 2019 to 2021, we monitored the seasonal migration of FAW in the China-Myanmar border area using a searchlight trap, assessed the reproductive development status of female migrants and traced the migratory routes by trajectory simulation. RESULTS: FAW moths were trapped by the searchlight trap in Lancang County (Yunnan, China) all year, with obvious seasonal differences in the number caught. There were small-scale persistent trapping peaks in spring and summer, and obvious peaks in autumn; only a small number of moths were trapped in winter. Examination of the ovaries of female moths collected in different seasons showed that most females had matured, indicating that the moths were migrating and did not take off from the local area. In the migration trajectory simulation, FAW mainly migrated from Myanmar to Southwest China in spring and summer and back to Myanmar in autumn. CONCLUSION: Our findings indicate that FAW migrates between China and Myanmar according to the monsoon circulation, which will help guide cross-border regional monitoring and management strategies against this pest. © 2022 Society of Chemical Industry.

12.
Chem Rev ; 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054924

RESUMO

Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36056292

RESUMO

In recent years, acute liver injury (ALI) has received wide-range attention in the world due to its relatively high morbidity and mortality. This study aimed to explore the hepatoprotective effect of Lactobacillus paracasei CCFM1222 against lipopolysaccharide (LPS)-induced ALI mice and further elaborate its mechanism of action from the perspective of intestinal microbiomics and metabolomics. The results displayed that L. paracasei CCFM1222 pretreatment significantly decreased the serum ALT, and AST levels, inhibited the releases of hepatic TNF-α, IL-1ß, and IL-6 levels, and activated the SOD, CAT, and GSH-Px activities in LPS-treated mice. The cecal short-chain fatty acid (SCFAs) levels were increased in LPS-treated mice with L. paracasei CCFM1222 pretreatment. In addition, L. paracasei CCFM1222 pretreatment remarkably shifted the intestinal microbiota composition, including the higher abundance of Faecalibaculum, Bifidobacterium, and lower abundance of the Prevotellaceae NK3B31 group, which is positively associated with the cecal propionic, butyric, valeric, isobutyric, and isovaleric acids. The metabolomics based on UPLC-QTOF/MS revealed that L. paracasei CCFM1222 pretreatment significantly regulated the composition of feces metabolites in LPS-treated mice, especially the potential biomarker-related butanoate metabolism, vitamin B6 metabolism, D-glutamine and D-glutamate metabolism, tryptophan metabolism, caffeine metabolism, arginine biosynthesis, arginine, and proline metabolism. Moreover, L. paracasei CCFM1222 pretreatment remarkably regulated the expression of gene-associated ALI (including Tlr4, Myd88, Nf-kß, iNOS, Cox2, Iκ-Bα, Nrf2, and Sirt-1). In conclusion, these results suggest the possibility that L. paracasei CCFM1222 supplementation has beneficial effects on preventing the occurrence and development of ALI by inhibiting the inflammatory responses and altering intestinal microbiota composition and their metabolites.

14.
Pain Ther ; 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057015

RESUMO

INTRODUCTION: Recently, large channel endoscopic systems and full endoscopic visualization technique have been used to perform unilateral laminotomy for bilateral decompression (ULBD) treatment for lumbar central spinal stenosis (LCSS). However, various endoscopic systems possess different design parameters, which may affect the technical points and treatment outcomes. The object of this retrospective study was to compare the efficiency, safety, and effectiveness of ULBD under the iLESSYS Delta system versus the Endo-Surgi Plus system. METHODS: In the period from October 2020 to April 2021, ULBD was performed using the iLESSYS Delta system or Endo-Surgi Plus system to treat LCSS. Patients were classified into two groups based on the endoscopy system employed. Patient demographics, perioperative indexes, complications, and imaging characteristics were reviewed. Clinical outcomes were quantified using back and leg visual analog scale (VAS) scores and Oswestry Disability Index (ODI) at the time points of follow-up. RESULTS: Thirty-two patients were assigned to the iLESSYS Delta system group and 37 to the Endo-Surgi Plus system group. In the comparison between the two groups, the Endo-Surgi Plus system possessed a shorter incision length and operation time (p < 0.005), and no statistical differences in other aspects were observed. The dural sacs of both groups were significantly expanded postoperatively compared to preoperatively (p < 0.001). Both groups experienced improvements in VAS and ODI scores at all time points (p < 0.001) and equally low frequency of complications. CONCLUSIONS: Current research suggests that both the Endo-Surgi Plus system and iLESSYS Delta system achieved favorable high safety and clinical outcomes in ULBD for treatment of LCSS. The use of a fully visualized trephine may have increased the efficiency of the Endo-Surgi Plus system. Moreover, the Endo-Surgi Plus system may be associated with a wider decompression range and indications.

15.
Front Chem ; 10: 965761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046725

RESUMO

Abscisic acid (ABA) is a plant hormone, which plays an important role in plant growth, crop cultivation and modern agricultural engineering management. Accordingly, the detection of ABA content combined with new techniques and methods has become a more and more popular problem in the field of agricultural engineering. In this work, a SERRS and fluorescence dual-function sensor based on the fluorescence quenching and Raman enhancement properties of gold nanorods (AuNRs) was developed, and applied to the detection of plant hormone ABA. The dual-function reporter molecule Rhodamine isothiocyanate (RBITC) and complementary DNA (cDNA) were modified on AuNRs (AuNRs@RBITC@cDNA) as signal probes and aptamer modified magnetic nanoparticles (Fe3O4MNPs@Apt) as capture probes. Through the specific recognition of ABA aptamer and its complementary chains, an dual-function aptamer sensor based on SERRS and fluorescence was constructed. When ABA molecules were present in the detection system, the signal probes were detached from the capture probes due to the preferential binding between aptamer and ABA molecules. SERS signal of the reporter molecules appeared in the supernatant after magnetic separation, and it increased with the increase of ABA concentration. If the etching agent that can etch AuNRs was added to the supernatant, the AuNRs was etching disappeared, then the signal molecules fall off from the AuNRs, and the fluorescence signal intensity would recovered. The intensity of fluorescence signal also increased with the increase of ABA concentration. Thus, the quantitative relationship between ABA concentration and SERRS intensity and fluorescence intensity of signal molecules was established. The linear range of SERRS detection was 100 fM-0.1 nM, the detection limit was 38 fM; The linear range of fluorescence detection was 1 pM-100 nM, the detection limit is 0.33 p.m. The constructed dual-effect sensor was used in the recovery laboratory of real ABA samples, the recovery rate was up to 85-108%.

16.
Immunology ; 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053796

RESUMO

AKI (acute kidney injury) with maladaptive repair plays exacerbated role in renal fibrosis characterized by tubulointerstitial fibrosis. Previously, we reported that IKKα contributed to kidney regeneration and inhibited inflammation. Here, we first identified the role and mechanism of IKKα on TGF-ß1-induced fibrosis in human tubular epithelial cells and fibrotic kidneys. IKKα was up-regulated in kidney tubular epithelium in unilateral ureteral obstruction (UUO) and unilateral ischemic reperfusion injury (UIRI) mice. Immunohistochemical staining showed that IKKα was positively correlated with the extent of kidney fibrosis in tissue biopsies from chronic kidney disease (CKD) patients. Compared with wild-type controls, Ksp-IKKα-/- mice exhibited inactivated Wnt/ß-catenin pathway, decreased serum creatinine and interstitial fibrosis in the kidney after IRI. In TGF-ß1-stimulated human tubular epithelial cells, IKKα overexpression enhanced ß-catenin nuclear translocation. Blocking IKKα by siRNA specifically suppressed ß-catenin activation and downstream profibrotic genes such as fibronectin and α-smooth muscle actin (α-SMA). Taken together, our study demonstrated that IKKα aggravated renal fibrogenesis by activating Wnt/ß-catenin signalling pathway, providing a new target for the treatment of kidney fibrosis.

17.
HLA ; 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054158

RESUMO

HLA-B*35:563 differs from HLA-B*35:03:01:01 by one nucleotide in exon 4. This article is protected by copyright. All rights reserved.

18.
ACS Nano ; 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048539

RESUMO

As it is closely associated with tumor proliferation, metastasis, and the immunosuppressive microenvironment, the dysfunctional Hippo pathway has become an extremely attractive target for treating multiple cancers. However, to date, the corresponding chemotherapeutic nanomedicines have not been developed. Herein, a supramolecular self-delivery nanomedicine with in situ transforming capacity was tailor-constructed for Hippo-pathway restoration, and its inhibitory effect against tumor growth and metastasis was investigated in a highly aggressive triple-negative breast cancer (TNBC) model. Stimulated by overexpressed glutathione (GSH) and esterase in cancer cells, the self-assembled nanomedicine transformed from inactive nanospheres to active nanofibers conjugating tyrosvaline and spatiotemporally synchronously released the covalently linked flufenamic acid in situ, together activating the maladjusted Hippo pathway by simultaneously acting on different targets upstream and downstream. The transcriptional expression of Yes-associated protein (YAP) and related growth-promoted genes were significantly reduced, finally significantly repressing the proliferation and metastasis of cancer cells. Additionally, the Hippo-pathway restoration showed an excellent radiosensitization effect, making the targeted therapy combined with radiotherapy display a prominent synergistic in vivo anticancer effect against TNBC. This work reports a specifically designed smart nanomedicine to restore the function of the Hippo pathway and sensitize radiotherapy, providing an attractive paradigm for targeted drug delivery and cancer combination therapy.

19.
Endocrine ; 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36089636

RESUMO

PURPOSE: This study aimed to evaluate the effects of thyroid-stimulating hormone (TSH) suppressive therapy on bone mineral density (BMD) and bone turnover markers (BTMs) in differentiated thyroid cancer (DTC) patients after postoperative 1-2 years in Northeast China. METHODS: Five male, sixteen premenopausal, and eight postmenopausal female DTC patients receiving TSH suppressive therapy after thyroidectomy were enrolled. Patients were matched with healthy controls in a ratio of 1:2. All participants completed postoperative 1-year follow-up, and postmenopausal women completed 2-year follow-up. We measured BMD of the lumbar spine (LS), femoral neck (FN), and total hip (TH) using dual-energy X-ray absorptiometry (DXA). Bone formation marker P1NP and bone resorption marker ß-CTX were also evaluated. Fracture risks were assessed by FRAX. RESULTS: There was no difference in BMD and BTMs between DTC patients and controls in the male group at 1-year follow-up. In the premenopausal women, the baseline P1NP was significantly lower in DTC patients than in the controls. The LS-BMD, FN-BMD, and TH-BMD in DTC patients were all higher than those in controls at 1-year follow-up. The difference in FN-BMD was not significant after adjusting for baseline P1NP. In the postmenopausal women, no differences in BMD and BTMs were observed between DTC patients and controls at the 1-year and 2-year follow-up. CONCLUSION: Our study indicated that postoperative 1-year TSH suppressive therapy did not show detrimental effects on BMD and BTMs in men, premenopausal, and postmenopausal DTC patients. The 2-year postoperative TSH suppressive therapy did not lead to additional loss of bone mass in postmenopausal DTC patients.

20.
Brief Bioinform ; 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088550

RESUMO

Somatic variants act as critical players during cancer occurrence and development. Thus, an accurate and robust method to identify them is the foundation of cutting-edge cancer genome research. However, due to low accessibility and high individual-/sample-specificity of the somatic variants in tumor samples, the detection is, to date, still crammed with challenges, particularly when lacking paired normal samples as control. To solve this burning issue, we developed a tumor-only somatic and germline variant identification method (TSomVar) using the random forest algorithm established on sample-specific variant datasets derived from genotype imputation, reads-mapping level annotation and functional annotation. We trained TSomVar by using genomic variant datasets of three major cancer types: colorectal cancer, hepatocellular carcinoma and skin cutaneous melanoma. Compared with existing tumor-only somatic variant identification tools, TSomVar shows excellent performances in somatic variant detection with higher accuracy and better capability of recalling for test datasets from colorectal cancer and skin cutaneous melanoma. In addition, TSomVar is equipped with the competence of accurately identifying germline variants in tumor samples. Taken together, TSomVar will undoubtedly facilitate and revolutionize somatic variant explorations in cancer research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...