Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.916
Filtrar
1.
Gene ; 764: 145106, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32889059

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are a new class of non-coding RNA with a stable structure formed by special loop splicing. Research increasingly suggests that circRNAs play a vital role in the pathogenesis and progression of various diseases. However, the roles of circRNAs in osteoblast differentiation under microgravity remain largely unknown. Here, we investigated the roles and mechanobiological response of circRNAs in osteoblasts under simulated microgravity. METHODS: Differential circRNA and mRNA expression profiles of MC3T3-E1 cells during exposure to microgravity were screened by RNA transcriptome sequencing technology (RNA-seq). The selected RNAs were validated using quantitative real-time polymerase chain reaction (qRT-PCR). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied for gene function analyses. RESULTS: A total of 427 circRNAs and 1912 mRNAs were differentially expressed along with osteogenic differentiation in the simulated microgravity group (SMG) compared to the control group (CON). Of these, 232 circRNAs and 991 mRNAs were upregulated, whereas 95 circRNAs and 921 mRNAs were downregulated (fold change ≥ 2, p < 0.05). The results showed that the parental genes of circRNAs and mRNAs were mainly enriched in anatomical structure morphogenesis, anchoring junction and protein binding. KEGG analysis results showed that the differentially expressed mRNAs were enriched in the regulation of the actin cytoskeleton, focal adhesion, and Ras signalling pathway. Subsequently, 9 core regulatory genes, including 6 mRNAs and 3 circRNAs, were identified based on their possible function in osteoblast differentiation. Based on this analysis, circ_014154 was selected as the target circRNA, which likely plays important roles in osteogenic differentiation processes under microgravity. The circRNA-miRNA-mRNA network showed that circRNAs might act as miRNA sponges to regulate osteoblast differentiation. CONCLUSION: By presenting a better understanding of the molecular mechanisms of genes and circRNAs in simulated microgravity, the present study will provide a novel view of circRNAs in the regulation of osteogenic differentiation and bone formation.

2.
JCI Insight ; 5(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33004689

RESUMO

There is no cure for the more than 270 million people chronically infected with HBV. Nucleos(t)ide analogs (NUCs), the mainstay of anti-HBV treatment, block HBV reverse transcription. NUCs do not eliminate the intranuclear covalently closed circular DNA (cccDNA), from which viral RNAs, including pregenomic RNA (pgRNA), are transcribed. A key gap in designing a cure is understanding how NUCs affect HBV replication and transcription because serum markers yield an incomplete view of intrahepatic HBV. We applied single-cell laser capture microdissection and droplet digital PCR to paired liver biopsies collected from 5 HBV/HIV-coinfected persons who took NUCs over 2-4 years. From biopsy 1 to 2, proportions of HBV-infected hepatocytes declined with adherence to NUC treatment (P < 0.05); we extrapolated that eradication of HBV will take over 10 decades with NUCs in these participants. In individual hepatocytes, pgRNA levels diminished 28- to 73-fold during NUC treatment, corresponding with decreased tissue HBV core antigen staining (P < 0.01). In 4 out of 5 participants, hepatocytes with cccDNA but undetectable pgRNA (transcriptionally inactive) were present, and these were enriched in 3 participants during NUC treatment. Further work to unravel mechanisms of cccDNA transcriptional inactivation may lead to therapies that can achieve this in all hepatocytes, resulting in a functional cure.

3.
Biochim Biophys Acta Mol Basis Dis ; : 165957, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33031905

RESUMO

Breast cancer is the most common cancer affecting women and one of the leading causes of cancer-related deaths worldwide. In existing studies, some long non-coding RNAs (lncRNAs) are considered to have important regulatory roles in the development of cancers. However, the pathogenic significance of LINC00511 in breast cancer is unclear. In this study, LINC00511 was significantly up-regulated in breast cancer, and its expression level was correlated to poor prognosis of patients with breast cancer. To further study the role of LINC00511 in breast cancer, we knocked down the expression of LINC00511 using siRNAs. Cells transfected with siRNA-2 proliferated, and its metastasis was suppressed. RNA-seq analysis revealed 182 potential targets for LINC00511. The in-silico analysis revealed that differently expressed genes were closely related to signaling mediated by p38-alpha and p38-beta. Subcellular localization showed that LINC00511 was mainly located in the cytoplasm, and knocking down the LINC00511 gene could down-regulate the expression of MMP13. Using bioinformatics analysis combined with dual-luciferase report assay, we finally determined that miR-150 was the direct target of LINC00511. The dual-luciferase report assays also showed that MMP13 was the target of miR-150. LINC00511 knockdown significantly reduced MMP13 protein levels, and miR-150 gene knockdown significantly rescued the down-regulation of MMP13 caused by LINC00511 gene silencing. Moreover, silencing MMP13 and overexpression of miR-150 could reduce the proliferation of breast cancer cells. In conclusion, our data show that LINC00511 is a breast cancer promoter, and the LINC00511/miR-150/MMP13 axis may be a new therapeutic strategy for breast cancer patients.

4.
Anim Biotechnol ; : 1-8, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33034237

RESUMO

Muscle growth rate and muscle mass are important economic traits in animal production. Musculoskeletal embryonic nuclear protein 1 (MUSTN1) gene has been implicated in myofusion as well as skeletal muscle growth and repair; however, the exact role and expression of MUSTN1 in different duck breeds are not fully understood. To gain insights into the biological functions of MUSTN1 in skeletal muscle development, the MUSTN1 coding sequence of Pekin ducks (BD) and Cherry Valley ducks (CD) was compared to various other animals using the Editseq in DNAstar and MEGA software. The results showed that the duck had the highest homology with chicken. The RT-qPCR and western blot were performed to estimate the mRNA and protein expression pattern of MUSTN1 in leg muscles of BD and CD at 3 and 6-weeks of age. At 3 weeks of age, the mRNA and protein expression levels of MUSTN1 were significantly higher in BD than in CD (p < 0.05). At 6 weeks, the expression level was higher in BD than in CD. In conclusion, MUSTN1 might play a key role in positive regulation of muscle growth and development of ducks.

5.
J Basic Microbiol ; 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33022788

RESUMO

The application of natural preservatives has become an attractive method for controlling postharvest decay of fruits and vegetables. Allicin, the main active ingredient of allium plants, has broad-spectrum antifungal activity. However, the unstable properties of allicin limit its wide application. In this study, 1-[(R)-ethylsulfinyl]sulfanylethane, a structurally stable derivative of allicin, was used to explore its antifungal activity and potential mechanism on the expansion of Penicillium expansum. We demonstrated the antifungal activity of 1-[(R)-ethylsulfinyl]sulfanylethane through in vitro antifungal experiments. At the concentration is 2 mg/L, 1-[((R)-ethylsulfinyl]sulfanyl]ethane can completely inhibit spore germination and mycelial growth, whereas the concentration of allicin needs to reach 16 mg/L. Fungal Biochemical assay indicated that decrease of mitochondrial membrane potential, overgeneration of reactive oxygen species, decrease of adenosine triphosphate and glutathione content, increase of superoxide dismutase, catalase, and malondialdehyde content. The results revealed that 1-[(R)-ethylsulfinyl]sulfanylethane induced mitochondrial dysfunction and oxidative stress in P. expansum. Due to its excellent antifungal activity, 1-[((R)-ethylsulfinyl]sulfanyl]ethane might be developed as a substitute for fungicides against P. expansum in postharvest fruit storage.

6.
Cell Oncol (Dordr) ; 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33006750

RESUMO

PURPOSE: Stemming from a myriad of genetic and epigenetic alterations, triple-negative breast cancer (TNBC) is tied to poor clinical outcomes and aspires for individualized therapies. Here we investigated the therapeutic potential of co-inhibiting integrin-dependent signaling pathway and BRD4, a transcriptional and epigenetic mediator, for TNBC. METHODS: Two independent patient cohorts were subjected to bioinformatic and IHC examination for clinical association of candidate cancer drivers. The efficacy and biological bases for co-targeting these drivers were interrogated using cancer cell lines, a protein kinase array, chemical inhibitors, RNAi/CRISPR/Cas9 approaches, and a 4 T1-Balb/c xenograft model. RESULTS: We found that amplification of the chromosome 8q24 region occurred in nearly 20% of TNBC tumors, and that it coincided with co-upregulation or amplification of c-Myc and FAK, a key effector of integrin-dependent signaling. This co-upregulation at the mRNA or protein level correlated with a poor patient survival (p < 0.0109 or p < 0.0402, respectively). Furthermore, we found that 14 TNBC cell lines exhibited high vulnerabilities to the combination of JQ1 and VS-6063, potent pharmacological antagonists of the BRD4/c-Myc and integrin/FAK-dependent pathways, respectively. We also observed a cooperative inhibitory effect of JQ1 and VS-6063 on tumor growth and infiltration of Ly6G+ myeloid-derived suppressor cells in vivo. Finally, we found that JQ1 and VS-6063 cooperatively induced apoptotic cell death by altering XIAP, Bcl2/Bcl-xl and Bim levels, impairing c-Src/p130Cas-, PI3K/Akt- and RelA-associated signaling, and were linked to EMT-inducing transcription factor Snail- and Slug-dependent regulation. CONCLUSION: Based on our results, we conclude that the BRD4/c-Myc- and integrin/FAK-dependent pathways act in concert to promote breast cancer cell survival and poor clinical outcomes. As such, they represent promising targets for a synthetic lethal-type of therapy against TNBC.

7.
PLoS One ; 15(10): e0240223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052930

RESUMO

The Aedes aegypti mosquito plays an important role in the spread of diseases, including epidemic ones, such as dengue fever, Zika virus disease, yellow fever, and chikungunya disease. To control the population of Ae.aegypti, we transferred an HR3 RNAi fragment into the microalgae Chlamydomonas, which serves as food for Ae.aegypti larvae. Results showed that the HR3 RNAi transgenic algal strains were lethal to Ae.aegypti. The integumentary system of larvae fed with HR3 RNAi transgenic algal strains was severely damaged. Muscles of the larvae were unevenly distributed and disordered, and their midgut showed disintegration of the intestinal cavity. RNA-Seq results demonstrated that on the 4th day of inoculation with the transgenic algae, the abundance of early expressed genes in the 20E signal transduction pathway of larvae fed with the HR3 RNAi transgenic algal strain significantly reduced. These genes include E74, E75, E93, and 20E receptor complex EcR/USP and FTZ-F1 gene regulated by HR3. In later experiments, a scale test of 300 Ae.aegypti eggs per group was carried out for 30 days, and the survival rate of Ae.aegypti fed with the HR3 RNAi transgenic strain was only 1.3%. These results indicate that the HR3 RNAi transgenic strain exerts obvious insecticidal effect.

8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 28(5): 1661-1667, 2020 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-33067970

RESUMO

OBJECTIVE: To investigate the expression of IL-9 and IL-6 in patients with BCR-ABL- bone marrow proli- ferative tumor (MPN), and to explore its role in the occurrence and development of MPN. METHODS: A total of 71 newly diagnosis MPN patients treated in Tianjin Medical University General Hospital from 2018 to 2019 were selected, including 32 patients with polycythemia vera (PV) and 22 patients with primary thrombocytosis (ET), and 17 patients with primary myelofibrosis (PMF). Then 58 patients who retestine after treatment were selected as therapy group,and 20 healthy volunteers were recruited as control group. ELISA was used to detect the expression level of IL-6 and IL-9 in bone marrow supernatant, and the relative expression level of IL-6 and IL-9 mRNA in BMMNC was detected by real-time PCR. The proportion of Th9 cells in peripheral blood were detected by flow cytometry (FCM). The expression level of IL-6 mRNA and IL-9 mRNA of BMMNC and clinical indicators were analyzed, and the correlation between JAK2 gene mutation load and IL-9 level was further analyzed. RESULT: The level of IL-6 in bone marrow supernatant and the expression of IL-6 mRNA in BMMNC were higher in the newly diagnosed group as compared with those in the treated group and the control group (P<0.001). The expression level of IL-9 in bone marrow supernatant and the expression of IL-9 mRNA in BMMNC were lower in the newly diagnosed group as compared with those in the treated group and the control group (P<0.05). The proportion of Th9 cells in peripheral blood was lower in the newly diagnosed group as compared with that in the treated group and the control group (P<0.001). The level of IL-6 in bone marrow supernatant and the expression of IL-6 mRNA in BMMNC in JAK2+ group were higher than those in JAK2- group (P<0.05). The expression level of IL-9 in bone marrow supernatant and the expression of IL-9 mRNA in BMMNC were lower in JAK2+ group as compared with those in JAK2- group (P<0.05). The expression of IL-6 and IL-9 in the patient group showed correlation with the number of lymphocytes (IL-6: r=-0.49, P<0.01; IL-9: r=0.53, P<0.001), and also related with Hb in PV patients (IL-6: r= 0.87, P<0.001; IL-9: r=-0.54, P<0.01), and platelets in ET patients (IL-6: r=0.64, P<0.05; IL-9: r=-0.46, P<0.05). CONCLUSION: The increased expression of IL-6 in MPN and hyperfunction may promote the progression of BCR-ABL- MPN disease. The expression of IL-9 in MPN decreases, and it negatively correlates with the mutation load of JAK2 gene, which may be related with the decrease of tumor environmental antitumor immune effect.

9.
Med Sci Monit ; 26: e926631, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33035202

RESUMO

BACKGROUND This study aimed to investigate the therapeutic and prognostic effects of percutaneous transforaminal endoscopic decompression (PTED) for degenerative lumbar spinal stenosis (DLSS). MATERIAL AND METHODS One hundred eighty-eight patients with DLSS were randomly divided into the fenestration and the PTED group for decompression treatment. Operative time, incision length, amount of blood loss, length of hospitalization, and rates of complications in the 2 groups were compared. All patients underwent computed tomography (CT) scanning and magnetic resonance imaging (MRI) on the first postoperative day. All patients were assessed preoperatively and the treatment effects at 3, 6, and 12 months postoperatively were evaluated using visual analog scale (VAS), Japanese Orthopedic Association Score (JOA) and Oswestry Disability Index (ODI). The modified MacNab criteria were used to assess patient satisfaction 1 year after surgery at the last follow-up. RESULTS Patients who underwent PTED had shorter incisions, less blood loss, and shorter hospital stays than those in the fenestration group, but operative times and complication rates were similar in the 2 groups. Moreover, CT scanning and MRI revealed similar treatment effects in the 2 groups. Compared with preoperative status, improvements in VAS, ODI, and JOA scores occurred at different times after surgery in the 2 groups. In particular, all 3 scores in the PTED group were higher than those in the fenestration group at 3 and 6 months postoperatively. There were no significant differences in MacNab scores between the 2 groups. CONCLUSIONS PTED is safer and more effective than traditional fenestration for management of DLSS.

10.
Chem Biol Interact ; : 109271, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33002461

RESUMO

3,17ß-Hydroxysteroid dehydrogenase in Comamonas testosteroni (C. testosteroni) is a key enzyme involved in the degradation of steroid compounds. Recently, we found that LuxR is a negative regulator in the expression of the 3,17ß-HSD gene. In the present work, we cultured wild-type and LuxR knock-out mutants of C. testosteroni with inducers such as testosterone, estradiol, progesterone or estrone. HPLC analysis showed that the degradation activities towards testosterone, estradiol, progesterone, and estrone by C.T.-LuxR-KO1 were increased by 7.1%, 9.7%, 11.9% and 3.1%, respectively compared to the wild-type strain. Protein conformation of LuxR was predicted by Phyre 2 Server software, where the N-terminal 86(Ile), 116(Ile), 118(Met) and 149(Phe) residues form a testosterone binding hydrophobic pore, while the C-terminus forms the DNA binding site (HTH). Further, luxr point mutant plasmids were prepared by PCR and co-transformed with pUC3.2-4 into E. coli HB101. ELISA was used to determine 3,17ß-HSD expression after testosterone induction. Compared to wild-type luxr, 3,17ß-HSD expression in mutants of I86T, I116T, M118T and F149S were decreased. The result indicates that testosterone lost its capability to bind to LuxR after the four amino acid residues had been exchanged. No significant changes of 3,17ß-HSD expression were found in K354I and Y356 N mutants compared to wild-type luxr, which indicates that these two amino acid residues in LuxR might relate to DNA binding. Native LuxR protein was prepared from inclusion bodies using sodium lauroylsarcosinate. Molecular interaction experiments showed that LuxR protein binds to a nucleotides fragment which locates 87 bp upstream of the ßhsd promoter. Our results revealed that steroid induction of 3,17ß-HSD in C. testosteroni in fact appears to be a de-repression, where testosterone prevents the LuxR regulator protein binding to the 3,17ß-HSD promoter domain.

11.
Nucleic Acids Res ; 2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33010163

RESUMO

RNA endowed with both protein-coding and noncoding functions is referred to as 'dual-function RNA', 'binary functional RNA (bifunctional RNA)' or 'cncRNA (coding and noncoding RNA)'. Recently, an increasing number of cncRNAs have been identified, including both translated ncRNAs (ncRNAs with coding functions) and untranslated mRNAs (mRNAs with noncoding functions). However, an appropriate database for storing and organizing cncRNAs is still lacking. Here, we developed cncRNAdb, a manually curated database of experimentally supported cncRNAs, which aims to provide a resource for efficient manipulation, browsing and analysis of cncRNAs. The current version of cncRNAdb documents about 2600 manually curated entries of cncRNA functions with experimental evidence, involving more than 2,000 RNAs (including over 1300 translated ncRNAs and over 600 untranslated mRNAs) across over 20 species. In summary, we believe that cncRNAdb will help elucidate the functions and mechanisms of cncRNAs and develop new prediction methods. The database is available at http://www.rna-society.org/cncrnadb/.

12.
J Am Chem Soc ; 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33035057

RESUMO

Since its discovery in 1938, hydroformylation has been thoroughly investigated and broadly applied in industry (>107 metric ton yearly). However, the ability to precisely control its regioselectivity with well-established Rh- or Co-catalysts has thus far proven elusive, thereby limiting access to many synthetically valuable aldehydes. Pd-catalysts represent an appealing alternative, yet their use remains sparse due to undesired side-processes. Here, we report a highly selective and exceptionally active catalyst system that is driven by a novel activation strategy and features a unique Pd(I)-Pd(I) mechanism, involving an iodide-assisted binuclear step to release the product. This method enables ß-selective hydroformylation of a large range of alkenes and alkynes, including sensitive starting materials. Its utility is demonstrated in the synthesis of antiobesity drug Rimonabant and anti-HIV agent PNU-32945. In a broader context, the new mechanistic understanding enables the development of other carbonylation reactions of high importance to chemical industry.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33036989

RESUMO

Pseudomonas fluorescens 2P24 is a rhizosphere bacterium that protects many crop plants against soil-borne diseases caused by phytopathogens. The PcoI/PcoR quorum-sensing (QS) system and polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are particularly relevant to the strain's biocontrol potential. In this study, we investigated the effects of the c-di-GMP on the biocontrol activity of strain 2P24. The expression of the Escherichia coli diguanylate cyclase (YedQ) and phosphodiesterase (YhjH) in P. fluorescens 2P24 significantly increased and decreased the cellular concentration of c-di-GMP, respectively. The production of the QS signal N-acyl homoserine lactones (AHLs) and 2,4-DAPG were negatively regulated by c-di-GMP in 2P24. The regulatory proteins RsmA and RsmE were positively regulated by c-di-GMP. Genomic analysis revealed that 2P24 has 23 predicted proteins that contain c-di-GMP synthesizing or degrading domains. Among these proteins, C0J56_12915, C0J56_13325, and C0J56_27925 contributed to the production of c-di-GMP, and were also involved in the regulation of the QS signal and antibiotic 2,4-DAPG production in P. fluorescens Overexpression of C0J56_12915, C0J56_13325, and C0J56_27925 in 2P24 impaired its root colonization and biocontrol activities. Taken together, these results demonstrated that c-di-GMP played an important role in fine-tuning of the biocontrol traits of P. fluorescens Importance In various bacteria, the bacterial second messenger c-di-GMP influences a wide range of cellular processes. However, the function of c-di-GMP on biocontrol traits in the plant-beneficial rhizobacteria remains largely unclear. The present work shows that the QS system and polyketide antibiotic 2,4-DAPG production are regulated by c-di-GMP through RsmA and RsmE proteins in P. fluorescens 2P24. The diguanylate cyclases (DGCs) C0J56_12915, C0J56_13325, and C0J56_27925 are specially involved in regulating the biocontrol traits of 2P24. Our work also demonstrated a connection between the Gac/Rsm cascade and the c-di-GMP signaling pathway in P. fluorescens.

14.
Chem Pharm Bull (Tokyo) ; 68(10): 962-970, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32999148

RESUMO

Oleanolic and ursolic acids were used as lead compounds to synthesize a series of pentacyclic triterpenoid derivatives bearing ethylenediamine, butanediamine, or hexanediamine groups at the C-3 position. The potential antiproliferative activity of these compounds was examined in A549 (human non-small cell lung cancer cells), MCF-7 (human breast cancer cells), and HeLa (human cervical carcinoma cells) cells. Methyl 3ß-O-[4-(2-aminoethylamino)-4-oxo-butyryl]olean-12-ene-28-oate (DABO-Me) was identified as a promising antiproliferative agent in vitro and in vivo. DABO-Me strongly suppressed the proliferation of A549, MCF-7, and HeLa cells (IC50 = 4-7 µM). In MCF-7 cells, DABO-Me upregulated the pro-apoptotic protein Bax, downregulated the anti-apoptotic protein Bcl-2, promoted the release of cytochrome c, and activated caspase-3/9. Transwell and flow cytometry assays showed that DABO-Me inhibited MCF-7 cell proliferation, migration, and invasion, and induced apoptosis and S phase arrest. In vitro and in vivo experiments indicated that DABO-Me inhibited MCF-7 cell proliferation and suppressed tumor growth. Taken together, these results indicate that DABO-Me could be developed as an effective antitumor drug.

15.
Elife ; 92020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001025

RESUMO

Aberrant HOXA9 expression is a hallmark of most aggressive acute leukemias, notably those with KMT2A (MLL) gene rearrangements. HOXA9 overexpression not only predicts poor diagnosis and outcome but also plays a critical role in leukemia transformation and maintenance. However, our current understanding of HOXA9 regulation in leukemia is limited, hindering development of therapeutic strategies. Here, we generated the HOXA9-mCherry knock-in reporter cell lines to dissect HOXA9 regulation. By utilizing the reporter and CRISPR/Cas9 screens, we identified transcription factors controlling HOXA9 expression, including a novel regulator, USF2, whose depletion significantly down-regulated HOXA9 expression and impaired MLLr leukemia cell proliferation. Ectopic expression of Hoxa9 rescued impaired leukemia cell proliferation upon USF2 loss. Cut&Run analysis revealed the direct occupancy of USF2 at HOXA9 promoter in MLLr leukemia cells. Collectively, the HOXA9 reporter facilitated the functional interrogation of the HOXA9 regulome and has advanced our understanding of the molecular regulation network in HOXA9-driven leukemia.

16.
Eur Radiol ; 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001309

RESUMO

OBJECTIVES: To apply deep learning algorithms using a conventional convolutional neural network (CNN) and a recurrent CNN to differentiate three breast cancer molecular subtypes on MRI. METHODS: A total of 244 patients were analyzed, 99 in training dataset scanned at 1.5 T and 83 in testing-1 and 62 in testing-2 scanned at 3 T. Patients were classified into 3 subtypes based on hormonal receptor (HR) and HER2 receptor: (HR+/HER2-), HER2+, and triple negative (TN). Only images acquired in the DCE sequence were used in the analysis. The smallest bounding box covering tumor ROI was used as the input for deep learning to develop the model in the training dataset, by using a conventional CNN and the convolutional long short-term memory (CLSTM). Then, transfer learning was applied to re-tune the model using testing-1(2) and evaluated in testing-2(1). RESULTS: In the training dataset, the mean accuracy evaluated using tenfold cross-validation was higher by using CLSTM (0.91) than by using CNN (0.79). When the developed model was applied to the independent testing datasets, the accuracy was 0.4-0.5. With transfer learning by re-tuning parameters in testing-1, the mean accuracy reached 0.91 by CNN and 0.83 by CLSTM, and improved accuracy in testing-2 from 0.47 to 0.78 by CNN and from 0.39 to 0.74 by CLSTM. Overall, transfer learning could improve the classification accuracy by greater than 30%. CONCLUSIONS: The recurrent network using CLSTM could track changes in signal intensity during DCE acquisition, and achieved a higher accuracy compared with conventional CNN during training. For datasets acquired using different settings, transfer learning can be applied to re-tune the model and improve accuracy. KEY POINTS: • Deep learning can be applied to differentiate breast cancer molecular subtypes. • The recurrent neural network using CLSTM could track the change of signal intensity in DCE images, and achieved a higher accuracy compared with conventional CNN during training. • For datasets acquired using different scanners with different imaging protocols, transfer learning provided an efficient method to re-tune the classification model and improve accuracy.

17.
Bioorg Chem ; 104: 104314, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33011538

RESUMO

Small molecule accurate recognition technology (SMART) is an emerging method for the rapid structural prediction of major constituents from crude extracts and fractions. In the present study, a targeted isolation of an Elephantopus scaber extract by SMART resulted in the obtention of 15 new (1-15) and five known germacranolide sesquiterpenes (16-20). Their structures were assigned by extensively analyzing HRESIMS, NMR, X-ray crystallographic analyses, modified Mosher's method results, and quantum chemical calculate electronic circular dichroism (ECD) spectra. All germacranolide sesquiterpenes were screened to determine their inhibitory effects with two hepatoma cell lines (HepG2 and Hep3B), and compounds 14, 16, 18, 19 and 20 showed significant cytotoxic activities against the HepG2 (IC50, 3.3-9.9 µM) and Hep3B (IC50, 4.5-8.6 µM) cell lines. Further study suggested that 18 can induce the apoptosis of hepatoma cells via mitochondrial dysfunction.

18.
Gene ; : 145194, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007376

RESUMO

The low laying performance of geese seriously damages the growth of the poultry industry, and is related to the development of pre- hierarchical follicles. Our previous studies have revealed that FAR1 and TGFBRAP1 were involved in follicular development, but the exact regulation mechanism still kept unclear. In recent studies, the expression of FAR1 and TGFBRAP1 mRNA were detected, and we found that their expression levels were relatively higher in hierarchical follicles than in pre-hierarchical follicles (P < 0.05). Moreover, generally the level of FAR1 and TGFBRAP1 mRNA gradually increased in hierarchical follicles. In addition, the proliferation and apoptosis of granulosa cells were assayed with overexpression or knockdown technology. The results showed that by the knockdown of FAR1 mRNA level, the proliferation rate of follicular granulosa cells increased significantly, the apoptosis rate decreased (P < 0.05), and the apoptosis rate also reduced obviously by transfecting TGFBRAP1-siRNA (P < 0.05). Finally, the overexpression of FAR1 or TGFBRAP1 resulted in the inhabitation to the secretion of E2 and P4 in granulosa cells, while the knockdown of FAR1 or TGFBRAP1 enhanced the secretion of E2 and P4. In conclusion, the results indicated that FAR1 and TGFBRAP1 regulated the apoptosis of follicular granulosa cells and cut the secretion of E2 and P4 in geese, which provided basic data for the understanding of the regulating process of goose reproduction.

19.
JCI Insight ; 5(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055425

RESUMO

Thalamic pain, a type of central poststroke pain, frequently occurs following ischemia/hemorrhage in the thalamus. Current treatment of this disorder is often ineffective, at least in part due to largely unknown mechanisms that underlie thalamic pain genesis. Here, we report that hemorrhage caused by microinjection of type IV collagenase or autologous whole blood into unilateral ventral posterior lateral nucleus and ventral posterior medial nucleus of the thalamus increased the expression of Fgr, a member of the Src family nonreceptor tyrosine kinases, at both mRNA and protein levels in thalamic microglia. Pharmacological inhibition or genetic knockdown of thalamic Fgr attenuated the hemorrhage-induced thalamic injury on the ipsilateral side and the development and maintenance of mechanical, heat, and cold pain hypersensitivities on the contralateral side. Mechanistically, the increased Fgr participated in hemorrhage-induced microglial activation and subsequent production of TNF-α likely through activation of both NF-κB and ERK1/2 pathways in thalamic microglia. Our findings suggest that Fgr is a key player in thalamic pain and a potential target for the therapeutic management of this disorder.

20.
Biomed Res Int ; 2020: 8037273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062700

RESUMO

Background: Circular RNA (circRNA) is a noncoding RNA that forms a closed-loop structure, and its abnormal expression may cause disease. We aimed to find potential network for circRNA-related competitive endogenous RNA (ceRNA) in atrial fibrillation (AF). Methods: The circRNA, miRNA, and mRNA expression profiles in the heart tissue from AF patients were retrieved from the Gene Expression Omnibus database and analyzed comprehensively. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were identified, followed by the establishment of DEcircRNA-DEmiRNA-DEmRNA regulatory network. Functional annotation analysis of host gene of DEcircRNAs and DEmRNAs in ceRNA regulatory network was performed. In vitro experiment and electronic validation were used to validate the expression of DEcircRNAs, DEmiRNAs, and DEmRNAs. Results: A total of 1611 DEcircRNAs, 51 DEmiRNAs, and 1250 DEmRNAs were identified in AF. The DEcircRNA-DEmiRNA-DEmRNA network contained 62 circRNAs, 14 miRNAs, and 728 mRNAs. Among which, two ceRNA regulatory pairs of hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 were identified. In addition, six miRNA-mRNA regulatory pairs including hsa-miR-34c-5p-INMT, hsa-miR-1253-DDIT4L, hsa-miR-508-5p-SMOC2, hsa-miR-943-ACTA1, hsa-miR-338-3p-WIPI1, and hsa-miR-199a-3p-RAP1GAP2 were also obtained. MTOR was a significantly enriched signaling pathway of host gene of DEcircRNAs. In addition, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy were remarkably enriched signaling pathways of DEmRNAs in DEcircRNA-DEmiRNA-DEmRNA regulatory network. The expression validation of hsa-circRNA-402565, hsa-miR-34c-5p, hsa-miR-188-5p, SPON1, DDIT4L, SMOC2, and WIPI1 was consistent with the integrated analysis. Conclusion: We speculated that hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 interaction pairs may be involved in AF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA