Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.143
Filtrar
1.
J Agric Food Chem ; 72(26): 14967-14974, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957086

RESUMO

Nanobodies (Nbs) serve as powerful tools in immunoassays. However, their small size and monovalent properties pose challenges for practical application. Multimerization emerges as a significant strategy to address these limitations, enhancing the utilization of nanobodies in immunoassays. Herein, we report the construction of a Salmonella-specific fenobody (Fb) through the fusion of a nanobody to ferritin, resulting in a self-assembled 24-valent nanocage-like structure. The fenobody exhibits a 35-fold increase in avidity compared to the conventional nanobody while retaining good thermostability and specificity. Leveraging this advancement, three ELISA modes were designed using Fb as the capture antibody, along with unmodified Nb422 (FbNb-ELISA), biotinylated Nb422 (FbBio-ELISA), and phage-displayed Nb422 (FbP-ELISA) as the detection antibody, respectively. Notably, the FbNb-ELISA demonstrates a detection limit (LOD) of 3.56 × 104 CFU/mL, which is 16-fold lower than that of FbBio-ELISA and similar to FbP-ELISA. Moreover, a fenobody and nanobody sandwich chemiluminescent enzyme immunoassay (FbNb-CLISA) was developed by replacing the TMB chromogenic substrate with luminal, resulting in a 12-fold reduction in the LOD. Overall, the ferritin-displayed technology represents a promising methodology for enhancing the detection performance of nanobody-based sandwich ELISAs, thereby expanding the applicability of Nbs in food detection and other fields requiring multivalent modification.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ferritinas , Salmonella , Anticorpos de Domínio Único , Ferritinas/imunologia , Ferritinas/química , Ferritinas/genética , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Salmonella/imunologia , Salmonella/genética , Ensaio de Imunoadsorção Enzimática/métodos , Limite de Detecção , Afinidade de Anticorpos , Anticorpos Antibacterianos/imunologia , Imunoensaio/métodos
2.
CNS Neurosci Ther ; 30(7): e14828, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38946709

RESUMO

OBJECTIVE: Wallerian degeneration (WD) of the middle cerebellar peduncles (MCPs) following pontine infarction is a rare secondary degenerative neurological condition. Due to its infrequency, there is limited research on its characteristics. METHODS: This study aims to present three cases of WD of MCPs following pontine infarction and to analyze the prognosis, clinical manifestations, and neuroimaging features by amalgamating our cases with previously reported ones. RESULTS: The cohort consisted of 25 cases, comprising 18 men and 7 women aged 29 to 77 years (mean age: 66.2 years). The majority of patients (94%) exhibit risk factors for cerebrovascular disease, with hypertension being the primary risk factor. Magnetic resonance imaging (MRI) can detect WD of MCPs within a range of 21 days to 12 months following pontine infarction. This degeneration is characterized by bilateral symmetric hyperintensities on T2/FLAIR-weighted images (WI) lesions in the MCPs. Moreover, restricted diffusion, with hyperintensity on diffusion-weighted imaging (DWI) and low apparent diffusion coefficient (ADC) signal intensity may be observed as early as 21 days after the infarction. Upon detection of WD, it was observed that 20 patients (80%) remained asymptomatic during subsequent clinic visits, while four (16%) experienced a worsening of pre-existing symptoms. CONCLUSIONS: These findings underscore the importance of neurologists enhancing their understanding of this condition by gaining fresh insights into the neuroimaging characteristics, clinical manifestations, and prognosis of individuals with WD of bilateral MCPs.


Assuntos
Infartos do Tronco Encefálico , Pedúnculo Cerebelar Médio , Ponte , Degeneração Walleriana , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Degeneração Walleriana/diagnóstico por imagem , Degeneração Walleriana/patologia , Ponte/diagnóstico por imagem , Ponte/patologia , Infartos do Tronco Encefálico/diagnóstico por imagem , Pedúnculo Cerebelar Médio/diagnóstico por imagem , Pedúnculo Cerebelar Médio/patologia , Imageamento por Ressonância Magnética , Neuroimagem/métodos
3.
J Environ Sci (China) ; 146: 39-54, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969461

RESUMO

To improve the selective separation performance of silica nanofibers (SiO2 NFs) for cesium ions (Cs+) and overcome the defects of Prussian blue nanoparticles (PB NPs), PB/SiO2-NH2 NFs were prepared to remove Cs+ from water. Among them, 3-aminopropyltriethoxysilane (APTES) underwent an alkylation reaction with SiO2, resulting in the formation of a dense Si-O-Si network structure that decorated the surface of SiO2 NFs. Meanwhile, the amino functional groups in APTES combined with Fe3+ and then reacted with Fe2+ to form PB NPs, which anchored firmly on the aminoated SiO2 NFs surface. In our experiment, the maximum adsorption capacity of PB/SiO2-NH2 NFs was 111.38 mg/g, which was 31.5 mg/g higher than that of SiO2 NFs. At the same time, after the fifth cycle, the removal rate of Cs+ by PB/SiO2-NH2 NFs adsorbent was 75.36% ± 3.69%. In addition, the adsorption isotherms and adsorption kinetics of PB/SiO2-NH2 NFs were combined with the Freundlich model and the quasi-two-stage fitting model, respectively. Further mechanism analysis showed that the bond between PB/SiO2-NH2 NFs and Cs+ was mainly a synergistic action of ion exchange, electrostatic adsorption and membrane separation.


Assuntos
Césio , Ferrocianetos , Nanofibras , Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Ferrocianetos/química , Nanofibras/química , Poluentes Químicos da Água/química , Césio/química , Adsorção , Purificação da Água/métodos , Nanopartículas/química , Dióxido de Silício/química , Cinética , Propilaminas/química , Silanos
4.
Gene ; : 148750, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971548

RESUMO

Distal myopathies are a group of rare heterogeneous diseases that are mostly caused by genetic factors. At least 20 genes have been associated with distal myopathies. We performed whole-exome sequencing to identify the genetic cause of disease in a family with distal myopathy. Following the American College of Medical Genetics and Genomics (ACMG) guidelines, we analyzed the sequencing results and screened suspicious mutations based on mutation frequency, functional impact, and disease inheritance pattern. The harmfulness of the mutations was predicted using bioinformatics methods, and the pathogenic mutations were determined. We identified a novel amino acid mutation (NP_005467.1:p.S663L) on the GNE gene that may cause familial distal myopathy. This mutation is the result of the simultaneous mutation of two adjacent nucleotides (c.1988C > T, c.1989C > A) in the codon. First, we measured the mRNA and protein expression of the GNE gene in the lymphoblastoid cell lines (LCLs) of the probands and their family members. Second, GNE vectors carrying the novel mutation, two other known pathogenic mutations, and the wild-type gene were constructed and transfected into HEK293T cells. The enzymatic activity of these GNE variants was investigated and showed that the p.S663L mutation significantly reduced the activity of the bifunctional GNE enzyme without altering the expression level of the GNE protein. Furthermore, the mutation may also alter the immunogenicity of the 3' end of the GNE protein, potentially affecting its oligomer formation. In this study, a novel GNE gene mutation that may cause distal myopathy was identified, expanding the spectrum of genetic mutations associated with this disease.

5.
Front Pharmacol ; 15: 1394730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974036

RESUMO

Background: There have been numerous studies on NMDA receptors as therapeutic targets for depression. However, so far, there has been no comprehensive scientometric analysis of this field. Thus, we conducted a scientometric analysis with the aim of better elucidating the research hotspots and future trends in this field. Methods: Publications on NMDAR in Depression between 2004 and 2023 were retrieved from the Web of Science Core Collection (WoSCC) database. Then, VOSviewer, CiteSpace, Scimago Graphica, and R-bibliometrix-were used for the scientometric analysis and visualization. Results: 5,092 qualified documents were identified to scientometric analysis. In the past 20 years, there has been an upward trend in the number of annual publications. The United States led the world in terms of international collaborations, publications, and citations. 15 main clusters were identified from the co-cited references analysis with notable modularity (Q-value = 0.7628) and silhouette scores (S-value = 0.9171). According to the keyword and co-cited references analysis, treatment-resistant depression ketamine (an NMDAR antagonist), oxidative stress, synaptic plasticity, neuroplasticity related downstream factors like brain-derived neurotrophic factor were the research hotspots in recent years. Conclusion: As the first scientometric analysis of NMDAR in Depression, this study shed light on the development, trends, and hotspots of research about NMDAR in Depression worldwide. The application and potential mechanisms of ketamine in the treatment of major depressive disorder (MDD) are still a hot research topic at present. However, the side effects of NMDAR antagonist like ketamine have prompted research on new rapid acting antidepressants.

