Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.673
Filtrar
1.
Pharmacol Ther ; : 107698, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33039419

RESUMO

The contribution of natural products (NPs) to cardiovascular medicine has been extensively documented, and many have been used for centuries. Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Over the past 40 years, approximately 50% of newly developed cardiovascular drugs were based on NPs, suggesting that NPs provide essential skeletal structures for the discovery of novel medicines. After a period of lower productivity since the 1990s, NPs have recently regained scientific and commercial attention, leveraging the wealth of knowledge provided by multi-omics, combinatorial biosynthesis, synthetic biology, integrative pharmacology, analytical and computational technologies. In addition, as a crucial part of complementary and alternative medicine, Traditional Chinese Medicine has increasingly drawn attention as an important source of NPs for cardiovascular drug discovery. Given their structural diversity and biological activity NPs are one of the most valuable sources of drugs and drug leads. In this review, we briefly described the characteristics and classification of NPs in CVDs. Then, we provide an up to date summary on the therapeutic potential and the underlying mechanisms of action of NPs in CVDs, and the current view and future prospect of developing safer and more effective cardiovascular drugs based on NPs.

2.
Metab Brain Dis ; 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33044640

RESUMO

Ischemic postconditioning (PostC) conventionally refers to a series of brief blood vessel occlusions and reperfusions, which can induce an endogenous neuroprotective effect and reduce cerebral ischemia/reperfusion (I/R) injury. Depending on the site of adaptive ischemic intervention, PostC can be classified as in situ ischemic postconditioning (ISPostC) and remote ischemic postconditioning (RIPostC). Many studies have shown that ISPostC and RIPostC can reduce cerebral IS injury through protective mechanisms that increase cerebral blood flow after reperfusion, decrease antioxidant stress and anti-neuronal apoptosis, reduce brain edema, and regulate autophagy as well as Akt, MAPK, PKC, and KATP channel cell signaling pathways. However, few studies have compared the intervention methods, protective mechanisms, and cell signaling pathways of ISPostC and RIPostC interventions. Thus, in this article, we compare the history, common intervention methods, neuroprotective mechanisms, and cell signaling pathways of ISPostC and RIPostC.

3.
Zhongguo Yi Liao Qi Xie Za Zhi ; 44(5): 384-389, 2020 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-33047558

RESUMO

To satisfy the daily demand of skin condition maintenance, make non-invasive real-time detection, and get proper quantitative evaluation of skin viscoelasticity parameters at the same time, a portable non-invasive detection system to acquire real-time skin tissue viscoelasticity is developed. The system relies mainly on a single-degree-of-freedom forced vibration model, with spring-damp-mass, and on dynamic micro indentation method. The experiment is conducted on two kinds of springs, and on pigskin tissues as well, the system's suitability, accuracy and stability are confirmed. The skin viscoelasticity detection in vivo is also carried out on 20 subjects with different ages, the differences of skin viscoelasticity in various parts of the body are investigated, and the correlations between age and skin viscoelasticity are clarified.

4.
Nanoscale Horiz ; 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33048097

RESUMO

Correction for 'Two-dimensional polar metal of a PbTe monolayer by electrostatic doping' by Tao Xu et al., Nanoscale Horiz., 2020, 5, 1400-1406, DOI: 10.1039/D0NH00188K.

5.
Mol Ecol ; 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33084100

RESUMO

Microorganisms in the gastrointestinal tract of animals play vital roles in food digestion, homeostasis and immune response regulation. Globally, there are 33,700 fish species, representing almost half of all vertebrate diversity and a wide range of physiologies, ecologies and life histories. To investigate gut microbiomes with high coverage, we performed 16S rRNA gene amplicon sequencing with samples of 20 common marine fish. The fish gut microbiome is a remarkably simple community with low microbial diversity (a maximum of 300 amplicon sequence variants only) and has up to 70% of unknown species in some fish species. The gut microbial community structure was significantly shaped by the combined influence of host-associated factors, including the fish taxon (p < 0.001, R2 = 0.16, ω2 = 0.04), feeding habit (p < 0.001, R2 = 0.06, ω2 = 0.02) and trophic level (p < 0.01, R2 = 0.04, ω2 = 0.01), although the influence was subtle with a small effect size. The core gut microbiomes of different feeding habits was also previously discovered in animal-associated and corresponding habitat samples. Certain energy metabolism pathways were enriched in herbivore/omnivore and zooplanktivore/zoobenthivore fishes, whereas lipid metabolism and glycan metabolism were enriched in zoobenthivore/piscivore fishes. Moreover, substantial taxonomic variability was found between the gut microbiomes of fish and animals, indicated by their low degree of shared microbiota. The data and observations reported herein pave the way for further investigations on the coevolution of fish gut microbiomes and their hosts, the physiological functions of gut microorganisms, and the development of probiotics for improving the nutrition and health of aquaculture fish species.

6.
J Colloid Interface Sci ; 583: 340-350, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-33007590

RESUMO

Chitosan-functionalized mesoporous silica MCM-41 (Chi/M41) was prepared by a mild method. In the composite materials, the spherical MCM-41 particles were regarded as supporting skeletons, which reduced the effect of chitosan swelling on the repeatability and reliability of quartz crystal microbalance (QCM) sensors at high relative humidity (RH), and chitosan provided good film-forming properties of the final composite. The composite structure effectively improved the sensitivity of the QCM sensors compared to that of chitosan and MCM-41 sensors. The QCM sensor based on the Chi/M41 composites showed excellent sensitivity (58.4 ± 0.3 Hz/% RH). In addition, the optimal sensor exhibited excellent reliability, such as negligible humidity hysteresis (0.8 ± 0.1% RH), a small variation coefficient (1.1 ± 0.1), short response and recovery times (18 s/15 s) and good long-term stability. Furthermore, the Langmuir adsorption isotherm model and the Gibbs free energy were used to investigate the adsorption mechanism of water molecules on the sensitive films in this work.

7.
Toxicol Ind Health ; 36(8): 580-590, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33064063

RESUMO

Nickel (Ni) is a known human carcinogen that has an adverse effect on various human organs in occupational workers during Ni refinement and smelting. In the present study, we used real-time polymerase chain reactions, Western blot analysis, and a lactate production assay to investigate whether an increase in the NLRP3 inflammasome induced by Ni-refining fumes was associated with the Warburg effect in BEAS-2B cells, a nonmalignant pulmonary epithelial line. Exposure to Ni-refining fumes suppressed cell proliferation and increased lactate production compared with those in an untreated control group in a dose- and time-dependent manner. Ni-refining fumes induced the Warburg effect, which was observed based on increases in the levels of hypoxia-inducible factor-1α, hexokinase 2, pyruvate kinase isozyme type M2, and lactate dehydrogenase A. In addition, Ni-refining fumes promoted increased expression of NLRP3 at both the gene and protein levels. Furthermore, inhibition of the Warburg effect by 2-Deoxy-d-glucose reversed the increased expression of NLRP3 induced by Ni-refining fumes. Collectively, our data demonstrated that the Warburg effect can promote the expression of the NLRP3 inflammasome induced by the Ni-refining fumes in BEAS-2B cells. This indicates a new phenomenon in which alterations in energy production in human cells induced by Ni-refining fumes regulate the inflammatory response.

8.
Chem Biodivers ; 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33078532

RESUMO

Paeonia ostii is now being extensively planted for oil extraction in China, which is recognized as a single oil-use tree peony cultivar and commonly called 'Fengdan'. This study investigated the effects of nitrogen fertilizer on oil yield, fatty acid compositions and antioxidant activity of P . ostii . Oil yield (33.46%), oleic acid (25.12%), linoleic acid (29.21%) and a-linolenic acid (43.12%) reached the maximum at N450 treatment, with significant differences compared with other treatments ( P <0.05). Furthermore, strong antioxidant activity with low DPPH IC50 value (19.43±1.91 µg mL -1 ) and large ABTS value (1216.53±30.21 µmoL Trolox g -1 ) and FRAP value (473.57±9.11 µmoL Trolox g -1 ) was also observed at N450. Palmitic acid (5.57%) and stearic acid (2.02%) reached a maximum at N375, but not significant with N450 ( P< 0.05). Nitrogen fertilizer could promote oil yield, fatty acid accumulation and antioxidant activity, and N450 (450kg ha -1 ) is recommended as the optimum application for P. ostii .

9.
Nanoscale ; 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000821

RESUMO

The preparation of low-loading and high-performance Pd-based electrodes is required for direct formate fuel cells. In this study, cyclic voltammetry electrodeposition is used to electrodeposit Pd nanoparticles on carbon paper (Pd/CP) and achieve excellent activity and promising stability toward the formate oxidation reaction (FOR). The prepared electrode shows a thin layer of hemispherical and well-dispersed Pd nanoparticles on the fibers of the carbon paper. The open structure and uniform catalyst distribution make the Pd/CP electrode show 2.56-fold higher active area and stability in the FOR as compared with those of commercial Pd/C catalysts. An air-breathing microfluidic direct formate fuel cell (µDFFC) with a Pd/CP electrode used as a flow-through anode is constructed to further assess electrode performance. The Pd/CP electrode with low Pd loading, 0.105 mg cm-2, delivers a peak power density and limiting current density of 46.6 mW cm-2 (443.8 mW mg-1Pd) and 288.4 mA cm-2, respectively. The performance of the µDFFC is superior to those of most others reported in the literature, further boosting the commercialization of this direct formate fuel cell to power next-generation portable electronics.

10.
Cell Oncol (Dordr) ; 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33034848

RESUMO

PURPOSE: Multiple circular RNAs (circRNAs) have been reported to be dysregulated in hepatocellular carcinoma (HCC). However, their functions and modes of action are still largely unclear. Identifying key circRNAs and revealing their potential functions and molecular mechanisms is considered important for improving the diagnosis and treatment of HCC. METHODS: Dysregulated circRNAs in HCC were identified through integration of three human HCC circRNAs microarray datasets (GSE94508, GSE97332 and GSE 78520), followed by qRT-PCR validation in primary HCC tissues and cell lines. circRNA characteristics were verified through Sanger sequencing, RNase R treatment, northern blotting and intracellular localization analyses. In addition, circRNA functions in HCC development were assessed using CCK8, colony formation, EDU incorporation, flow cytometry, transwell and scratch wound healing assays in vitro and tumor xenograft assays in vivo. Next, underlying molecular mechanisms in HCC were assessed using dual-luciferase reporter, RNA pull-down, RNA immunoprecipitation and western blotting assays. RESULTS: We found that a novel circular RNA, circ-102,166, was down-regulated in HCC and that its expression level was significantly associated with multiple clinicopathologic characteristics, as well as the clinical prognosis of HCC patients. In vitro and in vivo experiments revealed that circ-102,166 overexpression significantly inhibited the proliferation, invasion, migration and tumorigenicity of HCC cells. Furthermore, we found that circ-102,166 can bind to miR-182 and miR-184 to regulate the expression of several of their downstream targets (FOXO3a, MTSS1, SOX7, p-RB and c-MYC). CONCLUSION: Our data revealed a tumor-suppressing role of circ-102,166 in HCC. Down-regulation of circ-102,166 enhanced the proliferation and invasion of HCC cells by releasing the oncomiRs miR-182 and miR-184.

11.
Am J Med Sci ; 2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-33012486

RESUMO

BACKGROUND: Lung squamous cell carcinoma (LUSC) accounts up for approximately 30% of all lung cancers with a high mortality. The study was aimed at finding genes critical in the diagnosis and prognosis of LUSC. MATERIALS AND METHODS: The differentially expressed (DE) genes (DEGs) and DE lncRNAs (DELs) from 501 LUSC and 49 normal lung tissues, and DE miRNAs (DEMs) from 478 LUSC and 45 normal lung tissues were respectively obtained via the TCGA database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and co-expression network analyses were performed. Survival analysis and receiver operating characteristic curve of hub mRNAs were also analyzed. Competitive endogenous RNA networks of lncRNAs, miRNAs and mRNAs were constructed. RESULTS: A total of 5747 DEGs, 378 DEMs and 3141 DELs in LUSC were identified in LUSC. The DEGs including AUARK, CDK1, KIF11 and EXO1 were proven to be significant metastatic indicators in LUSC, and 2 DEGs were significantly associated with the survival in LUSC patients. Some genes might have connections with many other gene nodes through a co-expression network. Four lncRNAs, 2 mRNAs and 2 miRNAs were identified as the candidates for the competitive miRNA-mRNA-lncRNA network and might serve as prognostic markers in LUSC. CONCLUSIONS: We identified the differentially expressed lncRNAs, miRNAs and mRNAs in LUSC, providing further insights into the molecular mechanism of LUSC tumorigenesis and the potential prognostic biomarkers or therapeutic targets for LUSC.

12.
Redox Biol ; 37: 101758, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33080441

RESUMO

E-cigarette (e-cig) aerosols are complex mixtures of various chemicals including humectants (propylene glycol (PG) and vegetable glycerin (VG)), nicotine, and various flavoring additives. Emerging research is beginning to challenge the "relatively safe" perception of e-cigarettes. Recent studies suggest e-cig aerosols provoke oxidative stress; however, details of the underlying molecular mechanisms remain unclear. Here we used a redox proteomics assay of thiol total oxidation to identify signatures of site-specific protein thiol modifications in Sprague-Dawley rat lungs following in vivo e-cig aerosol exposures. Histologic evaluation of rat lungs exposed acutely to e-cig aerosols revealed mild perturbations in lung structure. Bronchoalveolar lavage (BAL) fluid analysis demonstrated no significant change in cell count or differential. Conversely, total lung glutathione decreased significantly in rats exposed to e-cig aerosol compared to air controls. Redox proteomics quantified the levels of total oxidation for 6682 cysteine sites representing 2865 proteins. Protein thiol oxidation and alterations by e-cig exposure induced perturbations of protein quality control, inflammatory responses and redox homeostasis. Perturbations of protein quality control were confirmed with semi-quantification of total lung polyubiquitination and 20S proteasome activity. Our study highlights the importance of redox control in the pulmonary response to e-cig exposure and the utility of thiol-based redox proteomics as a tool for elucidating the molecular mechanisms underlying this response.

13.
Water Res ; 185: 116127, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086465

RESUMO

Antibiotic resistance has become a global public health concern, rendering common infections untreatable. Given the widespread occurrence, increasing attention is being turned toward environmental pathways that potentially contribute to antibiotic resistance gene (ARG) dissemination outside the clinical realm. Studies during the past decade have clearly proved the increased ARG pollution trend along with gradient of anthropogenic interference, mainly through marker-ARG detection by PCR-based approaches. However, accurate source-tracking has been always confounded by various factors in previous studies, such as autochthonous ARG level, spatiotemporal variability and environmental resistome complexity, as well as inherent method limitation. The rapidly developed metagenomics profiles ARG occurrence within the sample-wide genomic context, opening a new avenue for source tracking of environmental ARG pollution. Coupling with machine-learning classification, it has been demonstrated the potential of metagenomic ARG profiles in unambiguously assigning source contribution. Through identifying indicator ARG and recovering ARG-host genomes, metagenomics-based analysis will further increase the resolution and accuracy of source tracking. In this review, challenges and progresses in source-tracking studies on environmental ARG pollution will be discussed, with specific focus on recent metagenomics-guide approaches. We propose an integrative metagenomics-based framework, in which coordinated efforts on experimental design and metagenomic analysis will assist in realizing the ultimate goal of robust source-tracking in environmental ARG pollution.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Metagenoma , Metagenômica
14.
Eur J Pharm Sci ; : 105598, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33075465

RESUMO

OBJECTS: Several evidences suggested that TNFRSF21 exert crucial functions in regulating neuroinflammatory effects, which had been detected in Alzheimer's Disease (AD). We performed many experiments aimed to explore the comprehensively biological functions of TNFRSF21 and its underlying mechanism in AD. METHODS: Twelve normal healthy C57BL6 mice were selected, and AD model mice (APP transgenic model Tg2576 and Tau transgenic model JNPL3) were constructed and TNFRSF21 knockdown was performed in vitro. Western blotting, Co-immunoprecipitation (Co-IP), ELISA assay, flow cytometry and immunofluorescence were performed to explore the biological functions of APP and its underlying mechanism in AD. RESULTS: The expression of TNFRSF21, APP, NF-κB and MAPK8 was increased in APP transgenic model (Tg2576) and Tau transgenic model (JNPL3). The interaction between TNFRSF21 and APP was analyzed by Co-IP at protein level. Based on the results of ELISA, the levels of inflammatory cytokines TNF-α, IL-5, and IFN-γ in the Tg2576 were higher than that in the JNPL3, but hardly observed in the normal group. The increased APP and inflammatory cytokines in AD model were significantly reduced with TNFRSF21 inhibited. Tg2576 group exhibited higher apoptotic rate of neuron cell and increased number of astrocytes than those of the JNPL3 group. CONCLUSIONS: Our studies revealed that APP could promote and bind with TNFRSF21 to regulate the neural inflammatory effects in AD. Inhibiting TNFRSF21 could reduce APP expression and decrease neuroinflammation, which might become potential target for treating AD.

15.
BMC Public Health ; 20(1): 1343, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883275

RESUMO

BACKGROUND: Self-rated health (SRH) is an indicator that captures a person's perception of their overall health status. The relationship between physical activity (PA), sedentary behaviour (SB) and SRH has been investigated in systematic reviews among adult and elderly populations. No systematic review to date has synthesized the relationship between PA, SB and SRH among children and adolescents. The purpose of this systematic review and meta-analysis was to synthesize the associations between PA, SB and SRH in the general population of children and adolescents and to investigate the dose-response relationship between PA, SB and SRH. METHODS: We conducted a computer search for English language studies in the databases of MEDLINE, EMBASE and PSYCINFO that were published between 1946 and 2019. We searched PubMed, Google Scholar, and the references of the identified publications for additional studies. A meta-analysis was employed to synthesize the associations between PA, SB respectively and SRH. The dose-response association was tested using a random effects meta-regression model. The review was reported following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: Sixty-eight published articles were included in the final review, including 59 cross-sectional and nine longitudinal studies. We found evidence that PA was associated with better SRH, and SB was associated with lower SRH among children and adolescents. A dose-response relationship between PA and SRH was observed, where a higher level of PA was associated with better SRH than a lower level of PA. The relationship between PA, SB and SRH was observed in both boys and girls, and did not show a significant gender difference. CONCLUSIONS: The findings in the systematic review suggest that health intervention programmes targeting promoting PA and reducing SB among children and adolescents may enhance their overall health status. Future research is needed to expand prospective cohort and intervention studies to address directionality and causality in the relationships between PA, SB and SRH among children and youth. TRIAL REGISTRATION: PROSPERO - CRD42019142244 . Registered on October 18, 2019.

16.
Innate Immun ; : 1753425920952840, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873094

RESUMO

Syphilis is an important health problem worldwide; however, few studies have probed the impact of syphilitic infection on T cell turnover. The mechanisms behind the frequency of T cell subset changes and the associations between these subsets during syphilitic infection remain unclear. Herein, we used a cell-staining method and flow cytometry to explore changes in T cell subpopulations and potential contribution of apoptosis and pyroptosis that triggered therein. We investigated caspase-1-mediated pyroptosis and caspase-3-mediated apoptosis of CD4+ and CD8+ T cells, the major effector lymphocytes with pivotal roles in the pathogenesis of infectious diseases. We found that the levels of caspase-1 and caspase-3 increased in both the circulation and intracellularly in CD4+ and CD8+ T cells. Caspase-1 showed a continual increase from early latent stage infection through to phase 2 disease, whereas caspase-3 increased through to phase 1 disease but declined during phase 2. In addition, serum levels and intracellular expression of caspase-1 and caspase-3 were positively correlated. Overall, this study increases our understanding of how syphilitic infection influences CD4+ and CD8+ T-cell turnover, which may help with designing novel and effective strategies to control syphilis infection and prevent its transmission.

17.
Microb Ecol ; 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894355

RESUMO

To predict the effects of nitrogen deposition on nitrogen-mineralizing enzyme activity and soil microbial community structure in artificial temperate forests in northern China, we studied the soil properties, nitrogen-mineralizing enzyme activity, and microbial community structure in the soil of a Korean pine plantation in which different concentrations (0, 20, 40, 80 kg N ha-1 year-1) of ammonium nitrate were applied for 5 consecutive years. The results showed that nitrogen addition at different concentrations did not significantly affect the soil pH. High nitrogen addition (80 kg N ha-1 year-1) significantly increased the soil organic matter, ammonium nitrogen, and nitrate nitrogen content in the Korean pine plantation, and ammonium nitrogen was the key factor that influenced the soil fungal community structure. The urease activity under the moderate nitrogen addition treatment (40 kg N ha-1 year-1) was significantly lower than that under the control (0 kg N ha-1 year-1), and the protease activity in the three treatments was also significantly lower than that in the control. There was no significant correlation between microbial community structure and the four mineralizing enzymes. After nitrogen addition at different concentrations, the Simpson and Shannon indexes of soil bacteria decreased significantly under low nitrogen addition (20 kg N ha-1 year-1), but the α-diversity index of soil fungi did not show significant differences under nitrogen addition. The microbial community composition was significantly changed by the different treatments. PLS-DA analysis showed that Tardiphaga was an important genus that made the greatest contribution to the differences in bacterial community composition among treatments, as was Taeniolella for fungal community composition. The low level of nitrogen addition inhibited nitrogen mineralization in the Korean pine plantation by reducing the relative abundances of Nitrosomonadaceae and Betaproteobacteriales and by reducing the abundances of symbiotrophic fungi. Berkelbacteria and Polyporales were bacteria and fungi, respectively, that changed significantly under the high nitrogen addition treatment (80 kg N ha-1 year-1). This study provides more data to support predictions of the changes in nitrogen-mineralizing enzyme activity and microbial community structure in artificial temperate forest soils in response to increased nitrogen deposition.

18.
Biomed Pharmacother ; 131: 110683, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32942155

RESUMO

Picroside I, a hepatoprotectant isolated from Picrorhiza kurroa Royle ex Benth and P. scrophulariiflora Pennell, can reduce liver injury in humans and animals. However, its anti-fibrosis effect remains elusive. This work aimed to explore the mechanism underlying the hepatoprotective effect of picroside I against hepatic fibrosis. Male mice (12 mice per group) were randomly divided into six groups: the control group; the model group, which received thioacetamide (TAA); the positive group, which received TAA + S-(5'-adenosyl)-l-methionine (SAMe, 10 mg/kg); the low-dose group, which received TAA + picroside I (25 mg/kg); the middle-dose group, which received TAA + picroside I (50 mg/kg); and the high-dose group, which received TAA + picroside I (75 mg/kg). Serum biochemical indicators were detected, and histological evaluation was performed. Metabolomics and proteomic analyses were conducted via liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS). Data showed that picroside I could decrease the serum levels of alanine transaminase (ALT), aspartate transaminase (AST), collagen type IV (CIV), N-terminal peptide of type III procollagen (PIIINP), laminin (LN), and hyaluronic acid (HA) and reduced fibrosis area. Picroside I altered metabolomic profiles, including energy, lipid, and glutathione (GSH) metabolism, in ice with fibrosis. Additionally, 25 differentially expressed proteins in the picroside I high-dose-treated group were reversed relative to in the model group. These proteins were involved in the sphingolipid signaling pathway, primary bile acid biosynthesis, and peroxisome proliferator-activated receptor (PPAR) signaling pathway. Moreover, this study revealed how picroside I could protect against TAA-induced liver fibrosis in mice. Results indicated that picroside I can serve as a candidate drug for hepatic fibrosis.

19.
Biomark Med ; 14(12): 1127-1137, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32969244

RESUMO

Aim: This study aimed to develop an effective risk predictor for patients with stage II and III colorectal cancer (CRC). Materials & methods: The prognostic value of p-mTOR (Ser2448) levels was analyzed using Kaplan-Meier survival analysis and Cox regression analysis. Results: The levels of p-mTOR were increased in CRC specimens and significantly correlated with poor prognosis in patients with stage II and III CRC. Notably, the p-mTOR level was an independent poor prognostic factor for disease-free survival and overall survival in stage II CRC. Conclusion: Aberrant mTOR activation was significantly associated with the risk of recurrence or death in patients with stage II and III CRC, thus this activated proteins that may serve as a potential biomarker for high-risk CRC.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32865812

RESUMO

INTRODUCTION: Infection and inflammation have been implicated in the etiology and subsequent morbidity associated with preterm birth. At present, there are no tests to assess for fetal compartment infection. The thymus, a gland integral in the fetal immune system, has been shown to involute in animal models of antenatal infection, but its response in human fetuses has not been studied. This study aims: (a) to generate magnetic resonance imaging (MRI) -derived fetal thymus volumes standardized for fetal weight; (b) to compare standardized thymus volumes from fetuses that delivered before 32 weeks of gestation with fetuses that subsequently deliver at term; (c) to assess thymus size as a predictor of preterm birth; and (d) to correlate the presence of chorioamnionitis and funisitis at delivery with thymic volumes in utero in fetuses that subsequently deliver preterm. MATERIAL AND METHODS: Women at high-risk of preterm birth at 20-32 weeks of gestation were recruited. A control group was obtained from existing data sets acquired as part of three research studies. A fetal MRI was performed on a 1.5T or 3T MRI scanner: T2 weighted images were obtained of the entire uterine content and specifically the fetal thorax. A slice-to-volume registration method was used for reconstruction of three-dimensional images of the thorax. Thymus segmentations were performed manually. Body volumes were calculated by manual segmentation and thymus:body volume ratios were generated. Comparison of groups was performed using multiple regression analysis. Normal ranges were created for thymus volume and thymus:body volume ratios using the control data. Receiver operating curves (ROC) curves were generated for thymus:body volume ratio and gestation-adjusted thymus volume centiles as predictors of preterm birth. Placental histology was analyzed where available from pregnancies that delivered very preterm and the presence of chorioamnionitis/funisitis was noted. RESULTS: Normative ranges were created for thymus volume, and thymus volume was standardized for fetal size from fetuses that subsequently delivered at term, but were imaged at 20-32 weeks of gestation. Image data sets from 16 women that delivered <32 weeks of gestation (ten with ruptured membranes and six with intact membranes) and 80 control women that delivered >37 weeks were included. Mean gestation at MRI of the study group was 28+4  weeks (SD 3.2) and for the control group was 25+5  weeks (SD 2.4). Both absolute fetal thymus volumes and thymus:body volume ratios were smaller in fetuses that delivered preterm (P < .001). Of the 16 fetuses that delivered preterm, 13 had placental histology, 11 had chorioamnionitis, and 9 had funisitis. The strongest predictors of prematurity were the thymus volume Z-score and thymus:body volume ratio Z-score (ROC areas 0.915 and 0.870, respectively). CONCLUSIONS: We have produced MRI-derived normal ranges for fetal thymus and thymus:body volume ratios between 20 and 32 weeks of gestation. Fetuses that deliver very preterm had reduced thymus volumes when standardized for fetal size. A reduced thymus volume was also a predictor of spontaneous preterm delivery. Thymus volume may be a suitable marker of the fetal inflammatory response, although further work is needed to assess this, increasing the sample size to correlate the extent of chorioamnionitis with thymus size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA