RESUMO
To investigate the prognostic value of systemic inflammation and insulin resistance in women with breast cancer with different body mass index (BMI). This multicenter, prospective study included 514 women with breast cancer. Multivariate survival analysis showed that patients with high C-reactive protein (CRP), high CRP to albumin ratio (CAR), high lymphocyte to CRP ratio (LCR), high low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (LHR), and high triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-c) were significantly associated with worse prognosis. The mortality rate of patients with both high CAR and high LHR or both low LCR and high LHR were 3.91-fold or 3.89-fold higher than patients with both low CAR and low LHR or both high LCR and low LHR, respectively. Furthermore, the combination of LCR and LHR significantly predicted survival in patients within the high BMI group. The CRP, CAR, LCR, LHR, and TG/HDL-c were associated with poor survival in women with breast cancer. The combination of CAR and LHR or LCR and LHR could better predict the prognostic outcomes of women with breast cancer, while the combination of LCR and LHR could better predict the prognosis of those patients with overweight or obese patients.
Assuntos
Neoplasias da Mama , Resistência à Insulina , Humanos , Feminino , Estudos Prospectivos , Índice de Massa Corporal , Prognóstico , Inflamação , Proteína C-Reativa/metabolismo , Triglicerídeos , HDL-ColesterolRESUMO
New approach methodologies (NAMs), especially omics-based high-throughput bioassays have been developed rapidly, providing rich mechanistic information such as molecular initiation events (MIEs) and (sub)cellular key events (KEs) in adverse outcome pathways (AOPs). However, how to apply the knowledge of MIEs/KEs to predict adverse outcomes (AOs) induced by chemicals represents a new challenge for computational toxicology. Here, an integrated method named ScoreAOP was developed and evaluated to predict chemicals' developmental toxicity for zebrafish embryos by integrating four related AOPs and dose-dependent reduced zebrafish transcriptome (RZT). The rules of ScoreAOP included 1) sensitivity of responsive KEs demonstrated by point of departure of KEs (PODKE), 2) evidence reliability and 3) distance between KEs and AOs. Moreover, eleven chemicals with different modes of action (MoAs) were tested to evaluate ScoreAOP. Results showed that eight of the eleven chemicals caused developmental toxicity at tested concentration in apical tests. All the tested chemicals' developmental defects were predicted using ScoreAOP, whereas eight out of the eleven chemicals predicted by ScoreMIE which was developed to score MIEs disturbed by chemicals based on in vitro bioassays data. Finally, in terms of mechanism explanation, ScoreAOP clustered chemicals with different MoAs while ScoreMIE failed, and ScoreAOP revealed the activation of aryl hydrocarbon receptor (AhR) plays a significant role in dysfunction of cardiovascular system, resulting in zebrafish developmental defects and mortality. In conclusion, ScoreAOP represents a promising approach to apply mechanism information obtained from omics to predict AOs induced by chemicals.
Assuntos
Rotas de Resultados Adversos , Desenvolvimento Embrionário , Peixe-Zebra , Animais , Cognição , Desenvolvimento Embrionário/efeitos dos fármacos , Reprodutibilidade dos Testes , Peixe-Zebra/embriologiaRESUMO
BACKGROUND: The life spans of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) patients have been extended in the era of antiretroviral therapy. However, few studies have considered the influence of the environment on the life expectancy of people living with HIV/AIDS. Several studies have investigated mortality and air pollution associations, but the evidence for associations between long-term exposure to particulate matter (PM) and mortality among HIV/AIDS patients remains extremely sparse. METHODS: We conceived a dynamic cohort study by enrolling people with HIV/AIDS from 103 counties in Hubei province, China from 2010 to 2019, with 23,809 persons and 78,457.2 person-years of follow-up. The county-level annual concentrations of PM2.5 and PM10 were extracted from the ChinaHighAirPollutants dataset. Cox proportional hazards models with time-varying exposures were conducted to assess the associations between PM and mortality. RESULTS: Per 1 µg/m3 increased in PM2.5 and PM10 would elevate 0.69 % (95 % CIs: 0.39, 1.00) and 0.39 % (95 % CIs: 0.18, 0.59) risk of all-cause deaths (ACD) and 1.65 % (95 % CIs: 1.14, 2.17) and 0.90 % (95 % CIs: 0.56, 1.24) of AIDS-related deaths (ARD), respectively. Significantly stronger associations of PM-ARD were found in patients aged over 60 years old, with corresponding excess risk of 2.66 % (95 % CIs: 1.76, 3.58) for PM2.5 and 1.62 (95 % CIs: 1.01, 2.23) for PM10. CONCLUSIONS: This study added to the existing evidence that long-term exposure to ambient PM adversely affects the life spans of HIV/AIDS patients. Hence, public health departments should take proactive measures to prevent further life loss and promote survival among those living with HIV/AIDS.
RESUMO
Excitons, Coulomb-bound electron-hole pairs, play a crucial role in both optical excitation and correlated phenomena in solids. When excitons interact with other quasiparticles, few- and many-body excited states can appear. Here we report an interaction between exciton and charges enabled by unusual quantum confinement in two-dimensional moiré superlattices, which results in many-body ground states composed of moiré excitons and correlated electron lattices. In an H-stacked (60o-twisted) WS2/WSe2 heterobilayer, we found an interlayer moiré exciton whose hole is surrounded by its partner electron's wavefunction distributed among three adjacent moiré traps. This three-dimensional excitonic structure enables large in-plane electrical quadrupole moments in addition to the vertical dipole. Upon doping, the quadrupole facilitates the binding of interlayer moiré excitons to the charges in neighbouring moiré cells, forming intercell charged exciton complexes. Our work provides a framework for understanding and engineering emergent exciton many-body states in correlated moiré charge orders.
RESUMO
Purpose: Previous studies have shown that both hand grip strength (HGS) and the modified Glasgow Prognostic Score (mGPS) are associated with poor clinical outcomes in patients with liver cancer. In spite of this, no relevant studies have been conducted to determine whether the combination of HGS and mGPS can predict the prognosis of patients with liver cancer. Accordingly, this study sought to explore this possibility. Methods: This was a multicenter study of patients with liver cancer. Based on the optimal HGS cutoff value for each sex, we determined the HGS cutoff values. The patients were divided into high and low HGS groups based on their HGS scores. An mGPS of 0 was defined as low mGPS, whereas scores higher than 0 were defined as high mGPS. The patients were combined into HGS-mGPS groups for the prediction of survival. Survival analysis was performed using Kaplan-Meier curves. A Cox regression model was designed and adjusted for confounders. To evaluate the nomogram model, receiver operating characteristic curves and calibration curves were used. Results: A total of 504 patients were enrolled in this study. Of these, 386 (76.6%) were men (mean [SD] age, 56.63 [12.06] years). Multivariate analysis revealed that patients with low HGS and high mGPS had a higher risk of death than those with neither low HGS nor high mGPS (hazard ratio [HR],1.50; 95% confidence interval [CI],1.14-1.98; p = 0.001 and HR, 1.55; 95% CI, 1.14-2.12, p = 0.001 respectively). Patients with both low HGS and high mGPS had 2.35-fold increased risk of death (HR, 2.35; 95% CI, 1.52-3.63; p < 0.001). The area under the curve of HGS-mGPS was 0.623. The calibration curve demonstrated the validity of the HGS-mGPS nomogram model for predicting the survival of patients with liver cancer. Conclusion: A combination of low HGS and high mGPS is associated with poor prognosis in patients with liver cancer. The combination of HGS and mGPS can predict the prognosis of liver cancer more accurately than HGS or mGPS alone. The nomogram model developed in this study can effectively predict the survival outcomes of liver cancer.
RESUMO
To examine the development of visual aesthetic sensitivity in students in China, 2,387 students from age 9 to age 22 (excluding ages 16-17) were tested by the Visual aesthetic Sensitivity Test-Revised. The development of visual aesthetic sensitivity across ages and genders, and the effect of artistic training on students' visual aesthetic sensitivity were examined. The data of primary school and junior middle school students were collected by paper tests completed collectively in class, while the data of university students were collected by distributing and collecting online. Result suggests that students' visual aesthetic sensitivity is relatively stable from age 9 to age 12 and increases at age 13. The visual aesthetic sensitivity of girls is significantly better than that of boys at age 15, 19, and 20 years of age. This study also found that artistic training improves students' visual aesthetic sensitivity.
RESUMO
Developing high-performance and low-cost electrocatalysts toward methanol oxidation reaction (MOR) is essential for fuel cell applications. Herein, we report a defect engineering strategy integrating amorphization and phosphorization to construct directly interconnected networks of amorphous NiCo-based metal-organic framework nanowires (a-NiCo-MOFNWs) with phosphorus (P) doping. The resulting P-doped a-NiCo-MOFNWs (a-NiCo-MOFNWs-P) network displays superior MOR efficiency and long-term durability over 1000 cyclic voltammetry (CV) measurements. The special structure of directly interconnected networks and the synergistic effect between the amorphous MOFs and dispersed phosphorus species give rise to abundant exposed active sites, accelerated electron transport, and increased porosity for mass transfer, thus boosting the reaction kinetics of MOR. This work provides additional insights into the network assembly and structural evolution of one-dimensional (1D) MOFs, and also opens up new avenues for the design of highly reactive and robust non-precious metal-based electrocatalysts.
RESUMO
Purpose: Ubiquitin-conjugating enzymes E2S (UBE2S) and E2C (UBE2C), which mediate the biological process of ubiquitination, have been widely reported in various cancers. Numb, the cell fate determinant and tumor suppressor, was also involved in ubiquitination and proteasomal degradation. However, the interaction between UBE2S/UBE2C and Numb and their roles in the clinical outcome of breast cancer (BC) are not widely elucidated. Methods: Oncomine, Cancer Cell Line Encyclopedia (CCLE), the Human Protein Atlas (HPA) database, qRT-PCR, and Western blot analyses were utilized to analyze UBE2S/UBE2C and Numb expression in various cancer types and their respective normal controls, breast cancer tissues, and breast cancer cell lines. The expression of UBE2S, UBE2C, and Numb in BC patients with different ER, PR, and HER2 status, grades, stages, and survival status was compared. By Kaplan-Meier plotter, we further evaluated the prognostic value of UBE2S, UBE2C, and Numb in BC patients. We also explored the potential regulatory mechanisms underlying UBE2S/UBE2C and Numb through overexpression and knockdown experiments in BC cell lines and performed growth and colony formation assays to assess cell malignancy. Results: In this study, we showed that UBE2S and UBE2C were overexpressed while Numb was downregulated in BC, and in BC of higher grade, stage, and poor survival. Compared to hormone receptor negative (HR-) BC cell lines or tissues, HR+ BC demonstrated lower UBE2S/UBE2C and higher Numb, corresponding to better survival. We also showed that increased UBE2S/UBE2C and reduced Numb predicted poor prognosis in BC patients, as well as in ER+ BC patients. In BC cell lines, UBE2S/UBE2C overexpression decreased the level of Numb and enhanced cell malignancy, while knocking down UBE2S/UBE2C demonstrated the opposite effects. Conclusion: UBE2S and UBE2C downregulated Numb and enhanced BC malignancy. The combination of UBE2S/UBE2C and Numb could potentially serve as novel biomarkers for BC.
RESUMO
The integrated optical isolator is an essential building block in photonic integrated chips. However, the performance of on-chip isolators based on the magneto-optic (MO) effect has been limited due to the magnetization requirement of permanent magnets or metal microstrips on MO materials. Here, an MZI optical isolator built on a silicon-on-insulator (SOI) without any external magnetic field is proposed. A multi-loop graphene microstrip operating as an integrated electromagnet above the waveguide, instead of the traditional metal microstrip, generates the saturated magnetic fields required for the nonreciprocal effect. Subsequently, the optical transmission can be tuned by varying the intensity of currents applied on the graphene microstrip. Compared with gold microstrip, the power consumption is reduced by 70.8%, and temperature fluctuation is reduced by 69.5% while preserving the isolation ratio of 29.44â dB and the insertion loss of 2.99â dB at1550 nm.
RESUMO
BACKGROUND: Changes in body composition and systemic inflammation are important characteristics of cancer cachexia. This multi-centre retrospective study aimed to explore the prognostic value of the combination of body composition and systemic inflammation in patients with cancer cachexia. METHODS: The modified advanced lung cancer inflammation index (mALI), which combines body composition and systemic inflammation, was defined as appendicular skeletal muscle index (ASMI) × serum albumin/neutrophil-lymphocyte ratio. The ASMI was estimated according to a previously validated anthropometric equation. Restricted cubic splines were used to evaluate the relationship between mALI and all-cause mortality in patients with cancer cachexia. Kaplan-Meier analysis and Cox proportional hazard regression analysis were used to evaluate the prognostic value of mALI in cancer cachexia. A receiver operator characteristic curve was used to compare the effectiveness of mALI and nutritional inflammatory indicators in predicting all-cause mortality in patients with cancer cachexia. RESULTS: A total of 2438 patients with cancer cachexia were enrolled, including 1431 males and 1007 females. The sex-specific optimal cut-off values of mALI for males and females were 7.12 and 6.52, respectively. There was a non-linear relationship between mALI and all-cause mortality in patients with cancer cachexia. Low mALI was significantly associated with poor nutritional status, high tumour burden, and high inflammation. Patients with low mALI had significantly lower overall survival (OS) than those with high mALI (39.5% vs. 65.5%, P < 0.001). In the male population, OS was significantly lower in the low mALI group than in the high group (34.3% vs. 59.2%, P < 0.001). Similar results were also observed in the female population (46.3% vs. 75.0%, P < 0.001). mALI was an independent prognostic factor for patients with cancer cachexia (hazard ratio [HR] = 0.974, 95% confidence interval [CI] = 0.959-0.990, P = 0.001). For every standard deviation [SD] increase in mALI, the risk of poor prognosis for patients with cancer cachexia was reduced by 2.9% (HR = 0.971, 95%CI = 0.943-0.964, P < 0.001) in males and 8.9% (HR = 0.911, 95%CI = 0.893-0.930, P < 0.001) in females. mALI is an effective complement to the traditional Tumour, Lymph Nodes, Metastasis (TNM) staging system for prognosis evaluation and a promising nutritional inflammatory indicator with a better prognostic effect than the most commonly used clinical nutritional inflammatory indicators. CONCLUSIONS: Low mALI is associated with poor survival in both male and female patients with cancer cachexia and is a practical and valuable prognostic assessment tool.
RESUMO
The metabolites from the endophytic fungus Muyocopron laterale hosted in the medicinal plant Tylophora ovata were investigated, and five undescribed xanthones, muyocoxanthones O-S, along with seven known compounds were isolated. Their structures were elucidated by HR-ESI-MS, NMR, and ECD calculations. Compounds were evaluated for their anti-cardiomyocyte oxidative damage activity using a model of oxidative damage induced by cell hypoxia incubation. Muyocoxanthones O-Q and blennolide L exhibited moderate activity against oxidative damage to cardiomyocytes with relative viabilities of 62.4, 54.8, 60.3 and 54.9%, respectively.
RESUMO
Crosslinked corn bran arabinoxylan (CLAX) is a food hydrocolloid that can be applied to improve the physicochemical and digestion properties of starch. However, the impact of CLAX with different gelling characteristics on starch properties remains elusive. Here, high cross-linked arabinoxylan (H-CLAX), moderate crosslinked arabinoxylan (M-CLAX), and low crosslinked arabinoxylan (L-CLAX) were fabricated to investigate their effects on the pasting, rheological, structural, and in vitro digestion property of corn starch (CS). The results showed that H-CLAX, M-CLAX, and L-CLAX differently increased the pasting viscosity and gel elasticity of CS, with H-CLAX exhibiting the greatest effect. The structural characterization of CS-CLAX mixtures showed that H-CLAX, M-CLAX, and L-CLAX differently enhanced the swelling power of CS and increased the hydrogen bonds between CS and CLAX. Furthermore, the addition of CLAX (especially H-CLAX) significantly reduced both the digestion rate and extent of CS, probably due to the increased viscosity and the formation of the amylose-polyphenol complex. This study provided new insights into the interaction between CS and CLAX, and could help to develop healthier foods with slow starch digestibility.
RESUMO
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, generates a serious threat to the health of the elderly. The AD brain is microscopically characterized by amyloid plaques and neurofibrillary tangles. There are still no effective therapeutic drugs to restrain the progression of AD though much attention has been paid to exploit AD treatments. Ferroptosis, a type of programmed cell death, has been reported to promote the pathological occurrence and development of AD, and inhibition of neuronal ferroptosis can effectively improve the cognitive impairment of AD. Studies have shown that calcium (Ca2+) dyshomeostasis is closely related to the pathology of AD, and can drive the occurrence of ferroptosis through several pathways, such as interacting with iron, and regulating the crosstalk between endoplasmic reticulum (ER) and mitochondria. This paper mainly reviews the roles of ferroptosis and Ca2+ in the pathology of AD, and highlights that restraining ferroptosis through maintaining the homeostasis of Ca2+ may be an innovative target for the treatment of AD.
RESUMO
Purpose: To investigate differences in outflow facility between angiographically determined high- and low-flow segments of the conventional outflow pathway in porcine eyes. Methods: Porcine anterior segments (n = 14) were mounted in a perfusion chamber and perfused using Dulbecco's phosphate buffered solution with glucose. Fluorescein angiography was performed to determine high- and low-flow regions of the conventional outflow pathways. The trabecular meshwork (TM) was occluded using cyanoacrylate glue, except for residual 5-mm TM areas that were either high or low flow at baseline, designating these eyes as "residual high-flow" or "residual low-flow" eyes. Subsequently, outflow was quantitatively reassessed and compared between residual high-flow and residual low-flow eyes followed by indocyanine green angiography. Results: Fluorescein aqueous angiography demonstrated high-flow and low-flow regions. Baseline outflow facilities were 0.320 ± 0.08 and 0.328 ± 0.10 µL/min/mmHg (P = 0.676) in residual high-flow and residual low-flow eyes before TM occlusion, respectively. After partial trabecular meshwork occlusion, outflow facility decreased to 0.209 ± 0.07 µL/min/mmHg (-32.66% ± 19.53%) and 0.114 ± 0.08 µL/min/mmHg (-66.57% ± 23.08%) in residual high- and low-flow eyes (P = 0.035), respectively. There was a significant difference in the resulting IOP increase (P = 0.034). Conclusions: Angiographically determined high- and low-flow regions in the conventional outflow pathways differ in their segmental outflow facility; thus, there is an uneven distribution of local outflow facility across different parts of the TM.
Assuntos
Humor Aquoso , Olho , Pressão Intraocular , Animais , Humor Aquoso/metabolismo , Angiografia por Tomografia Computadorizada , Olho/irrigação sanguínea , Olho/diagnóstico por imagem , Verde de Indocianina , Microscopia Confocal , Perfusão/métodos , Perfusão/veterinária , Suínos , Malha Trabecular/diagnóstico por imagem , Malha Trabecular/metabolismoRESUMO
Introduction: In this study, Poly (trimethylene carbonate)/Doxycycline hydrochloride (PTMC/DH) films were introduced to repair the Achilles tendon defects for the first time. Methods: (PTMC/DH) films with different DH content of 10, 20, and 30% (w/w) were prepared by solvent casting. The in vitro and in vivo drug release of the prepared PTMC/DH films was investigated. Results: The results of drug release experiments showed that the PTMC/DH films released effective concentrations of doxycycline for more than 7 and 28 days in vitro and in vivo, respectively. The results of antibacterial activity experiments showed diameters of 25.00 ± 1.00 mm, 29.33 ± 1.15 mm, and 34.67 ± 1.53 mm, respectively, for the inhibition zones produced by the release solutions of PTMC/DH films with 10, 20 and 30% (w/w) DH at 2 h, indicating that the drug-loaded films could inhibit Staphylococcus aureus well. After treatment, the Achilles tendon defects have recovered well, as indicated by the more robust biomechanical properties and the lower fibroblast density of the repaired Achilles tendons. Pathology revealed that the pro-inflammatory cytokine, IL-1ß, and the anti-inflammatory factor, TGF-ß1, peaked in the first three days and gradually decreased as the drug was released more slowly. Discussion: These results demonstrated that the PTMC/DH films have great potential for regenerating Achilles tendon defects.
RESUMO
Purpose: Inflammatory myofibroblastic tumor (IMT) is a rare mesenchymal malignancy that occurs primarily in children and adolescents. The clinical and pathological features of IMT in adult patients are not well understood. Materials and Methods: We retrospectively searched for records of adult patients with IMT at Fudan University Shanghai Cancer Center from 2006 to 2021. Clinicopathological data, treatments, and outcomes were collected and analyzed. Results: Thirty adult patients with IMT, mostly women (60.0%), were included. The median age of the patients was 38 (21-77). The most common primary site was abdominopelvic region (53.3%), followed by lungs (20.0%). Seven patients had an abdominal epithelioid inflammatory myofibroblast sarcoma (EIMS). The positivity rate of anaplastic lymphoma kinase (ALK) was 81.5% (22/27). Sixteen patients with advanced ALK-positive disease received crizotinib, with an ORR of 81.3% and a disease control rate of 87.5%. The median PFS was 20.8 months. EIMS was associated with more aggressive behavior; however, the prognosis was similar to that of non-EIMS patients after treatment with an ALK inhibitor. At a median follow-up time of 30 months (95%CI 13.6-46.4), the 5-year overall survival was 77% (95% CI 66-88%) in all patients. Conclusion: Adult IMTs appeared more aggressive, with a higher incidence of recurrence and metastases, and patients with EIMS had more aggressive cases. Treatment with ALK inhibitors resulted in a high ORR and a durable response, which suggested that ALK inhibitors could be used as a first-line treatment option in adult patients with ALK-positive advanced IMT.
RESUMO
BACKGROUND: Autophagic flux is coordinated by a network of master regulatory genes, which centered on transcription factor EB (TFEB). The disorders of autophagic flux are closely associated with Alzheimer's disease (AD), and thus restoring autophagic flux to degrade pathogenic proteins has become a hot therapeutic strategy. Hederagenin (HD), a triterpene compound, isolated from a variety food such as Matoa (Pometia pinnata) Fruit, Medicago sativa, Medicago polymorpha L. Previous studies have shown that HD has the neuroprotective effect. However, the effect of HD on AD and underlying mechanisms are unclear. PURPOSE: To determine the effect of HD on AD and whether it promotes autophagy to reduce AD symptoms. STUDY DESIGN: BV2 cells, C. elegans and APP/PS1 transgenic mice were used to explore the alleviative effect of HD on AD and the molecular mechanism in vivo and in vitro. METHODS: The APP/PS1 transgenic mice at 10 months were randomized into 5 groups (n = 10 in each group) and orally administrated with either vehicle (0.5% CMCNa), WY14643 (10 mg/kg/d), low-dose of HD (25 mg/kg/d), high-dose of HD (50 mg/kg/d) or MK-886 (10 mg/kg/d) + HD (50 mg/kg/d) for consecutive 2 months. The behavioral experiments including morris water maze test, object recognition test and Y maze test were performed. The effects of HD on Aß deposition and alleviates Aß pathology in transgenic C. elegans were operated using paralysis assay and fluorescence staining assay. The roles of HD in promoting PPARα/TFEB-dependent autophagy were investigated using the BV2 cells via western blot analysis, real-time quantitative PCR (RT-qPCR), molecular docking, molecular dynamic (MD) simulation, electron microscope assay and immunofluorescence. RESULTS: In this study, we found that HD upregulated mRNA and protein level of TFEB and increased the distribution of TFEB in the nucleus, and the expressions of its target genes. HD also promoted the expressions of LC3BII/LC3BI, LAMP2, etc., and promoted autophagy and the degradation of Aß. HD reduced Aß deposition in the head area of C. elegans and Aß-induced paralysis. HD improved cognitive impairment and pathological changes in APP/PS1 mice by promoting autophagy and activating TFEB. And our results also showed that HD could strongly target PPARα. More importantly, these effects were reversed by treatment of MK-886, a selective PPARα antagonist. CONCLUSION: Our present findings demonstrated that HD attenuated the pathology of AD through inducing autophagy and the underlying mechanism associated with PPARα/TFEB pathway.