6.
World J Clin Cases ; 12(19): 3854-3865, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38994299

RESUMO

BACKGROUND: Cold-dampness-type knee osteoarthritis is a common middle-aged and elderly disease, but its pathogenesis is not fully understood, and its clinical treatment has limitations. Glucosamine sulfate capsules are commonly used for treating arthritis, and San Bi Tang is a classic formula of traditional Chinese medicine (TCM) that has the effects of warming yang, dispelling dampness, relaxing muscles, and activating collaterals. This research hypothesized that the combination of modified San Bi Tang and glucosamine sulfate capsules could enhance the clinical efficacy of treating cold-dampness-type knee osteoarthritis through complementary effects. AIM: To analyze the clinical efficacy of San Bi Tang combined with glucosamine sulfate capsules when treating cold-dampness-type knee osteoarthritis. METHODS: A total of 110 patients with cold-dampness-type knee osteoarthritis were selected as research subjects and randomly divided into a control group and an experimental group of 55 cases each. The control group received only treatment with glucosamine sulfate capsules, while the experimental group received additional treatment with modified San Bi Tang for a duration of 5 wk. The patients' knee joint functions, liver and kidney function indicators, adverse reactions, and vital signs were evaluated and analyzed using SPSS 26.0 software. RESULTS: Before treatment, the two groups' genders, ages, and scores were not significantly different, indicating comparability. Both groups' scores improved after treatment, which could indicate pain and knee joint function improvement, but the test group had better scores. The TCM-specific symptoms and the clinical efficacy of the treatment in the test group were higher. Before and after treatment, there were no abnormalities in the patients' liver and kidney function indicators. CONCLUSION: The combination of modified San Bi Tang and glucosamine sulfate capsules is superior to treatment with sulfated glucosamine alone and has high safety.

7.
Tuberculosis (Edinb) ; 148: 102541, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39002312

RESUMO

Bovine tuberculosis (bTB), primarily caused by Mycobacterium bovis (M. bovis), is a globally zoonotic disease with significant economic impacts. Plasma exosomes have been extensively used for investigating disease processes and exploring biomarkers. While mass spectrometry (MS)-based proteomic analysis of plasma exosomes has been employed for human tuberculosis (TB) studies, it has not yet been applied to bTB. Therefore, a comprehensive proteomic overview of plasma exosomes from M. bovis-infected cows is essential. In this study, we presented an extensive proteomic analysis of plasma exosomes from 89 M. bovis-infected cows across three farms, using data dependent acquisition (DDA) mode. Our analysis encompasses 239,894 spectra, 6,011 peptides and 835 proteins. The proteomic overview revealed both consistencies and differences among individual cows, supplements 595 proteins to the bovine exosome library, and enriches tuberculosis and related pathways. Additionally, six pathways were validated as immune response pathways, and three proteins (CATHL1, H1-1, and LCN2) were identified as potential indicators of bTB. This study is the first to investigate the exosome proteome of plasma from cows infected with M. bovis, providing a valuable dataset for exploring candidate bTB markers and understanding the mechanisms of host defense against M. bovis.

8.
Med Biol Eng Comput ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990410

RESUMO

Noninvasive, accurate, and simultaneous grading of liver fibrosis, inflammation, and steatosis is valuable for reversing the progression and improving the prognosis quality of chronic liver diseases (CLDs). In this study, we established an artificial intelligence framework for simultaneous grading diagnosis of these three pathological types through fusing multimodal tissue characterization parameters dug by quantitative ultrasound methods derived from ultrasound radiofrequency signals, B-mode images, shear wave elastography images, and clinical ultrasound systems, using the liver biopsy results as the classification criteria. One hundred forty-two patients diagnosed with CLD were enrolled in this study. The results show that for the classification of fibrosis grade ≥ F1, ≥ F2, ≥ F3, and F4, the highest AUCs were respectively 0.69, 0.82, 0.84, and 0.88 with single clinical indicator alone, and were 0.81, 0.83, 0.89, and 0.91 with the proposed method. For the classification of inflammation grade ≥ A2 and A3, the highest AUCs were respectively 0.66 and 0.76 with single clinical indicator alone and were 0.80 and 0.93 with the proposed method. For the classification of steatosis grade ≥ S1 and ≥ S2, the highest AUCs were respectively 0.71 and 0.90 with single clinical indicator alone and were 0.75 and 0.92 with the proposed method. The proposed method can effectively improve the grading diagnosis performance compared with the present clinical indicators and has potential applications for noninvasive, accurate, and simultaneous diagnosis of CLDs.

9.
J Environ Manage ; 365: 121657, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963958

RESUMO

Grazing lands play a significant role in global carbon (C) dynamics, holding substantial soil organic carbon (SOC) stocks. However, historical mismanagement (e.g., overgrazing and land-use change) has led to substantial SOC losses. Regenerative practices, such as adaptive multi-paddock (AMP) grazing, offer a promising avenue to improve soil health and help combat climate change by increasing SOC accrual, both in its particulate (POC) and mineral-associated (MAOC) organic C components. Because adaptive grazing patterns emerge from the combination of different levers such as frequency, intensity, and timing of grazing, studying AMP grazing management in experimental trials and representing it in models remains challenging. Existing ecosystem models lack the capacity to predict how different adaptive grazing levers affect SOC storage and its distribution between POC and MAOC and along the soil profile accurately. Therefore, they cannot adequately assist decision-makers in effectively optimizing adaptive practices based on SOC outcomes. Here, we address this critical gap by developing version 2.34 of the MEMS 2 model. This version advances the previous by incorporating perennial grass growth and grazing submodules to simulate grass green-up and dormancy, reserve organ dynamics, the influence of standing dead plant mass on new plant growth, grass and supplemental feed consumption by animals, and their feces and urine input to soil. Using data from grazing experiments in the southeastern United States and experimental SOC data from two conventional and three AMP grazing sites in Mississippi, we tested the capacity of MEMS 2.34 to simulate grass forage production, total SOC, POC, and MAOC dynamics to 1-m depth. Further, we manipulated grazing management levers, i.e., timing, intensity, and frequency, to do a sensitivity analysis of their effects on SOC dynamics in the long term. Our findings indicate that the model can represent bahiagrass forage production (BIAS = 9.51 g C m-2, RRMSE = 0.27, RMSE = 65.57 g C m-2, R2 = 0.72) and accurately captured the dynamics of SOC fractions across sites and depths (0-15 cm: RRMSE = 0.05; 15-100 cm: RRMSE = 1.08-2.07), aligning with patterns observed in the measured data. The model best captured SOC and MAOC stocks across AMP sites in the 0-15 cm layer, while POC was best predicted at-depth. Otherwise, the model tended to overestimate SOC and MAOC below 15 cm, and POC in the topsoil. Our simulations indicate that grazing frequency and intensity were key levers for enhancing SOC stocks compared to the current management baseline, with decreasing grazing intensity yielding the highest SOC after 50 years (63.7-65.9 Mg C ha-1). By enhancing our understanding of the effects of adaptive grazing management on SOC pools in the southeastern U.S., MEMS 2.34 offers a valuable tool for researchers, producers, and policymakers to make AMP grazing management decisions based on potential SOC outcomes.


Assuntos
Carbono , Solo , Solo/química , Carbono/análise , Animais , Mudança Climática , Ecossistema , Agricultura/métodos , Poaceae
10.
Cancer Gene Ther ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997438

RESUMO

Chaperonin-containing TCP1 (CCT) is a multi-subunit complex, known to participate the correct folding of many proteins. Currently, the mechanism underlying CCT subunits in cancer progression is incompletely understood. Based on data analysis, the expression of CCT subunit 6 A (CCT6A) is found higher than the other subunits of CCT and correlated with an unfavorable prognosis in colon cancer. Here, we find CCT6A silencing suppresses colon cancer proliferation and survival phenotype in vitro and in vivo. CCT6A plays a role in cellular process, including the cell cycle, p53, and apoptosis signaling pathways. Further investigations have shown direct binding between CCT6A and both Wtp53 and Mutp53, and BIRC5 is found to act downstream of CCT6A. The highlight is that CCT6A inhibition significantly reduces BIRC5 expression independent of Wtp53 levels in Wtp53 cells. Conversely, in Mutp53 cells, downregulation of BIRC5 by CCT6A inhibition mainly depends on Mutp53 levels. Additionally, combined CCT6A inhibition and Wtp53 overexpression in Mutp53 cell lines effectively suppresses cell proliferation. It is concluded CCT6A is a potential oncogene that influences BIRC5 through distinct pathways in Wtp53 and Mutp53 cells.

11.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2282-2293, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044591

RESUMO

The ubiquitin/proteasome system (UPS) plays a crucial role in maintaining cellular protein homeostasis. The catalytic activity of proteasome in the UPS is regulated by ß1 (PSMB6), ß2 (PSMB7), and ß5 (PSMB5) subunits. Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, inflammation, and oxidative stress can induce the replacement of ß1, ß2, and ß5 with their respective immuno-subunits ß1i (PSMB9), ß2i (PSMB10), and ß5i (PSMB8), which can be assembled into the immunoproteasome. Compared with the standard proteasome, the immunoproteasome exerts enhanced regulatory effects on immune responses, such as processing and presenting MHC class Ⅰ antigens, production of pro-inflammatory cytokines, and T cell differentiation and proliferation. Abnormal aggregation of immunoproteasomes can cause neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To explore the function of PSMB9 after bacterial infection, we constructed a lentivirus plasmid overexpressing PSMB9-eGFP-His and transfected the plasmid into HEK293T cells for packaging by using a triple-plasmid system in this study. After screening with puromycin, we obtained a stable human leukemia monocytic THP-1 cell line expressing the fusion protein of PSMB9. Western blotting (WB) and fluorescence microscopy verified the expression of the fusion protein in the stable THP-1 cells. Quantitative PCR (qPCR) was employed to measure the copies of PSMB9-eGFP in THP-1 cells. Immunofluorescence results found that eGFP-His did not affect the subcellular localization of PSMB9. The purification with nickel affinity chromatography confirmed that the fusion protein could be assembled into the 20S immunoproteasome and exhibited cleaving activity for fluorescent peptide substrates. These results indicated that the PSMB9-eGFP fusion gene was integrated into the chromosome, and could be stably expressed in the constructed THP-1 cell line. This cell line can be utilized for the research on subcellular localization, dynamic expression, and activity of PSMB9 in live cells at different infection conditions and disease stages. It also provides a model for the stable cell lines construction of other immunoproteasome subunits PSMB8 and PSMB10.


Assuntos
Proteínas de Fluorescência Verde , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células THP-1 , Lentivirus/genética , Proteínas Recombinantes de Fusão/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
12.
J Am Chem Soc ; 146(29): 20193-20204, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39004825

RESUMO

High-entropy intermetallic (HEI) nanocrystals, composed of multiple elements with an ordered structure, are of immense interest in heterogeneous catalysis due to their unique geometric and electronic structures and the cocktail effect. Despite tremendous efforts dedicated to regulating the metal composition and structures with advanced synthetic methodologies to improve the performance, the surface structure, and local chemical order of HEI and their correlation with activity at the atomic level remain obscure yet challenging. Herein, by determining the three-dimensional (3D) atomic structure of quinary PdFeCoNiCu (PdM) HEI using atomic-resolution electron tomography, we reveal that the local chemical order of HEI regulates the surface electronic structures, which further mediates the alkyl-substitution-dependent alkyne semihydrogenation. The 3D structures of HEI PdM nanocrystals feature an ordered (intermetallic) core enclosed by a disordered (solid-solution) shell rather than an ordered surface. The lattice mismatch between the core and shell results in apparent near-surface distortion. The chemical order of the intermetallic core increases with annealing temperature, driving the electron redistribution between Pd and M at the surface, but the surface geometrical (chemically disordered) configurations and compositions are essentially unchanged. We investigate the catalytic performance of HEI PdM with different local chemical orders toward semihydrogenation across a broad range of alkynes, finding that the electron density of surface Pd and the hindrance effect of alkyl substitutions on alkynes are two key factors regulating selective semihydrogenation. We anticipate that these findings on surface atomic structure will clarify the controversy regarding the geometric and/or electronic effects of HEI catalysts and inspire future studies on tuning local chemical order and surface engineering toward enhanced catalysts.

13.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3574-3582, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39041129

RESUMO

This study aimed to investigate the therapeutic effect of Shenfu Injection on mice with chronic heart failure(CHF) and its effect on macrophage polarization. C57BL/6J mice were randomly assigned to the normal and model groups. The CHF model was established by intraperitoneal injection of isoproterenol(ISO, 7.5 mg·kg~(-1), 28 d). The successful modeling was determined by asses-sing the cardiac function and N-terminal pro-brain natriuretic peptide(NT-proBNP). The modeled mice were randomly divided into the model group, Shenfu Injection group, and TAK-242 group, and were injected intraperitoneally with the corresponding drugs for 15 days. Cardiac function was evaluated using echocardiography. Hematoxylin-eosin(HE) staining was used to detect the pathomorphology. Enzyme-linked immunosorbent assay(ELISA) was used to detect the values of serum NT-proBNP, interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), IL-10, and arginase 1(Arg-1). Flow cytometry was applied to detect the relative content and M1/M2 polarization of cardiac macrophages. Quantitative polymerase chain reaction(qPCR) and Western blot were used to detect the changes in the Toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB) pathway-related mRNA and protein expressions. Compared with the normal group, mice in the model group had lower values of left ventricular ejection fraction(LVEF) and left ventricular fractional shorte-ning(LVFS), higher values of left ventricular internal diastolic end-diastolic(LVIDd), left ventricular internal diastolic end-systolic(LVIDs), NT-proBNP, TNF-α, and IL-6(P<0.01); the number of macrophages increased in cardiac tissues(P<0.05), and the values of M1-F4/80~+CD86~+ were increased(P<0.01), while the values of M2-F4/80~+CD163~+ decreased(P<0.05); the mRNA and protein expressions of TLR4, myeloid differentiation factor 88(MyD88), IκB kinase α(IKKα), and NF-κB p65 in myocardial tissues were significantly elevated(P<0.05, P<0.01). Compared with the model group, mice in the Shenfu Injection and TAK-242 groups showed elevated LVEF, LVFS, IL-10, and Arg-1 levels, and decreased LVIDd, LVIDs, NT-proBNP, TNF-α, and IL-6 levels(P<0.05, P<0.01); the cardiac F4/80~+CD11b~+(macrophage) and M1-F4/80~+ CD86~+ values were significantly down-regulated, while M2-F4/80~+CD163~+ values were increased(P<0.05, P<0.01); and the mRNA and protein expressions of TLR4, MyD88, IKKα, and NF-κB p65 in myocardial tissues were notably decreased(P<0.05, P<0.01). CHF mice have an imbalance of M1/M2 macrophage polarization, with M1-type macrophages predominating. Shenfu Injection promotes macrophage polarization towards M2, inhibits M1-type macrophage activation, and attenuates inflammatory responses in heart failure by regulating the TLR4/NF-κB signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Macrófagos , Camundongos Endogâmicos C57BL , NF-kappa B , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Humanos , Doença Crônica , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
ACS Nano ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041395

RESUMO

Two-dimensional (2D) perovskites, comprising inorganic semiconductor layers separated by organic spacers, hold promise for light harvesting and optoelectronic applications. Exciton transport in these materials is pivotal for device performance, often necessitating deliberate alignment of the inorganic layers with respect to the contacting layers to facilitate exciton transport. While much attention has focused on in-plane exciton transport, little has been paid to out-of-plane interlayer transport, which presumably is sluggish and unfavorable. Herein, by time-resolved photoluminescence, we unveil surprisingly efficient out-of-plane exciton transport in 2D perovskites, with diffusion coefficients (up to ∼0.1 cm2 s-1) and lengths (∼100 nm) merely a few times smaller or comparable to their in-plane counterparts. We unambiguously confirm that the out-of-plane exciton diffusion coefficient corresponds to a subpicosecond interlayer exciton transfer, governed by the Förster resonance energy transfer (FRET) mechanism. Intriguingly, in contrast to temperature-sensitive intralayer band-like transport, the interlayer exciton transport exhibits negligible temperature dependence, implying a lowest-lying bright exciton state in 2D perovskites, irrespective of spacer molecules. The robust and ultrafast interlayer exciton transport alleviates the constraints on crystal orientation that are crucial for the design of 2D perovskite-based light harvesting and optoelectronic devices.

15.
Animals (Basel) ; 14(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998068

RESUMO

Soybean is an important source of high-quality vegetable protein with various health-improving properties, and its main bioactive substances are small peptides produced by in vitro enzymatic hydrolytic processes. In traditional layer breeding, the nutritional health of roosters is frequently neglected, ultimately affecting the quality and quantity of offspring. This study investigated the effects of various quantities (0%, 0.15%, 0.30%, 0.45%, and 0.60%) of soybean bioactive peptide (SBP) feed additives on immunological and antioxidant functions, gut health, and reproductive performance of roosters. SBP supplementation significantly improved male growth and reproductive performance, including growth rate, feed conversion ratio, reproductive organ development, and semen quality. SBP also increased immune and antioxidant levels, boosted the integrity of the small intestinal physiological structure and barrier function, and diversity of cecal microbes, and decreased the apoptotic ratio of small intestinal epithelial cells. The effects of SBP on various functions of males showed a quadratic trend, with the optimal concentration determined to be 0.45%.

16.
J Thorac Dis ; 16(6): 3828-3843, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38983152

RESUMO

Background: Ground-glass nodule (GGN) is the most common manifestation of lung adenocarcinoma on computed tomography (CT). Clinically, the success rate of preoperative diagnosis of GGN by puncture biopsy and other means is still low. The aim of this study is to investigate the clinical and radiomics characteristics of lung adenocarcinoma presenting as GGN on CT images using radiomics analysis methods, establish a radiomics model, and predict the classification of pathological tissue and instability of GGN type lung adenocarcinoma. Methods: This study retrospectively collected 249 patients with 298 GGN lesions who were pathologically confirmed of having lung adenocarcinoma. The images were imported into the Siemens scientific research prototype software to outline the region of interest and extract the radiomics features. Logistic model A (a radiomics model to identify the infiltration of lung adenocarcinoma manifesting as GGNs) was established using features after the dimensionality reduction process. The receiver operating characteristic (ROC) curve of the model on training set and the verification set was drawn, and the area under the curve (AUC) was calculated. Second, a total of 112 lesions were selected from 298 lesions originating from CT images of at least two occasions, and the time between the first CT and the preoperative CT was defined as not less than 90 days. The mass doubling time (MDT) of all lesions was calculated. According to the different MDT diagnostic thresholds instability was predicted. Finally, their AUCs were calculated and compared. Results: There were statistically significant differences in age and lesion location distribution between the "noninvasive" lesion group and the invasive lesion group (P<0.05), but there were no statistically significant differences in sex (P>0.05). Model A had an AUC of 0.89, sensitivity of 0.75, and specificity of 0.86 in the training set and an AUC of 0.87, sensitivity of 0.63, and specificity of 0.90 in the validation set. There was no significant difference statistically in MDT between "noninvasive" lesions and invasive lesions (P>0.05). The AUCs of radiomics models B1, B2 and B3 were 0.89, 0.80, and 0.81, respectively; the sensitivities were 0.71, 0.54, and 0.76, respectively; the specificities were 0.83, 0.77, and 0.60, respectively; and the accuracies were 0.78, 0.65, and 0.69, respectively. Conclusions: There were statistically significant differences in age and location of lesions between the "noninvasive" lesion group and the invasive lesion group. The radiomics model can predict the invasiveness of lung adenocarcinoma manifesting as GGNs. There was no significant difference in MDT between "noninvasive" lesions and invasive lesions. The radiomics model can predict the instability of lung adenocarcinoma manifesting as GGN. When the threshold of MDT was set at 813 days, the model had higher specificity, accuracy, and diagnostic efficiency.

17.
Nat Commun ; 15(1): 5659, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969646

RESUMO

Fully targeted mRNA therapeutics necessitate simultaneous organ-specific accumulation and effective translation. Despite some progress, delivery systems are still unable to fully achieve this. Here, we reformulate lipid nanoparticles (LNPs) through adjustments in lipid material structures and compositions to systematically achieve the pulmonary and hepatic (respectively) targeted mRNA distribution and expression. A combinatorial library of degradable-core based ionizable cationic lipids is designed, following by optimisation of LNP compositions. Contrary to current LNP paradigms, our findings demonstrate that cholesterol and phospholipid are dispensable for LNP functionality. Specifically, cholesterol-removal addresses the persistent challenge of preventing nanoparticle accumulation in hepatic tissues. By modulating and simplifying intrinsic LNP components, concurrent mRNA accumulation and translation is achieved in the lung and liver, respectively. This targeting strategy is applicable to existing LNP systems with potential to expand the progress of precise mRNA therapy for diverse diseases.


Assuntos
Lipídeos , Fígado , Pulmão , Nanopartículas , RNA Mensageiro , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Nanopartículas/química , Animais , Fígado/metabolismo , Pulmão/metabolismo , Lipídeos/química , Humanos , Camundongos , Colesterol/metabolismo , Colesterol/química , Biossíntese de Proteínas , Camundongos Endogâmicos C57BL , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Lipossomos
19.
Artigo em Inglês | MEDLINE | ID: mdl-39028460

RESUMO

In the backdrop of the rapid evolution of the digital economy, the intricate relationship between digital industry agglomeration (DIA) and manufacturing firms' carbon emissions has become crucial for countries to achieve sustainable development. This study delves into this complex dynamic by analyzing data from Chinese-listed manufacturing companies spanning the years 2014 to 2021. A regional-level DIA Index is calculated to explore its impact on manufacturing firms' carbon emissions. The main finding reveals a U-shaped relationship, with an inhibitory effect on carbon emissions in most provinces to the left of the inflection point. Notably, Guangdong Province experiences a promotional phase to the right of the inflection point, where agglomeration intensifies carbon emissions. The robustness tests, including Utest, instrumental variable examination, and propensity score matching, support the credibility of these findings. Mechanism analysis reveals the mediating role of manufacturing firms' technological innovations in this relationship. Specifically, DIA is related to manufacturing firms' technological innovation in an inverted U shape, and technological innovation inhibits these firms' carbon emissions. This micro-evidence not only contributes to a nuanced understanding of the relationship between DIA and carbon emissions but also provides valuable insights to guide policies for sustainable development within the dynamic context of the digital economy.

20.
Cancer Gene Ther ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033218

RESUMO

Nuclear factor kappa-B (NF-κB) is a nuclear transcription factor that plays a key factor in promoting inflammation, which can lead to the development of cancer in a long-lasting inflammatory environment. The activation of NF-κB is essential in the initial phases of tumor development and progression, occurring in both pre-malignant cells and cells in the microenvironment such as phagocytes, T cells, and B cells. In addition to stimulating angiogenesis, inhibiting apoptosis, and promoting the growth of tumor cells, NF-κB activation also causes the epithelial-mesenchymal transition, and tumor immune evasion. Therapeutic strategies that focus on immune checkpoint molecules have revolutionized cancer treatment by enabling the immune system to activate immunological responses against tumor cells. This review focused on understanding the NF-κB signaling pathway in the context of cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA