Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.884
Filtrar
1.
Toxicol Lett ; 372: 25-35, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309173

RESUMO

Currently, due to the actual contamination levels of multiple mycotoxins, the limits for a single mycotoxin may be no longer applicable. Deoxynivalenol (DON) and Fumonisin B1 (FB1) had high positive rate in grain and feed worldwide. The intestine is the first target of mycotoxins. NLRP3 plays a crucial role in the gut's defense against external stimuli, which contributes vitally to pyroptosis activation. However, whether pyroptosis is engaged in the regulation of intestinal toxicity induced by DON and FB1 remains unclear. In this study, we explored the combined toxicity of DON and FB1 on the intestine and its underlying mechanisms in vivo and in vitro. Our data demonstrated gavage with DON and FB1 led to intestinal damage and promoted the secretion of pro-inflammatory cytokines (IL-1ß, IL-18, IL-6) in mice, especially in the group exposed to both mycotoxins. Meanwhile, the expressions of pyroptosis related genes (NLRP3, ASC, caspase-1, GSDMD) were significantly increased after mycotoxins exposure. Same as in vivo, DON and FB1 promoted pyroptosis and cellular inflammatory response in IPEC-J2 cells, especially in the group exposed to both mycotoxins. In addition, the pretreatment with MCC950 and VX765, inhibitors for NLRP3 and caspase-1, abolished the expression of GSDMD and the release of pro-inflammatory factors (IL-1ß, IL-18) induced by DON and FB1 exposure in IPEC-J2 cells. Our data demonstrated that the combination of DON and FB1 exhibited a synergistic or additive effect in facilitating intestinal inflammation via pyroptosis. Our finding may contribute to improve mycotoxin limit standards in feed.


Assuntos
Interleucina-18 , Micotoxinas , Camundongos , Animais , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Micotoxinas/toxicidade , Inflamação/induzido quimicamente , Caspases
2.
Food Chem ; 402: 134365, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179522

RESUMO

This study aimed to evaluate gastric emptying and enzymatic hydrolysis of skim milk using a dynamic in vitro gastrointestinal system mimicking digestive conditions in young adult and elderly individuals. The gastric emptying half-time was 22.5 and 26.5 min in the young adult and elderly models, respectively. The degree of proteolysis at 120 min reached 42.3 % under adult digestion, significantly higher than that for the elderly (37.2 %). Moreover, milk proteins, particularly ß-lactoglobulin, was more resistant to hydrolysis throughout elderly digestion. The slowed gastric emptying and impaired proteolysis were supported by the formation of more large clusters and protein aggregates under elderly digestion particularly between 60 and 120 min. This was attributed to the decreased gastric contractions and lowered digestive secretions in the elderly model that would impede the flow and breakdown of protein aggregates. This study is meaningful for future development of milk products that are more suitable for the elderly.


Assuntos
Digestão , Esvaziamento Gástrico , Humanos , Idoso , Hidrólise , Agregados Proteicos , Estômago , Proteínas do Leite/metabolismo , Lactoglobulinas
4.
Sci China Life Sci ; 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36323972

RESUMO

2'-O-methylation (Nm) is one of the most abundant RNA epigenetic modifications and plays a vital role in the post-transcriptional regulation of gene expression. Current Nm mapping approaches are normally limited to highly abundant RNAs and have significant technical hurdles in mRNAs or relatively rare non-coding RNAs (ncRNAs). Here, we developed a new method for enriching Nm sites by using RNA exoribonuclease and periodate oxidation reactivity to eliminate 2'-hydroxylated (2'-OH) nucleosides, coupled with sequencing (Nm-REP-seq). We revealed several novel classes of Nm-containing ncRNAs as well as mRNAs in humans, mice, and drosophila. We found that some novel Nm sites are present at fixed positions in different tRNAs and are potential substrates of fibrillarin (FBL) methyltransferase mediated by snoRNAs. Importantly, we discovered, for the first time, that Nm located at the 3'-end of various types of ncRNAs and fragments derived from them. Our approach precisely redefines the genome-wide distribution of Nm and provides new technologies for functional studies of Nm-mediated gene regulation.

5.
J Hazard Mater ; 443(Pt B): 130264, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36327828

RESUMO

Although the ecological impacts of antibiotics have received attention worldwide, research on the toxicity of florfenicol is still limited. We conducted a metabolomic and proteomic study on wheat (Triticum aestivum L.) seedlings to reveal the toxicological mechanism of florfenicol. The growth of the wheat seedlings was found to be inhibited by florfenicol. Antioxidant enzyme activities (superoxide dismutase, peroxidase and catalase), malondialdehyde content and membrane permeability increased with increasing florfenicol concentration. The contents of chlorophyll and chlorophyll synthesis precursor substances (Proto IX, Mg-proto IX and Pchlide), photosynthetic and respiration rates, and chlorophyll fluorescence parameters decreased, indicating that photosynthesis was inhibited. The ultrastructure of chloroplasts was destroyed, as evidenced by the blurred membrane surface, irregular grana arrangement, irregular thylakoid lamella structure, and increased plastoglobuli number. Proteome analysis revealed that up-regulated proteins were highly involved in protein refolding, translation, oxidation-reduction, tricarboxylic acid cycle (TCA cycle), reactive oxygen species metabolic process, cellular oxidant detoxification, and response to oxidative stress. The down-regulated proteins were mainly enriched in photosynthesis-related pathways. In the metabolome analysis, the content of most of the metabolites in wheat leaves, such as carbohydrates and amino acids increased significantly (p < 0.05). Combined pathway analysis showed that florfenicol stress stimulated the TCA cycle pathway and downregulated the photosynthesis pathway.

6.
J Med Chem ; 65(21): 14589-14598, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318612

RESUMO

VSA-2 is a recently developed semisynthetic saponin immunostimulant. It is prepared by incorporating a terminal-functionalized side chain to the branched trisaccharide domain at the C3 position of Momordica saponin II (MS II) isolated from the seeds of perennial Momordica cochinchinensis Spreng. Direct comparison of VSA-2 and the clinically proven saponin adjuvant QS-21 shows that VSA-2 is comparable to QS-21 in enhancing humoral and cellular immune responses. Structure-activity relationship studies show that structural changes in the side chain have a significant impact on saponins' adjuvant activity. However, with the VSA-2 molecular framework intact, the new VSA-2 analogues with various substitution(s) at the terminal benzyl group of the side chain retain the ability of potentiating antigen-specific humoral and cellular responses.


Assuntos
Momordica , Saponinas , Momordica/química , Adjuvantes de Vacinas , Saponinas/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Relação Estrutura-Atividade
7.
Materials (Basel) ; 15(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36363044

RESUMO

At present, many experimental fast reactors have adopted alloy nuclear fuels, for example, U-Zr alloy fuels. During the neutron irradiation process, vacancies and hydrogen (H) impurity atoms can both exist in U-Zr alloy fuels. Here, first-principles density functional theory (DFT) is employed to study the behaviors of vacancies and H atoms in disordered-γ(U,Zr) as well as their impacts on the electronic structure and mechanical properties. The formation energy of vacancies and hydrogen solution energy are calculated. The effect of vacancies on the migration barrier of hydrogen atoms is revealed. The effect of vacancies and hydrogen atom on densities of states and elastic constants are also presented. The results illustrate that U vacancy is easier to be formed than Zr vacancy. The H interstitial prefers the tetrahedral site. Besides, U vacancy shows H-trap ability and can raise the H migration barrier. Almost all the defects lead to decreases in electrical conductivity and bulk modulus. It is also found that the main effect of defects is on the U-5f orbitals. This work provides a theoretical understanding of the effect of defects on the electronic and mechanical properties of U-Zr alloys, which is an essential step toward tailoring their performance.

8.
Cancer Cell Int ; 22(1): 344, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36348490

RESUMO

OBJECTIVE: Intestinal alkaline sphingomyelinase (alk-SMase) generates ceramide and inactivates platelet-activating factor associated with digestion and inhibition of cancer. There is few study to analyze the correlated function and characterize the genes related to alk-SMase comprehensively. We characterised transcriptome landscapes of intestine tissues from alk-SMase knockout (KO) mice aiming to identify novel associated genes and research targets. METHODS: We performed the high-resolution RNA sequencing of alk-SMase KO mice and compared them to wild type (WT) mice. Differentially expressed genes (DEGs) for the training group were screened. Functional enrichment analysis of the DEGs between KO mice and WT mice was implemented using the Database for Annotation, Visualization and Integrated Discovery (DAVID). An integrated protein-protein interaction (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) network was chose to study the relationship of differentially expressed gene. Moreover, quantitative real-time polymerase chain reaction (qPCR) was further used to validate the accuracy of RNA-seq technology. RESULTS: Our RNA-seq data found 97 differentially expressed mRNAs between the WT mice and alk-SMase gene NPP7 KO mice, in which 32 were significantly up-regulated and 65 were down-regulated, including protein coding genes, non-coding RNAs. Notably, the results of gene ontology functional enrichment analysis indicated that DEGs were functionally associated with the immune response, regulation of cell proliferation and development related terms. Additionally, an integrated network analysis was shown that some modules was significantly related to alk-SMase and with accordance of previously results. We chose 6 of these genes randomly were validated the accuracy of RNA-seq technology using qPCR and 2 genes showed difference significantly (P < 0.05). CONCLUSIONS: We investigated the potential biological significant of alk-SMase with high resolution genome-wide transcriptome of alk-SMase knockout mice. The results revealed new insight into the functional modules related to alk-SMase was involved in the intestinal related diseases.

9.
Lancet ; 400(10363): 1585-1596, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36341753

RESUMO

BACKGROUND: The optimum systolic blood pressure after endovascular thrombectomy for acute ischaemic stroke is uncertain. We aimed to compare the safety and efficacy of blood pressure lowering treatment according to more intensive versus less intensive treatment targets in patients with elevated blood pressure after reperfusion with endovascular treatment. METHODS: We conducted an open-label, blinded-endpoint, randomised controlled trial at 44 tertiary-level hospitals in China. Eligible patients (aged ≥18 years) had persistently elevated systolic blood pressure (≥140 mm Hg for >10 min) following successful reperfusion with endovascular thrombectomy for acute ischaemic stroke from any intracranial large-vessel occlusion. Patients were randomly assigned (1:1, by a central, web-based program with a minimisation algorithm) to more intensive treatment (systolic blood pressure target <120 mm Hg) or less intensive treatment (target 140-180 mm Hg) to be achieved within 1 h and sustained for 72 h. The primary efficacy outcome was functional recovery, assessed according to the distribution in scores on the modified Rankin scale (range 0 [no symptoms] to 6 [death]) at 90 days. Analyses were done according to the modified intention-to-treat principle. Efficacy analyses were performed with proportional odds logistic regression with adjustment for treatment allocation as a fixed effect, site as a random effect, and baseline prognostic factors, and included all randomly assigned patients who provided consent and had available data for the primary outcome. The safety analysis included all randomly assigned patients. The treatment effects were expressed as odds ratios (ORs). This trial is registered at ClinicalTrials.gov, NCT04140110, and the Chinese Clinical Trial Registry, 1900027785; recruitment has stopped at all participating centres. FINDINGS: Between July 20, 2020, and March 7, 2022, 821 patients were randomly assigned. The trial was stopped after review of the outcome data on June 22, 2022, due to persistent efficacy and safety concerns. 407 participants were assigned to the more intensive treatment group and 409 to the less intensive treatment group, of whom 404 patients in the more intensive treatment group and 406 patients in the less intensive treatment group had primary outcome data available. The likelihood of poor functional outcome was greater in the more intensive treatment group than the less intensive treatment group (common OR 1·37 [95% CI 1·07-1·76]). Compared with the less intensive treatment group, the more intensive treatment group had more early neurological deterioration (common OR 1·53 [95% 1·18-1·97]) and major disability at 90 days (OR 2·07 [95% CI 1·47-2·93]) but there were no significant differences in symptomatic intracerebral haemorrhage. There were no significant differences in serious adverse events or mortality between groups. INTERPRETATION: Intensive control of systolic blood pressure to lower than 120 mm Hg should be avoided to prevent compromising the functional recovery of patients who have received endovascular thrombectomy for acute ischaemic stroke due to intracranial large-vessel occlusion. FUNDING: The Shanghai Hospital Development Center; National Health and Medical Research Council of Australia; Medical Research Futures Fund of Australia; China Stroke Prevention; Shanghai Changhai Hospital, Science and Technology Commission of Shanghai Municipality; Takeda China; Hasten Biopharmaceutic; Genesis Medtech; Penumbra.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Adolescente , Adulto , Isquemia Encefálica/tratamento farmacológico , Acidente Vascular Cerebral/terapia , Pressão Sanguínea/fisiologia , Resultado do Tratamento , China/epidemiologia , Trombectomia/efeitos adversos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/cirurgia
10.
Artigo em Inglês | MEDLINE | ID: mdl-36346527

RESUMO

Due to the excessive exploitation of traditional energy sources, the attention paid to water energy has increased in recent years. As an important means to effectively utilize water energy, reservoirs play an important role in drinking water, irrigation, flood control, and drought resistance. However, utilizing reservoirs often led to water quality issues resulting from the interaction of nutrients and hydrological conditions, especially due to the special structure of karst areas. Because of the change of hydrological conditions by the effect of dam construction, the dynamic of water quality will be more obvious in karst areas with a fast exchange of water and contaminants between underground and surface streams. In the present study, the change in water quality of a karst reservoir, the Muzhu Reservoir in the Houzhai Catchment, was studied. Long-term monitored datasets (1981-2002) and water quality datasets of more recent years were used to assess the effect on the water quality of reservoir expansion from the underground reservoir to the surface reservoir in a karst area. Long-term series datasets had shown that the hydro-chemistry type had been changed from HCO3-·SO42--Ca2+·Mg2+ type to HCO3--Ca2+ type in the short term after the reservoir's expansion. The chemical components of water originating from a rock background reduced markedly after the reservoir's expansion, whereas the content of the anthropogenic contribution in the water decreased after the expansion, except in April and May. Isotopic characteristics showed that δ15N-NO3- and δ18O-NO3- values were positively correlated before and after the reservoir expansion, but the slope of the linear regression before the expansion was 0.34, while the slope of the linear regression before the expansion was close to 0.7. This indicated that although denitrification and assimilation may occur simultaneously after the reservoir's expansion, the role of denitrification on nitrate removal decreased, which resulted in nitrate accumulation in the karst reservoir. The results highlighted that nitrate accumulation in karst reservoirs should be monitored to decrease nitrate concentration in the future.

11.
Front Microbiol ; 13: 1021583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386664

RESUMO

Many species of Inosperma cause neurotoxic poisoning in humans after consumption around the world. However, the toxic species of Inosperma and its toxin content remain unclear. In the present study, we proposed five new Inosperma species from China, namely, I. longisporum, I. nivalellum, I. sphaerobulbosum, I. squamulosobrunneum, and I. squamulosohinnuleum. Morphological and molecular phylogenetic analyses based on three genes (ITS, nrLSU, rpb2) revealed that these taxa are independent species. A key to 17 species of Inosperma in China is provided. In addition, targeted screening for the most notorious mushroom neurotoxins, muscarine, psilocybin, ibotenic acid, and muscimol, in these five new species was performed by using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Our results show that the neurotoxin contents in these five species varied: I. sphaerobulbosum contains none of the tested neurotoxins; I. nivalellum is muscarine positive; I. longisporum and I. squamulosohinnuleum contain both ibotenic acid and muscimol, and I. squamulosobrunneum only contains muscimol; psilocybin was not detected in these five new species.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36396606

RESUMO

Pyrrolizidine alkaloids (PAs) can be transferred between plants via soil. Indicators of PAs in tea products are useful for tea garden management. In the present work a total of 37 weed species, 37 weed rhizospheric soils and 24 fresh tea leaf samples were collected from tea gardens, in which PAs were detected in 35 weeds species, 21 soil samples and 10 fresh tea leaves samples. In Shexian tea garden, 12.9 µg/kg of intermedine (Im) in one bud plus three leaves, 1.40 and 14.6 µg/kg of intermedine-N-oxide (ImNO) in one bud plus two leaves and one bud plus three leaves were detected, which were transferred from the PA-producing weeds via soil. However, no PAs were detected in fresh tea leaves collected from Langxi tea garden. The results indicated that synthesis of PAs in weeds and their transfer through the weed-soil-fresh tea leaf route varied with soil environments in different tea gardens.

13.
Oncogene ; 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396726

RESUMO

Circular RNAs (circRNAs) play important roles in the malignant progression of tumours. Herein, we identified an unreported circRNA (hsa-circ-0072688, also named circADAMTS6) that is specifically upregulated in the hypoxic microenvironment of glioblastoma and closely correlated with poor prognosis of gliblastoma patients. We found that circADAMTS6 promotes the malignant progression of glioblastoma by promoting cell proliferation and inhibiting apoptosis. Mechanistically, the hypoxic tumour microenvironment upregulates circADAMTS6 expression through transcription factor activator protein 1 (AP-1) and RNA-binding protein TAR DNA-binding protein 43 (TDP43). Moreover, circADAMTS6 accelerates glioblastoma progression by recruiting and stabilising annexin A2 (ANXA2) in a proteasomes-dependent manner. Furthermore, we found T-5224 (AP-1 inhibitor) treatment induces downregulation of circADAMTS6 and then inhibits tumour growth. In conclusion, our findings highlight the important role of the circADAMTS6/ANXA2 axis based on hypoxic microenvironment in glioblastoma progression, as well as its regulation in NF-κB pathway. Targeting circADAMTS6 is thus expected to become a novel therapeutic strategy for glioblastoma.

14.
Cancer Sci ; 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36398713

RESUMO

The Mondo family transcription factor MondoA plays a pivotal role in sensing metabolites, such as glucose, glutamine and lactic acid, to regulate glucose metabolism and cell proliferation. Ketone bodies are important signals for reducing glucose uptake. However, it is unclear whether MondoA functions in ketone body-regulated glucose transport. Here we reported that ketone bodies promoted MondoA nuclear translocation and binding to the promoter of its target gene TXNIP. Ketone bodies reduced glucose uptake, increased apoptosis and decreased proliferation of colorectal cancer cells, which was impeded by MondoA knockdown. Moreover, we identified MEK1 as a novel component of the MondoA protein complex using a proteomic approach. Mechanistically, MEK1 interacted with MondoA and enhanced tyrosine 222, but not serine or threonine, phosphorylation of MondoA, inhibiting MondoA nuclear translocation and transcriptional activity. Ketone bodies decreased MEK1-dependent MondoA phosphorylation by blocking MondoA and MEK1 interaction, leading to MondoA nuclear translocation, TXNIP transcription and inhibition of glucose uptake. Therefore, our study has not only demonstrated that ketone bodies reduce glucose uptake, promote apoptosis and inhibit cell proliferation in colorectal cancer cells by regulating MondoA phosphorylation, but also identified MEK1-dependent phosphorylation as a new mechanism to manipulate MondoA activity.

15.
Nucleic Acids Res ; 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36399495

RESUMO

Non-coding RNAs (ncRNAs) are emerging as key regulators of various biological processes. Although thousands of ncRNAs have been discovered, the transcriptional mechanisms and networks of the majority of ncRNAs have not been fully investigated. In this study, we updated ChIPBase to version 3.0 (https://rnasysu.com/chipbase3/) to provide the most comprehensive transcriptional regulation atlas of ncRNAs and protein-coding genes (PCGs). ChIPBase has identified ∼151 187 000 regulatory relationships between ∼171 600 genes and ∼3000 regulators by analyzing ∼55 000 ChIP-seq datasets, which represent a 30-fold expansion. Moreover, we de novo identified ∼29 000 motif matrices of transcription factors. In addition, we constructed a novel 'Enhancer' module to predict ∼1 837 200 regulation regions functioning as poised, active or super enhancers under ∼1300 conditions. Importantly, we constructed exhaustive coexpression maps between regulators and their target genes by integrating expression profiles of ∼65 000 normal and ∼15 000 tumor samples. We built a 'Disease' module to obtain an atlas of the disease-associated variations in the regulation regions of genes. We also constructed an 'EpiInter' module to explore potential interactions between epitranscriptome and epigenome. Finally, we designed 'Network' module to provide extensive and gene-centred regulatory networks. ChIPBase will serve as a useful resource to facilitate integrative explorations and expand our understanding of transcriptional regulation.

16.
Front Plant Sci ; 13: 988861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388589

RESUMO

The crop production of quinoa (Chenopodium quinoa Willd.), the only plant meeting basic human nutritional requirements, is affected by drought stress. To better understand the drought tolerance mechanism of quinoa, we screened the drought-tolerant quinoa genotype "Dianli 129" and studied the seedling leaves of the drought-tolerant quinoa genotype after drought and rewatering treatments using transcriptomics and targeted metabolomics. Drought-treatment, drought control, rewatering-treated, and rewatered control were named as DR, DC, RW, and RC, respectively. Among four comparison groups, DC vs. DR, RC vs. RW, RW vs. DR, and RC vs. DC, we identified 10,292, 2,307, 12,368, and 3 differentially expressed genes (DEGs), and 215, 192, 132, and 19 differentially expressed metabolites (DEMs), respectively. A total of 38,670 genes and 142 pathways were annotated. The results of transcriptome and metabolome association analysis showed that gene-LOC110713661 and gene-LOC110738152 may be the key genes for drought tolerance in quinoa. Some metabolites accumulated in quinoa leaves in response to drought stress, and the plants recovered after rewatering. DEGs and DEMs participate in starch and sucrose metabolism and flavonoid biosynthesis, which are vital for improving drought tolerance in quinoa. Drought tolerance of quinoa was correlated with gene expression differences, metabolite accumulation and good recovery after rewatering. These findings improve our understanding of drought and rewatering responses in quinoa and have implications for the breeding of new drought-tolerance varieties while providing a theoretical basis for drought-tolerance varieties identification.

17.
Diabetes Care ; 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36399714

RESUMO

OBJECTIVE: To estimate medical costs associated with 17 diabetes complications and treatment procedures among Medicare beneficiaries aged ≥65 years with type 1 diabetes. RESEARCH DESIGN AND METHODS: With use of the 2006-2017 100% Medicare claims database for beneficiaries enrolled in fee-for-service plans and Part D, we estimated the annual cost of 17 diabetes complications and treatment procedures. Type 1 diabetes and its complications and procedures were identified using ICD-9/ICD-10, procedure, and diagnosis-related group codes. Individuals with type 1 diabetes were followed from the year when their diabetes was initially identified in Medicare (2006-2015) until death, discontinuing plan coverage, or 31 December 2017. Fixed-effects regression was used to estimate costs in the complication occurrence year and subsequent years. The cost proportion of a complication was equal to the total cost of the complication, calculated by multiplying prevalence by the per-person cost divided by the total cost for all complications. All costs were standardized to 2017 U.S. dollars. RESULTS: Our study included 114,879 people with type 1 diabetes with lengths of follow-up from 3 to 10 years. The costliest complications per person were kidney failure treated by transplant ($77,809 in the occurrence year and $13,556 in subsequent years), kidney failure treated by dialysis ($56,469 and $41,429), and neuropathy treated by lower-extremity amputation ($40,698 and $7,380). Sixteen percent of the total medical cost for diabetes complications was for treating congestive heart failure. CONCLUSIONS: Costs of diabetes complications were large and varied by complications. Our results can assist in cost-effectiveness analysis of treatments and interventions for preventing or delaying diabetes complications in Medicare beneficiaries aged ≥65 years with type 1 diabetes.

18.
Int J Oral Sci ; 14(1): 54, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376276

RESUMO

As an important enzyme for gluconeogenesis, mitochondrial phosphoenolpyruvate carboxykinase (PCK2) has further complex functions beyond regulation of glucose metabolism. Here, we report that conditional knockout of Pck2 in osteoblasts results in a pathological phenotype manifested as craniofacial malformation, long bone loss, and marrow adipocyte accumulation. Ablation of Pck2 alters the metabolic pathways of developing bone, particularly fatty acid metabolism. However, metformin treatment can mitigate skeletal dysplasia of embryonic and postnatal heterozygous knockout mice, at least partly via the AMPK signaling pathway. Collectively, these data illustrate that PCK2 is pivotal for bone development and metabolic homeostasis, and suggest that regulation of metformin-mediated signaling could provide a novel and practical strategy for treating metabolic skeletal dysfunction.


Assuntos
Metformina , Camundongos , Animais , Metformina/farmacologia , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Gluconeogênese/genética , Camundongos Knockout
19.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361672

RESUMO

Quinoa (Chenopodium quinoa Wild.) has attracted considerable attention owing to its unique nutritional, economic, and medicinal values. Meanwhile, quinoa germplasm resources and grain colors are rich and diverse. In this study, we analyzed the composition of primary and secondary metabolites and the content of the grains of four different high-yield quinoa cultivars (black, red, white, and yellow) harvested 42 days after flowering. The grains were subjected to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and transcriptome sequencing to identify the differentially expressed genes and metabolites. Analysis of candidate genes regulating the metabolic differences among cultivars found that the metabolite profiles differed between white and black quinoa, and that there were also clear differences between red and yellow quinoa. It also revealed significantly altered amino acid, alkaloid, tannin, phenolic acid, and lipid profiles among the four quinoa cultivars. Six common enrichment pathways, including phenylpropane biosynthesis, amino acid biosynthesis, and ABC transporter, were common to metabolites and genes. Moreover, we identified key genes highly correlated with specific metabolites and clarified the relationship between them. Our results provide theoretical and practical references for breeding novel quinoa cultivars with superior quality, yield, and stress tolerance. Furthermore, these findings introduce an original approach of integrating genomics and transcriptomics for screening target genes that regulate the desirable traits of quinoa grain.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Transcriptoma , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Metaboloma , Grão Comestível/genética , Grão Comestível/metabolismo , Aminoácidos/metabolismo
20.
Sci Rep ; 12(1): 19585, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380006

RESUMO

A new chaotic system is obtained by changing the number of unknown parameters. The dynamical behavior of the chaotic system is investigated by the exponential change of the single unknown parameter and the state variable in the nonlinear term of the system. The structure of the newly constructed chaotic system is explored. When the number of the same state variables in the nonlinear term of the chaotic system varies, the system's dynamic behavior undergoes complex changes. Moreover, with the exponential change of a single-state variable in a three-dimensional system, the system maintains the chaotic attractor while the state of the attractor changes. On this basis, the Lyapunov exponent, bifurcation diagram, complexity, and 0-1 test are used to compare and analyze this phenomenon. Through circuit simulations, the chaotic characteristics of the system under different conditions are further verified; this provides a theoretical basis for the hardware implementation of the new system. Finally, the new chaotic system is applied to an image encryption system with the same encryption and decryption processes. The comparison shows improved encryption and decryption characteristics of image encryption systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...