Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.517
Filtrar
1.
Food Funct ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982985

RESUMO

We herein report a study on the antioxidant peptides that show potential in alleviating myocardial ischemia reperfusion injury (MI/RI). Yak skin gelatin fraction Ac (YSG-Ac), obtained through ultrafiltration and gel filtration with Sephadex G-15, exhibits a favorable nutrient composition, high foaming capacity and stability, and resistance against gastrointestinal digestion. LC-MS/MS analysis reveals that YSG-Ac contains 26 peptide segments with sequence lengths of 8 to 12 amino acids. Online screening suggests that the antioxidant capacity of YSG-Ac is mainly attributed to the presence of hydrophobic and antioxidant amino acids. In vitro, our results demonstrate the MI/RI protective effects of YSG-Ac by effectively repairing H2O2-induced oxidative damage in H9c2 cells, which is achieved by inhibiting malondialdehyde (MDA) levels, and increasing glutathione peroxidase (GSH-pX) and superoxide dismutase (SOD) activity. In vivo, our results further confirm the effectiveness of YSG-Ac in narrowing the area of myocardial infarction, decreasing MDA levels, increasing SOD activity, and reducing the content of lactate dehydrogenase (LDH) in a mouse MI/RI model. Molecular docking analysis indicates that PGADGQPGAK with xanthine dehydrogenase (XDH) and GAAGPTGPIGS with tumor necrosis factor-alpha (TNF-α) exhibit strong bonding capability, and other related targets also show certain binding ability toward YSG-Ac. This suggests that YSG-Ac can regulate MI/RI through multiple targets and pathways. Overall, our findings highlight the potential of YSG-Ac as a functional food ingredient with antioxidant and MI/RI protective characteristics.

2.
J Reprod Immunol ; 165: 104298, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39002425

RESUMO

BACKGROUND: This study aims to conduct a preliminary exploration of the correlation between the oral microbiota of full-term pregnant women and both local placental immunity and the systemic immune system of the mother. METHODS: A total of 26 pregnant women participated in this study, with samples collected from oral swabs, placental tissue, and peripheral venous blood. High-throughput sequencing was used to examine the oral microbial community. Flow cytometry was employed to assess immune cells in placental tissue and peripheral venous blood. ELISA and Luminex liquid bead chip technology were utilized to detect cytokines in both placental tissue and peripheral venous blood. RESULTS: In placental tissue, The oral microbial community is primarily negatively correlated with placental CD3+CD4+CD8+T cells and positively correlated with placental IL-5. In the peripheral blood, The oral microbial community is primarily positively correlated with maternal systemic immune parameters, including CD3+CD4+ T cells and the CD4+/CD8+ ratio, as well as positively correlated with peripheral IL-18. CONCLUSIONS: The oral microbiota of full-term pregnant women participates in the regulatory function of the maternal immune system. Meanwhile, the oral microbial community may also be an important factor mediating local immune regulation in the placenta.

3.
Bioorg Chem ; 151: 107618, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39003940

RESUMO

An unprecedented spiro-C-glycoside adduct, heteryunine A (1), along with two uncommon alkaloids featuring a 2,3-diketopiperazine skeleton, heterpyrazines A (2) and B (3), were discovered in the roots of Heterosmilax yunnanensis. The detailed spectroscopic analysis helped to clarify the planar structures of these compounds. Compound 1, containing 7 chiral centers, features a catechin fused with a spiroketal and connects with a tryptophan derivative by a CC bond. Its complex absolute configuration was elucidated by rotating frame overhauser enhancement spectroscopy (ROESY), specific rotation, and the 13C nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) calculation. The possible biosynthetic routes for 1 were deduced. Compounds 1 and 2 showed significant antifibrotic effects and further research revealed that they inhibited the activation, migration and proliferation of hepatic stellate cells (HSCs) through suppressing the activity of Ras homolog family member A (RhoA).

4.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(4): 646-655, 2024 Dec 18.
Artigo em Chinês | MEDLINE | ID: mdl-39041560

RESUMO

OBJECTIVE: To explore the relevant factors affecting the efficacy of microscopic spermatic cord surgery and build a predictive model for postoperative pain relief. METHODS: A retrospective analysis was conducted on the clinical data of 324 patients with spermatic cord pain who visited the Department of Urology at Peking University People's Hospital between October 2015 and April 2023. This cohort included 212 patients with varicocele-related spermatic cord pain and 112 patients with idiopathic spermatic cord pain. All the patients underwent microsurgical procedures: varicocele-related pain was treated with microsurgical varicocelectomy, and idiopathic pain was treated with microsurgical denervation of the spermatic cord. The patients were categorized into effective and ineffective groups based on whether their pain had decreased by more than 50% six months post-surgery compared with pre-surgery levels. Baseline data were preliminarily screened for clinical indicators using t tests and univariate analysis. Clinical predictor variables [age, duration of pain, diameter of varicocele, patient health questionnaire-9 (PHQ-9) score, generalized anxiety disorder-7 (GAD-7) score] were selected using Lasso regression. A clinical prediction model for effective pain relief following microscopic spermatic cord surgery was constructed using Logistic regression and presented as a nomogram. The model's internal validation was performed using the bootstrap method. Its predictive power and clinical utility were evaluated through the concor-dance index, the area under the receiver operating characteristic curve, and calibration plots. RESULTS: Post-microscopic varicocele ligation, 156 patients (73.58%) experienced significant pain relief, as did 94 patients (83.93%) following microscopic denervation. Independent predictors for postoperative outcomes included age, PHQ-9 score, GAD-7 score, chronic pain duration, and varicocele diameter, differing slightly between varicocele-related and idiopathic pain groups. The models demonstrated excellent predictive ability, with areas under the curve of 0.909 and 0.913 for varicocele and idiopathic groups, respectively, and high concordance indices. CONCLUSION: The postoperative efficacy prediction model based on age, pain duration, PHQ-9 score, GAD-7 score, and varicocele diameter has good predictive ability and clinical applicability, and can be used in clinical practice.


Assuntos
Microcirurgia , Dor Pós-Operatória , Cordão Espermático , Varicocele , Humanos , Masculino , Cordão Espermático/cirurgia , Cordão Espermático/inervação , Estudos Retrospectivos , Dor Pós-Operatória/etiologia , Varicocele/cirurgia , Varicocele/complicações , Microcirurgia/métodos , Denervação/métodos , Adulto , Modelos Logísticos
5.
Cell Death Dis ; 15(7): 502, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003255

RESUMO

Dysfunction of the ubiquitin-proteasome system (UPS) is involved in the pathogenesis of various malignancies including colorectal cancer (CRC). Ubiquitin domain containing 1 (UBTD1), a ubiquitin-like protein, regulates UPS-mediated protein degradation and tumor progression in some cancer types. However, the biological function and mechanism of UBTD1 are far from being well elucidated, and its role in CRC has not been explored yet. In our study, we analyzed CRC patients' clinical information and UBTD1 expression data, and found that the expression of UBTD1 in cancer tissue was significantly higher than that in adjacent normal tissue. Higher UBTD1 expression was significantly associated with poorer survival and more lymph node metastasis. Overexpression of UBTD1 could facilitate, while knockdown could inhibit CRC cell proliferation and migration, respectively. RNA-seq and proteomics indicated that c-Myc is an important downstream target of UBTD1. Metabolomics showed the products of the glycolysis pathway were significantly increased in UBTD1 overexpression cells. In vitro, we verified UBTD1 upregulating c-Myc protein and promoting CRC cell proliferation and migration via regulating c-Myc. UBTD1 promoted CRC cells' glycolysis, evidenced by the increased lactate production and glucose uptake following UBTD1 overexpression. Mechanistically, UBTD1 prolonged the half-life of the c-Myc protein by binding to E3 ligase ß-transducin repeat-containing protein (ß-TrCP), thereby upregulated the expression of glycolysis rate-limiting enzyme hexokinase II (HK2), and enhanced glycolysis and promoted CRC progression. In conclusion, our study revealed that UBTD1 promotes CRC progression by upregulating glycolysis via the ß-TrCP/c-Myc/HK2 pathway, suggesting its potential as a prognostic biomarker and therapeutic target in CRC.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Progressão da Doença , Glicólise , Proteínas Proto-Oncogênicas c-myc , Regulação para Cima , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Masculino , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Pessoa de Meia-Idade , Camundongos Nus , Animais , Hexoquinase/metabolismo , Hexoquinase/genética , Camundongos , Estabilidade Proteica
6.
Biosens Bioelectron ; 262: 116566, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39018981

RESUMO

To achieve highly sensitive and reliable detection of apurinic/apyrimidinic endonuclease 1 (APE1), a critical cancer diagnostic biomarker, we designed a DNA walker-based dual-mode biosensor, utilizing cellular endogenous dual enzymes (APE 1 and Flap endonuclease 1 (FEN 1)) to collaborate in activating and propelling DNA walker motion on DNA-functionalized Au nanoparticles. Incorporating both fluorescence and electrochemical detection modes, this system leverages signal amplification from DNA walker movement and cascade amplification through tandem hybridization chain reactions (HCR), achieving highly sensitive detection of APE 1. In the fluorescence mode, continuous DNA walker movement, initiated by APE1 and driven by FEN1, generates a robust signal response within a concentration range of 0.01-500 U mL-1, presenting a good linearity in the concentration range of 0.01-10 U mL-1, with a detection limit of 0.01 U mL-1. In the electrochemical detection module, the cascade upstream DNA walker and downstream HCR dual signal amplification strategy further enhances the sensitivity of APE1 detection, extending the linear range to 0.01-50 U mL-1 and reducing the detection limit to 0.002 U mL-1. Rigorous validation demonstrates the biosensor's specificity and anti-interference capability against multiple enzymes. Moreover, it effectively distinguishes cancer cells from normal cell lysates, exhibiting excellent stability and consistency in the dual-modes. Overall, our findings underscore the efficacy of the developed dual-mode biosensor for detecting APE1 in serum and cell lysates samples, indicating its potential for clinical applications in disease diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Endonucleases Flap , Ouro , Limite de Detecção , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/análise , DNA/química , Endonucleases Flap/química , Endonucleases Flap/metabolismo , Nanopartículas Metálicas/química , Ouro/química , Técnicas Eletroquímicas/métodos
7.
J Phys Chem Lett ; : 7584-7590, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025480

RESUMO

Exciton-phonon coupling (ExPC) is crucial for energy relaxation in semiconductors, yet the first-principles calculation of such coupling remains challenging, especially for two-dimensional (2D) systems. Here, an accurate method for calculating ExPC is developed and applied in exciton relaxation problems in monolayer WSe2. Considering the interplay between the exciton wave functions and electron-phonon coupling (EPC) matrix elements, we find that ExPC shows selection rules distinct from the ones of EPC. By employing the Wannier exciton model, we generalize these selection rules, which state that the angular quantum numbers of the exciton must match the winding numbers of the EPC matrix elements for the ExPC to be allowed. To verify our theory and method, we calculate intervalley exciton relaxation pathways, which agree well with a recent experiment.

8.
Acta Pharm Sin B ; 14(7): 3125-3139, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027250

RESUMO

Zhigancao decoction is a traditional prescription for treating irregular pulse and palpitations in China. As the monarch drug of Zhigancao decoction, the bioactive molecules of licorice against heart diseases remain elusive. We established the HRESIMS-guided method leading to the isolation of three novel bicyclic peptides, glycnsisitins A-C (1-3), with distinctive C-C and C-O-C side-chain-to-side-chain linkages from the roots of Glycyrrhiza uralensis (Licorice). Glycnsisitin A demonstrated stronger cardioprotective activity than glycnsisitins B and C in an in vitro model of doxorubicin (DOX)-induced cardiomyocyte injury. Glycnsisitin A treatment not only reduced the mortality of heart failure (HF) mice in a dose-dependent manner but also significantly attenuated DOX-induced cardiac dysfunction and myocardial fibrosis. Gene set enrichment analysis (GSEA) of the differentially expressed genes indicated that the cardioprotective effect of glycnsisitin A was mainly attributed to its ability to maintain iron homeostasis in the myocardium. Mechanistically, glycnsisitin A interacted with transferrin and facilitated its binding to the transferrin receptor (TFRC), which caused increased uptake of iron in cardiomyocytes. These findings highlight the key role of bicyclic peptides as bioactive molecules of Zhigancao decoction for the treatment of HF, and glycnsisitin A constitutes a promising therapeutic agent for the treatment of HF.

9.
Environ Sci Ecotechnol ; 21: 100441, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39027464

RESUMO

The monitoring and management of aquatic ecosystems depend on precise estimates of biodiversity. Metabarcoding analyses of environmental nucleic acids (eNAs), including environmental DNA (eDNA) and environmental RNA (eRNA), have garnered attention for their cost-effective and non-invasive biomonitoring capabilities. However, the accuracy of biodiversity estimates obtained through eNAs can vary among different organismal groups. Here we evaluate the performance of eDNA and eRNA metabarcoding across nine organismal groups, ranging from bacteria to terrestrial vertebrates, in three cross-sections of the Yangtze River, China. We observe robust complementarity between eDNA and eRNA data. The relative detectability of eNAs was notably influenced by major taxonomic groups and organismal sizes, with eDNA providing more robust signals for larger organisms. Both eDNA and eRNA exhibited similar cross-sectional and longitudinal patterns. However, the detectability of larger organisms declined in eRNA metabarcoding, possibly due to differential RNA release and decay among different organismal groups or sizes. While underscoring the potential of eDNA and eRNA in large river biomonitoring, we emphasize the need for differential interpretation of eDNA versus eRNA data. This highlights the importance of careful method selection and interpretation in biomonitoring studies.

10.
Gen Physiol Biophys ; 43(4): 301-312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953570

RESUMO

Vascular endothelial growth factor A (VEGFA) is an important regulator for non-small cell lung cancer (NSCLC). Our study aimed to reveal its upstream pathway to provide new ideas for developing the therapeutic targets of NSCLC. The mRNA and protein levels of VEGFA, ubiquitin-specific peptidase 35 (USP35), and FUS were determined by quantitative real-time PCR and Western blot. Cell proliferation, apoptosis, invasion and angiogenesis were detected using CCK8 assay, EdU assay, flow cytometry, transwell assay and tube formation assay. The interaction between USP35 and VEGFA was assessed by Co-IP assay and ubiquitination assay. Animal experiments were performed to assess USP35 and VEGFA roles in vivo. VEGFA had elevated expression in NSCLC tissues and cells. Interferences of VEGFA inhibited NSCLC cell proliferation, invasion, angiogenesis, and increased apoptosis. USP35 could stabilize VEGFA protein level by deubiquitination, and USP35 knockdown suppressed NSCLC cell growth, invasion and angiogenesis via reducing VEGFA expression. FUS interacted with USP35 to promote its mRNA stability, thereby positively regulating VEGFA expression. Also, USP35 silencing could reduce NSCLC tumorigenesis by downregulating VEGFA. FUS-stabilized USP35 facilitated NSCLC cell growth, invasion and angiogenesis through deubiquitinating VEGFA, providing a novel idea for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Neoplasias Pulmonares , Invasividade Neoplásica , Neovascularização Patológica , Proteína FUS de Ligação a RNA , Ubiquitinação , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proliferação de Células/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Camundongos , Animais , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Camundongos Nus , Angiogênese
11.
Sci Rep ; 14(1): 16977, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043796

RESUMO

Chest pain, a common initial symptom in hypertrophic cardiomyopathy (HCM) patients, is closely linked to myocardial ischemia, despite the absence of significant coronary artery stenosis. This study explored microvascular dysfunction in HCM patients by employing angiography-derived microcirculatory resistance (AMR) as a novel tool for comprehensive assessment. This retrospective analysis included HCM patients with chest pain as the primary symptom and control patients without cardiac hypertrophy during the same period. The AMR was computed through angiography, providing a wire-free and adenosine-free index for evaluating microcirculatory function. Propensity score matching ensured balanced demographics between groups. This study also investigated the correlation between the AMR and clinical outcomes by utilizing echocardiography and follow-up data. After matching, 76 HCM patients and 152 controls were analyzed. While there was no significant difference in the incidence of epicardial coronary stenosis, the AMR of three epicardial coronary arteries was markedly greater in HCM patients. The criterion of an AMR ≥ 250 mmHg*s/m was that 65.7% of HCM patients experienced coronary microvascular dysfunction (CMD). Independent risk factors for CMD included increased left ventricular (LV) wall thickness (OR = 1.209, 95% CI 1.013-1.443, p = 0.036). Furthermore, an AMR_LAD ≥ 250 mmHg*s/m had an increased cumulative risk of the endpoint (log-rank p = 0.023) and was an independent risk factor for the endpoint (HR = 11.64, 95% CI 1.13-120.03, p = 0.039), providing valuable prognostic insights.


Assuntos
Cardiomiopatia Hipertrófica , Dor no Peito , Microcirculação , Humanos , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/fisiopatologia , Cardiomiopatia Hipertrófica/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Dor no Peito/fisiopatologia , Dor no Peito/diagnóstico por imagem , Dor no Peito/etiologia , Estudos Retrospectivos , Angiografia Coronária/métodos , Resistência Vascular , Adulto , Idoso , Ecocardiografia/métodos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , Fatores de Risco
12.
Eur J Pharmacol ; : 176820, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032765

RESUMO

Ferroptosis, an iron-dependent lipid peroxidation-driven cell death pathway, has been linked to the development of Alzheimer's disease (AD). However, the role of ferroptosis in the pathogenesis of AD remains unclear. Cerebroprotein hydrolysate-I (CH-I) is a mixture of peptides with neurotrophic effects that improves cognitive deficits and reduces amyloid burden. The present study investigated the ferroptosis-induced signalling pathways and the neuroprotective effects of CH-I in the brains of AD transgenic mice. Seven-month-old male APPswe/PS1dE9 (APP/PS1) transgenic mice were treated with intraperitoneal injections of CH-I and saline for 28 days. The Morris water maze test was used to assess cognitive function. CH-I significantly improved cognitive deficits and attenuated beta-amyloid (Aß) aggregation and tau phosphorylation in the hippocampus of APP/PS1 mice. RNA sequencing revealed that multiple genes and pathways, including ferroptosis-related pathways, were involved in the neuroprotective effects of CH-I. The increased levels of lipid peroxidation, ferrous ions, reactive oxygen species (ROS) , and altered expression of ferroptosis-related genes (recombinant solute carrier family 7, member 11 (SLC7A11), spermidine/spermine N1-acetyltransferase 1 (SAT1) and glutathione peroxidase 4 (GPX4)) were significantly alleviated after CH-I treatment. Quantitative real-time PCR and western blotting were performed to investigate the expression of key ferroptosis-related genes and the p53/SAT1/ arachidonic acid 15-lipoxygenase (ALOX15) signalling pathway. The p53/SAT1/ALOX15 signalling pathway was found to be involved in mediating ferroptosis, and the activation of this pathway was significantly suppressed in AD by CH-I. CH-I demonstrated neuroprotective effects against AD by attenuating ferroptosis and the p53/SAT1/ALOX15 signalling pathway, thus providing new targets for AD treatment.

13.
Chemosphere ; 362: 142629, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885766

RESUMO

The emergence of polystyrene (PS) nano- and microplastics (NMPs) and triclosan (TCS) as environmental contaminants has raised concerns about their combined toxicities to organisms, but the complex toxicity arising from their interactions and the underlying molecular mechanisms remain obscure to us. In this study, we comprehensively detected the combined toxicity of PS-NMPs and TCS via the dose-dependent yeast functional genomics profiling. Firstly, our findings demonstrated that the combined exposure to PS-NMPs and TCS elicited a synergistic toxic effect in which the toxicity depended on the size of the PS-NMPs. Secondly, we found that TCS exposure, either alone or in combination with PS-NMPs, influenced lipid biosynthetic processes and ATP export pathways, while the unique responsive genes triggered by combined exposure to TCS and PS-NMPs are significantly enriched in mitochondrial translation, ribosomal small subunit assembly, and tRNA wobble uridine modification. Thirdly, our results demonstrated that point of departure (POD) at the pathway level was positively correlated with IC50, and POD was a more sensitive predictor of toxicity than the apical toxicity endpoints. More importantly, our findings suggested that the combined exposure of PS-NMPs in a size-dependent manner not only alleviated the harmful effects of TCS on glycerophospholipid metabolism, but also exacerbated its negative impact on oxidative phosphorylation. Collectively, our study not only provides new insights into the intricate molecular mechanisms that control the combined toxicity of PS-NMPs and TCS, but also confirms the effectiveness of the dose-dependent functional genomics approach in elucidating the molecular mechanisms of the combined toxicity of pollutants.

14.
Environ Int ; 190: 108855, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945088

RESUMO

Facing the great threats to ecosystems and human health posed by the continuous release of chemicals into aquatic environments, effect-directed analysis (EDA) has emerged as a powerful tool for identifying causative toxicants. However, traditional EDA shows problems of low-coverage, labor-intensive and low-efficiency. Currently, a number of high-efficiency techniques have been integrated into EDA to improve toxicant identification. In this review, the latest progress and current limitations of high-efficiency EDA, comprising high-coverage effect evaluation, high-resolution fractionation, high-coverage chemical analysis, high-automation causative peak extraction and high-efficiency structure elucidation, are summarized. Specifically, high-resolution fractionation, high-automation data processing algorithms and in silico structure elucidation techniques have been well developed to enhance EDA. While high-coverage effect evaluation and chemical analysis should be further emphasized, especially omics tools and data-independent mass acquisition. For the application status in aquatic environments, high-efficiency EDA is widely applied in surface water and wastewater. Estrogenic, androgenic and aryl hydrocarbon receptor-mediated activities are the most concerning, with causative toxicants showing the typical structural features of steroids and benzenoids. A better understanding of the latest progress and application status of EDA would be beneficial to further advance in the field and greatly support aquatic environment monitoring.

15.
Nutr Metab (Lond) ; 21(1): 37, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914993

RESUMO

BACKGROUND AND AIMS: The impact of lipids on the overall survival (OS) of patients with malignancy has not yet been clarified. This study aimed to evaluate the effect of hyperlipidemia on the OS among Chinese patients based on Body Mass Index (BMI) stratifications and hyperlipidemia types. METHOD: The patients in this study were derived from the Investigation of the Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) trial. Kaplan-Meier was used to draw the survival curve, and the log-rank test was used to estimate the survival rates between each group. Cox proportional hazards regression models were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI). RESULTS: A total of 9054 patients were included in the final study, with a median age of 59 years, and 55.3% (5004) of them were males. Regarding types of hyperlipidemia, only low high-density lipoprotein was an independent risk factor for the prognosis of all patients (HR = 1.35, 95% CI: 1.25-1.45, P < 0.001), while high total cholesterol (HR = 1.01, 95% CI: 0.90-1.15, P = 0.839) and high low-density lipoprotein (HR = 1.03, 95%CI: 0.91-1.16, P = 0.680) were not. In terms of BMI stratification, the effect of triglycerides on prognosis varied; high triglycerides were an independent risk factor for the prognosis of underweight patients (HR = 1.56, 95% CI:1.05-2.32, P = 0.027) and a protective factor for overweight patients (HR = 0.75, 95% CI: 0.63-0.89, P = 0.001). However, for normal-weight patients, there was no significant statistical difference (HR = 0.88, 95%CI: 0.75-1.03, P = 0.108). CONCLUSIONS: The impact of hyperlipidemia on the OS among patients with cancer varied by different BMI and hyperlipidemia types. BMI and hyperlipidemia type ought to be considered in combination to estimate the prognosis of patients with malignancy.

16.
World J Clin Cases ; 12(17): 3168-3176, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38898838

RESUMO

BACKGROUND: High-dose vitamin C treatment (HVCT) can reduce the adverse effect of chemotherapy and enhance the effect of antitumor therapy, which has been considered one of the safest alternative treatments. However, the severity of its adverse effects may have been underestimated. The most serious adverse effect is hemolysis, which may result in acute kidney injury or death. Although glucose-6-phosphate dehydrogenase (G6PD) deficiency is considered to be the main cause, the probability and pathological mechanism are not completely understood, leading to a lack of effective and standardized treatment methods. CASE SUMMARY: Two patients with colorectal cancer developed hemolytic anemia after using 1 g/kg HVCT. In contrast to previous cases, the lowest hemoglobin level in the two cases was < 50 g/L, which was lower than previously reported. This may be because Case 1 had chronic hepatitis B for many years, which caused abnormal liver reserve function, and Case 2 had grade II bone marrow suppression. Both patients improved and were discharged after blood replacement therapy. Our cases had the most severe degree of hemolysis but the best prognosis, suggesting that our treatment may be helpful for rescue of drug-induced hemolysis. This is the first review of the literature on hemolysis caused by HVCT, and we found that all patients with G6PD deficiency developed hemolysis after HVCT. CONCLUSION: G6PD deficiency should be considered as a contraindication to HVCT, and it is not recommended for patients with bone marrow suppression, moderate-to-severe anemia, hematopoietic abnormalities, or abnormal liver and kidney function. Early blood purification and steroid therapy may avoid acute kidney injury or death caused by HVCT-related hemolytic anemia.

17.
Opt Express ; 32(12): 21434-21446, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859497

RESUMO

In most liquid dye lasers, dye cell windows are the optical components most susceptible to laser damage even at very low fluences. Although various mechanisms and mitigation techniques have been explored, damage still occurs at some point, and some behaviors of the process cannot be effectively explained. In this work, we investigated three special behaviors of dye cell window damage which cannot be explained by ordinary laser-induced damage mechanisms. We proposed that damage to dye cell windows can be caused by a contamination process similar to laser-induced contamination (LIC) on space optics, and used the LIC mechanism to analyze the cause of those damage behaviors. Additional experiments and calculations were conducted, providing more evidence in support of the analysis. In addition, it was found that dye molecules, which are necessary for dye lasers, are the primary contaminants in the LIC process. This explains the inevitable damage to dye cell windows.

18.
Sci Rep ; 14(1): 13351, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858542

RESUMO

To explore the clinicopathological characteristics and prognostic significance of casting-type calcification (CC) in patients with breast cancer presenting with microcalcification on mammography. Data on patients with invasive breast cancer who had mammographic calcification was retrospectively analyzed. The chi-square test was utilized to assess the clinicopathological characteristics of two forms of CC-related breast cancer. The examination of prognostic variables was conducted using Kaplan-Meier and Cox regression analyses. A total of 427 eligible patients were included in this study. Chi-square analysis indicated that the presence of CC was associated with estrogen receptor (ER) negativity (P = 0.005), progesterone receptor (PR) negativity (P < 0.001), and epidermal growth factor receptor 2 (HER-2) positivity (P < 0.001); among these, the association was stronger with the CC-predominant type. After a median follow-up of 82 months, those with CC had a worse 5-year recurrence-free survival (RFS) (77.1% vs. 86.9%, p = 0.036; hazard ratio [HR], 1.86; 95% confidence interval [CI] 1.04-3.31) and overall survival (OS) (84.0% vs. 94.4%, p = 0.007; HR, 2.99; 95% CI 1.34-6.65) rates. In COX regression analysis, such differences were still observed in HER-2 positive subgroups (RFS: HR: 2.45, 95% CI 1-5.97, P = 0.049; OS: HR: 4.53, 95% CI 1.17-17.52, P = 0.029). In patients with invasive breast cancer exhibiting calcifications on mammography, the presence of CC, especially the CC-predominant type, is linked to a higher frequency of hormone receptor negativity and HER-2 positivity. The presence of CC is associated with an unfavorable 5-year RFS and OS rates.


Assuntos
Neoplasias da Mama , Calcinose , Mamografia , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/complicações , Neoplasias da Mama/mortalidade , Feminino , Calcinose/patologia , Calcinose/diagnóstico por imagem , Pessoa de Meia-Idade , Prognóstico , Mamografia/métodos , Idoso , Estudos Retrospectivos , Adulto , Invasividade Neoplásica , Receptor ErbB-2/metabolismo , Estimativa de Kaplan-Meier , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Intervalo Livre de Doença
19.
ACS Nano ; 18(27): 17749-17763, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38935412

RESUMO

The rapid development of the SARS-CoV-2 vaccine has been used to prevent the spread of coronavirus 2019 (COVID-19). However, the ongoing and future pandemics caused by SARS-CoV-2 variants and mutations underscore the need for effective vaccines that provide broad-spectrum protection. Here, we developed a nanoparticle vaccine with broad protection against divergent SARS-CoV-2 variants. The corresponding conserved epitopes of the preexisting neutralizing (CePn) antibody were presented on a self-assembling Helicobacter pylori ferritin to generate the CePnF nanoparticle. Intranasal immunization of mice with CePnF nanoparticles induced robust humoral, cellular, and mucosal immune responses and a long-lasting immunity. The CePnF-induced antibodies exhibited cross-reactivity and neutralizing activity against different coronaviruses (CoVs). CePnF vaccination significantly inhibited the replication and pathology of SARS-CoV-2 Delta, WIV04, and Omicron strains in hACE2 transgenic mice and, thus, conferred broad protection against these SARS-CoV-2 variants. Our constructed nanovaccine targeting the conserved epitopes of the preexisting neutralizing antibodies can serve as a promising candidate for a universal SARS-CoV-2 vaccine.


Assuntos
Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , Epitopos , Nanopartículas , SARS-CoV-2 , Animais , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , Camundongos , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Nanopartículas/química , Vacinas contra COVID-19/imunologia , Epitopos/imunologia , Epitopos/química , Humanos , Anticorpos Antivirais/imunologia , Camundongos Transgênicos , Feminino , Camundongos Endogâmicos BALB C , Nanovacinas
20.
Colloids Surf B Biointerfaces ; 241: 114033, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38936033

RESUMO

Diabetes has become an increasingly serious global health crisis. Long-term hyperglycemia can lead to vascular and neurological disorders, thus deterring wound healing. Therefore, exploring treatment modalities for wounds in individuals with diabetes is clinically significant. Bletilla striata polysaccharide and bioactive natural polymers carbomer 940 and carboxymethyl chitosan (CMC) are cross-linked to form the Bletilla striata polysaccharide hydrogel (named CCHG/BSP). Upon characterization, we found that the hydrogel has a porous structure and good mechanical and moisture retention properties. A hemolysis test revealed that the hydrogel had high safety. Furthermore, the hydrogel effectively promoted proliferation and migration in mouse L929 fibroblasts. In back wounds inflicted in a streptozotocin-induced mouse model of diabetes, the CCHG/BSP hydrogel significantly promoted wound healing. Hematoxylin-eosin, Masson's trichrome, and immunohistochemical staining of tissues around the wound suggest that the mechanism underlying wound healing in diabetes may involve the promotion of angiogenesis, regulation of inflammation, and promotion of collagen regeneration. This provides a foundation for studies on and the development of new BSP pharmacotherapeutic products and the clinical application of its hydrogel dressing, and provide novel avenues for treating wounds in individuals with diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA