Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.699
Filtrar
1.
Talanta ; 221: 121644, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076164

RESUMO

A novel dual-signal electrochemiluminescence immunosensor with high sensitivity was successfully constructed for the sensitive detection of gastric cancer biomarker CA 72-4. The superior performance of the electrochemiluminescence immunosensor came from the self-calibration function of the dual-signal system "Ru(bpy)32+@3D-foam graphene/TPA" and "SnS2 dots/K2S2O8". 3D-foam graphene not only has good electrical conductivity and ideal surface area, but also contains amino groups on its surface, which facilitate electron transfer and can carry a large number of luminous reagents. Furthermore, immobilized Ru(bpy)3Cl2·6H2O on 3D-foam graphene to construct an ECL immunosensor, which can reduce the distance between the illuminant and the surface of electrode, thus highly increasing the ECL intensity. Additionally, the SnS2 dot with excellent stability and outstanding biocompatibility is an ideal candidate for efficient cross-linking to the anti-CA 72-4. The dual-signal immunosensor is prepared by linking SnS2 dots-Ab2 and CA 72-4 through specific recognition. Generally, the ECL intensity of electrochemiluminescence immunosensor changes linearly with the logarithm of CA 72-4 concentration in the range from 5 × 10-5 to 5 × 102 U mL-1 and the detection limit of 1.48 × 10-5 U mL-1 (S/N = 3). Furthermore, the experiment results show that the constructed CA 72-4 immunosensor has excellent reproducibility and can be used for the sensitive detection of CA 72-4 in human serum. The approach opens up the new way for clinical bioassays.

2.
Sci Total Environ ; 753: 142073, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32911175

RESUMO

The removal of bisphenol A (BPA) by waste zero-valent iron (ZVI) regulating microbial community in sequencing batch biofilm reactor (SBBR) was investigated. Compared with SBBR-BPA, the acclimation time of microorganisms in the presence of waste ZVI and BPA (SBBR-ZVI+BPA) decreased from 56 d to 49 d. During stable operation period, BPA was removed completely at 150th min and 100th min in the SBBR-BPA and SBBR-ZVI+BPA, respectively. The optimal initial pH and BPA concentration in the SBBRs were respectively 8.0 and 10 mg/L. The composition and content analysis of extracellular polymeric substances (EPS) using fluorescence spectrometer showed that the yield of EPS was enhanced by the addition of ZVI. The analysis of microbial community structure in the SBBRs using Illumina Miseq sequencing method indicated that the indexes of ACE, Chao1 and Shannon were higher and Simpson index was lower in the SBBR-ZVI+BPA. Moreover, the abundance of BPA biodegradation strains was increased in the presence of ZVI. This study provided a promising method with low cost of effectively removing BPA from wastewater.


Assuntos
Microbiota , Eliminação de Resíduos Líquidos , Compostos Benzidrílicos , Biofilmes , Reatores Biológicos , Ferro , Fenóis , Águas Residuárias
3.
Sci Total Environ ; 751: 141703, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32882553

RESUMO

Ammonium removal in wastewater treatment plants requires a large number of energy input, such as aeration and the addition of organics. Alternative, more economical technologies for nitrogen removal from wastewater are required. This study comprehensively investigated the feasible of microbial electricity coupled with Fe(III) reduction promoting the anaerobic ammonium removal. It was found that electrostimulation coupled with Fe(III) reduction (bioelectrochemical systems-Fe(III) (BES-Fe(III)) reactor) enhanced the anaerobic ammonium removal by 50.38% and 38.8% compared with the BES reactor and Fe(III) reactor, respectively. The ammonium removal rate reached the highest value of 80.62 ± 0.26 g N m-3·d-1 in the Fe(III)-BES reactor comparable to conventional wastewater treatment plants (WWWTPs). The improvement of ammonium removal might be the synergistic effect of BES and Feammox process on reaction process and microorganisms. Firstly, the addition of Fe2O3 could improve the electrochemical characteristics by enriching iron-reducing bacterial (FeRB). Secondly, the improved ammonium removal could be due to nitrite generated from Feammox process driving the anodic ammonium oxidation. Additionally, the ammonium removal improvement might be the effect of BES on the Fe2+ leaching so as to accelerate the Fe (II)/Fe(III) cycle. In agreement, higher abundance of FeRB and iron-oxidizing bacteria was detected in the Fe(III)-BES reactor. This study provides a lower energy consumption and operational cost technology compared with the conventional partial nitrification/denitrification, which was more than 800 times less than for the conventional wastewater treatment.


Assuntos
Compostos de Amônio , Terapia por Estimulação Elétrica , Anaerobiose , Reatores Biológicos , Desnitrificação , Compostos Férricos , Nitrogênio/análise , Oxirredução , Águas Residuárias
4.
Protein Expr Purif ; 178: 105747, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32898688

RESUMO

Structure heterogeneity and host nucleic acids contamination are two major problems for virus-like particles (VLPs) produced by various host cells. In this study, an in vitro optimized disassembly-purification-reassembly process was developed to obtain uniform and nucleic acid free hepatitis B core (HBc) based VLPs from E. coli fermentation. The process started with ammonium sulfate precipitation of all heterogeneous HBc structures after cell disintegration. Then, dissolution and disassembly of pellets into basic subunits were carried out under the optimized disassembly condition. All contaminants, including host nucleic acids and proteins, were efficiently removed with affinity chromatography. The purified subunits reassembled into VLPs by final removal of the chaotropic agent. Two uniform and nucleic acid free HBc-based VLPs, truncated HBc149 and chimeric HBc183-MAGE3 I, were successfully prepared. It was found that disassembly degree of HBc-based VLPs had a great influence on the protein yield, nucleic acid removal and reassembly efficiency. 4 M urea was optimal because lower concentration would not disassemble the particles completely while higher concentration would further denature the subunits into disordered aggregate and could not be purified and reassembled efficiently. For removal of strong binding nucleic acids such as in the case of HBc183-MAGE3 I, benzonase nuclease was added to the disassembly buffer before affinity purification. Through the optimized downstream process, uniform and nucleic acid free HBc149 VLPs and HBc183-MAGE3 I VLPs were obtained with purities above 90% and yields of 55.2 and 43.0 mg/L, respectively. This study would be a reference for efficient preparation of other VLPs.

5.
Ophthalmic Res ; 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33142289

RESUMO

Backgroud: The retinal microvasculature within the macula in glaucomatous eyes is not clear. OBJECTIVES: To detect macular vessel density (MVD) changes in primary angle closure glaucoma (PACG). METHODS: 22 PACG patients who had an episode of acute primary angle closure were included. Structural optical coherence tomography (OCT) scans were conducted to measure the thickness of the peripapillary retinal nerve fiber layer and macular ganglion cell complex (GCC). The MVD was measured with OCT angiography. RESULTS: A weakened macular microvascular network that had an expanded fovea avascular zone was observed in the case group. Compared with the control group, the case group had a lower MVD (P < 0.001). Single correlation analysis revealed a significant correlation of the MVD with best-corrected visual acuity (BCVA) (r = -0, 65, P = 0.001), GCC (r = 0.50, P = 0.018), and the visual field mean deviation (r = -0.54, P= 0.009) in the case group. Moreover, in the mixed-effect models, the MVD was found to be positively correlated with GCC (P= 0.017), and negatively correlated with LogMar BCVA (P < 0.001). CONCLUSIONS: After an acute angle closure attack, the macular microvascular network is attenuated, and the MVD decreases significantly.

6.
Nanotechnology ; 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33147572

RESUMO

Silicon is one of promising anodes for new-generation lithium ion batteries due to high theoretical lithium storage capacity (4200 mAh g-1). However, the low conductivity and large volumetric expansion hamper the commercialization of the silicon anode. In this case, we present a yolk-void-shell Si-C anode (denoted as Si@Void@C), which is synthesized through nano-Si oxidation, surface carbonization and etching of SiOx. The void size is within the range of 2-7 nm and can be artificially tuned. Reduced graphene oxide (rGO) tightly anchors these Si@Void@C particles without agglomeration. The Si@Void@C/rGO with void size of 5 nm offers a discharge capacity of 1294 mAh g-1 after 100 cycles at a current density of 500 mA g-1. These enhanced performances can be ascribed to an appropriate size (5 nm) of void space which sufficiently accommodates the silicon volume expansion and stabilizes the carbon shell. At the same time, the voids effectively inhibit the growth of the solid electrolyte interface (SEI) layer by depressing the decomposition of the electrolyte on the surface of Si in Si@Void@C/rGO. Furthermore, interfaces between Si@Void@C particles and rGO sheets construct bridges for electrons' conduction. The present work provides a viable strategy for synthesizing silicon-carbon anode materials with long life.

7.
Biomed Pharmacother ; 131: 110706, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152907

RESUMO

OBJECTIVE: Diabetic bladder dysfunction (DBD) is one of the most common and bothersome complications of diabetes mellitus (DM). The purpose of the present study is to investigate DBD in KK-Ay mice, and to identify the expression of relative genes. METHOD: Totally twenty-seven KK-Ay mice and thirty C57BL/6 J mice, respectively, were randomly divided into 12-, 18-, and 25-week old groups. The weight, water intake, voided volume, the frequency of micturition, fasting blood glucose (FBG), oral glucose tolerance test (OGTT) were measured at varying time points. Maximum bladder volume (MBC), residual volume (RV), bladder compliance (BC), micturition efficiency (VE) and maximum micturition pressure (MVP) were assessed by urodynamic test, and contractile responses to α, ß-methylene ATP, KCl, electrical-field stimulation, carbachol were performed by detrusor smooth muscle strips contractility test. The bladders were stained with hematoxylin and eosin (H&E) and Masson's trichrome to determine bladder wall thickness. Additionally, the mRNA expression of Myosin Va, SLC17A9, P2X1, M3 and M2 were then verified by qRT-PCR. RESULT: The weight, water intake, voided volumes, micturition frequency, FBG, the blood glucose AUC0-2h of KK-Ay mice were significantly increased at three time points. MBC, RV and BC were significantly increased; VE was significantly lower at the age of 18 and 25 weeks in KK-Ay mice; MVP was significantly increased at the age of 25 weeks in KK-Ay mice. In DSM strips contractility test, the amplitude of the spontaneous activity in KK-Ay mice significant increased at 12 weeks and 18 weeks, while both the amplitude and frequency were significantly decreased at the age of 25 weeks. The level of Myosin Va, SLC17A9 and M3 receptor significantly decreased in KK-Ay mice at 12 weeks, while Myosin Va markedly increased at 18 weeks; P2X1 and M2 receptors of KK-Ay mice was significantly increased at all three time points. CONCLUSION: Taken together, this study demonstrates that KK-Ay mice can be a proper model to investigate DBD whose transformation from compensatory state to decompensated state may ascribe to the time-dependent alternations of Myosin Va, SLC17A9, P2X1, M3 and M2 expression levels.

8.
Biosens Bioelectron ; 173: 112816, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33221506

RESUMO

A highly sensitive quenching molecular imprinting (MIP) photoelectrochemical (PEC) sensor was proposed to detect acrylamide (AM) by using the photoactive composite of ZnO and polypyrrole (PPy) as the PEC signal probe. ZnO, with high electron mobility, excellent chemical and thermal stability as well as good biocompatibility, was selected as the photoelectrically active material. A polypyrrole film was formed on the nanodisk ZnO by electrochemical polymerization, and the recognition site of AM was left on the surface of the PPy film by elution, enabling the specific detection of AM. The transfer of electrons will be hindered when AM is adsorbed on the ZnO/PPy nanocomposites surface, which results in the decrease of photocurrent signal. The proposed molecularly imprinted PEC sensor exhibits significant detection performance of AM in the range of 10-1 M-2.5 × 10-9 M with a LOD of 2.147 × 10-9 M (S/N = 3). The use of photoelectrochemical technology combined with molecular imprinting technology enables the PEC sensor to have excellent selectivity, superior repeatability, preferable stability, low cost, and easy construction, providing a new method for the detection of AM. The high recovery rate in the detection of real samples of potato chips and biscuits indicates that the proposed PEC sensor has potential in monitoring the emerging food safety risks.

9.
Artigo em Inglês | MEDLINE | ID: mdl-33200265

RESUMO

Previously, we presented a novel approach for increasing the consumption of xylose and the lipid yield by overexpressing the genes coding for xylose isomerase (XI) and xylulokinase (XK) in Mucor circinelloides. In the present study, an in-depth analysis of lipid accumulation by xylose metabolism engineered M. circinelloides strains (namely Mc-XI and Mc-XK) using corn straw hydrolysate was to be explored. The results showed that the fatty acid contents of the engineered M. circinelloides strains were, respectively, increased by 19.8% (in Mc-XI) and 22.3% (in Mc-XK) when compared with the control strain, even though a slightly decreased biomass in these engineered strains was detected. Moreover, the xylose uptake rates of engineered strains in the corn straw hydrolysate were improved significantly by 71.5% (in Mc-XI) and 68.8% (in Mc-XK), respectively, when compared with the control strain. Maybe the increased utilization of xylose led to an increase in lipid synthesis. When the recombinant M. circinelloides strains were cultured in corn straw hydrolysate medium with the carbon-to-nitrogen ratio (C/N ratio) of 50 and initial pH of 6.0, at 30 °C and 500 rpm for 144 h, a total biomass of 12.6-12.9 g/L with a lipid content of 17.2-17.7% (corresponding to a lipid yield of 2.17-2.28 g/L) was achieved. Our study provides a foundation for the further application of the engineered M. circinelloides strains to produce lipid from lignocelluloses.

10.
Sci Total Environ ; : 143275, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33168248

RESUMO

Decoupling water use from economic development is a fundamental strategy to improve environmental quality from the source. It can promote economic growth while reducing water use and water pollution. This article uses water footprint theory to calculate the relevant indicators of the water quantity footprint and water quality footprint of the Northwest arid region between 1997 and 2017. This paper not only comprehensively consider the impact rate of economic development on water resource consumption and water pollution, but also analyzes the coordination of water resource utilization efficiency and economic development from the perspective of water resource flow, and make up for the deficiencies of pure consideration of water resource consumption. The results of the study show that in the past 20 years, the water resources utilization and economic development in Northwest arid region of China has shown relatively decoupling and weak negative decoupling, and the decoupling index of water quantity and water quality with economic development are 0.3377 and 0.3156, respectively. It shows that the dependence of economic development on water resources is gradually decreasing. However, the water shortage remains serious, this also shows that the efficiency of water use has not improved. Only if economic development is decoupled from water quantity and water quality at the same time, we can achieve sustainable development of water use and economy. We also found that the proportion of agricultural production water is too large, industrial water consumption is declining, and the proportion of domestic water consumption is increasing. There is a problem of unreasonable utilization structure and it can be seen from the wastewater discharge data that the discharge of industrial wastewater is declining. The government needs to focus on the wastewater treatment, strengthen the awareness regarding of water conservation at same time, and use stepped pricing standards to reasonably control water use.

11.
J Proteome Res ; 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172275

RESUMO

The Chromosome-Centric Human Proteome Project (C-HPP) was launched in 2012 to perfect the annotation of human protein existence by identifying stronger evidence of the expression of missing proteins (MPs) at the protein level. After an 8 year effort all over the world, the number of MPs in the neXtProt database significantly decreased from 5511 (2012-02-24) to 1899 (2020-01-17). It is now more difficult to provide confident evidence of the remaining MPs because of their specific characteristics, including low abundance, low molecular weight, unexpected modifications, transmembrane structure, tissue-expression specificity, and so on. A higher resolution mass spectrometry (MS) interpretation engine might provide an opportunity to identify these buried MPs in complex samples by the combination with multi-tissue large-scale proteomics. In this study, open-pFind was used to dig MPs from 20 pairs of healthy human tissues by Wang et al. ( Mol. Syst. Biol. 2019, 15 (2), e8503) combined with our large-scale testis data set digested by three enzymes (Glu-C, Lys-C, and trypsin) with specificity for different amino acid residues ( J. Proteme Res. 2019, 18 (12), 4189-4196). A total of 1 535 536 peptides with 17 283 477 peptide-spectrum matches (PSMs) were mapped to 14 279 protein entries at a false discovery rate of <1% at the PSM, peptide, and protein levels. A total of 103 MP candidates were identified, among which 86 candidates had more unique peptide numbers compared with our single testis tissue. After rigorous screening, manual checks, peptide synthesis, and matching with documented peptides from PeptideAtlas, we validated four MPs, P0C7T8 (duodenum and small intestine), Q8WWZ4 (stomach and rectum), Q8IV35 (fallopian tube), and O14921 (tonsil), at the protein level. All MS raw files have been deposited to the ProteomeXchange with identifier PXD021391.

13.
J Agric Food Chem ; 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175525

RESUMO

Superoxide dismutases (SODs) are a group of enzymes that have a crucial role in controlling oxidative stress in plants. Here, we synthesized an environmentally friendly SOD mimic, SODm-123, from L-aspartic acid and manganese oxide. SODm-123 showed similar enzymatic activity to Mn-SOD. To gain insights into the role of SODm-123 in oxidative stress tolerance, a series of experiments were conducted to assess the physiological and molecular responses of tomato plants when treated with SODm-123. The results showed that the levels of O2-• and H2O2 in tomato cells were affected by SODm-123 treatment, indicating that SODm-123 can control oxidative stress like Mn-SOD. The results also exhibited that SODm-123 increased the contents of photosynthetic pigments. However, it was noted that SODm-123 resulted in a reduction in the content of soluble sugar and MDA. These results indicate that SODm-123 promoted the efficiency of photosynthesis by regulating the content of H2O2. To further investigate the role of SODm-123 in controlling oxidative stress, a transcriptome analysis was used to identify differentially expressed genes (DEGs) associated with SODm-123 treatment. The results indicated that SODm-123 treatment resulted in 341 differentially expressed genes (DEGs) in treated tomato leaves at 96 h after treatment. Kyoto encyclopedia of genes and genomes (KEGG) revealed that DEGs were involved in pathways such as photosynthetic pigment biosynthesis, ABC transporters, sugar metabolism, and MAPK signaling, which further confirmed a positive role of SODm-123 in improving stress tolerance in plants. Overall, the results of this study suggest that SODm-123 promotes the growth and development of tomato seedlings and therefore can be used as a potential growth-promoting agent for plants.

14.
FEBS Open Bio ; 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176070

RESUMO

Sorafenib, the first-line agent for treatment of advanced hepatocellular carcinoma (HCC), improves median overall survival by approximately 3 months. Here, we investigated whether sorafenib combined with cucurbitacin B (CuB), a natural tetracyclic triterpenoid isolated from Cucurbitaceae, exerts enhanced antitumor effects against HCC. Cell viability and colony formation ability were detected by CCK-8 and colony formation assay. Cell cycle and apoptosis were analyzed by flow cytometry. Protein expression was detected by western blot. HepG2 xenografts in nude mice were used to evaluate in vivo antitumor effects. We report that sorafenib and CuB exhibited synergistic effects on cellular proliferation inhibition and cell apoptosis induction, but not on cell cycle arrest. Furthermore, combination treatment enhanced levels of cleaved caspase3 and cleaved caspase9, but suppressed phosphorylation of STAT3. EGF, a potent stimulator of STAT3, promoted cell viability and colony formation ability, while combination treatment exerted inhibitory effects on EGF-induced STAT3 phosphorylation. Finally, HepG2 xenograft mice cotreated with sorafenib and CuB exhibited reduced tumor progression without noticeable weight loss. In conclusion, sorafenib and CuB exert synergistic antitumor effects through a pathway that may involve STAT3 phosphorylation, and this may represent a promising therapeutic approach for HCC treatment.

15.
Pharmacol Res ; : 105286, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33157234

RESUMO

Alcohol consumption is one of the risk factors for kidney injury. The underlying mechanism of alcohol-induced kidney injury remains largely unknown. We previously found that the kidney in a mouse model of alcoholic kidney injury had severe inflammation. In this study, we found that the administration of alcohol was associated with the activation of NLRP3 inflammasomes and NF-κB signaling, and the production of pro-inflammatory cytokines. Whole-genome methylation sequencing (WGBS) showed that the DNA encoding fat mass and obesity-associated protein (FTO) was significantly methylated in the alcoholic kidney. This finding was confirmed with the bisulfite sequencing (BSP), which showed that alcohol increased DNA methylation of FTO in the kidney. Furthermore, inhibition of DNA methyltransferases (DNMTs) by 5-azacytidine (5-aza) reversed alcohol-induced kidney injury and decreased the mRNA and protein levels of FTO. Importantly, we found that FTO, the m6A demethylase, epigenetically modified peroxisome proliferator activated receptor-α (PPAR-α) in a YTH domain family 2 (YTHDF2)-dependent manner, which resulted in inflammation in alcoholic kidney injury models. In conclusion, our findings indicate that alcohol increases the methylation of PPAR-α m6A by FTO-mediated YTHDF2 epigenetic modification, which ultimately leads to the activation of NLRP3 inflammasomes and NF-κB-driven renal inflammation in the kidney. These findings may provide novel strategies for preventing and treating alcoholic kidney diseases.

16.
Theor Appl Genet ; 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140169

RESUMO

KEY MESSAGE: Anatomical changes in and hormone roles of the exserted stigma were investigated, and localization and functional analysis of SlLst for the exserted stigma were performed using SLAF-BSA-seq, parental resequencing and overexpression of SlLst in tomato. Tomato accession T431 produces stigmas under relatively high temperatures (> 27 °C, the average temperature in Harbin, China, in June-August), so pollen can rarely reach the stigma properly. This allows the percentage of male sterility exceed 95%, making the use of this accession practical for hybrid seed production. To investigate the mechanism underlying the exserted stigma male sterility, the morphological changes of, anatomical changes of, and comparative endogenous hormone (IAA, ABA, GA3, ZT, SA) changes in flowers during flower development of tomato accessions DL5 and T431 were measured. The location and function of genes controlling exserted stigma sterility were analyzed using super SLAF-BSA-seq, parental resequencing, comparative genomics and the overexpression of SlLst in tomato. The results showed that an increase in cell number mainly caused stigma exsertion. IAA played a major role, while ABA had an opposite effect on stigma exertion. Moreover, 26 candidate genes related to the exserted stigma were found, located on chromosome 12. The Solyc12g027610.1 (SlLst) gene was identified as the key candidate gene by functional analysis. A subcellular localization assay revealed that SlLst is targeted to the nucleus and cell membrane. Phenotypic analysis of SlLst-overexpressing tomato showed that SlLst plays a crucial role during stigma exsertion.

17.
Abdom Radiol (NY) ; 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33040166

RESUMO

PURPOSE: To evaluate whether the LI-RADS v2018 LR-5 criteria can be modified to increase sensitivity without reducing specificity for diagnosing small (10-19 mm) HCC. METHODS: 167 consecutive high-risk patients with 174 small observations reported clinically on extracellular contrast-enhanced MRI from 2014 to 2018 were retrospectively studied. The best available reference standard was applied for each observation. Blinded to the reference standard, two radiologists scored LI-RADS imaging features retrospectively and assigned each observation a LI-RADS category using LI-RADS v2018 and each of four modified LI-RADS versions (mLI-RADS I to IV) with successively more expansive LR-5 criteria. Per-observation sensitivity and specificity of LR-5 for small HCC using each version were assessed. Each modified version was compared to v2018 (McNemar test). RESULTS: The 174 observations included 135 HCC, 8 non-HCC malignancies, and 31 benign entities. Using LI-RADS v2018, LR-5 provided 70% (both readers) sensitivity and 95% (both readers) specificity for small HCC. Expanding the LR-5 criteria to include nonrim APHE plus at least one additional major feature (mLI-RADS I) or no APHE plus at least two additional major features (mLI-RADS II) significantly increased sensitivity (reader 1/reader 2: 75%/75% vs. 70%, p = 0.016/0.031; 78%/79% vs. 70%, p = 0.001/0.001) without significantly reducing specificity (reader 1/reader 2: 90%/92% vs. 95%, p = 0.500/1.000 for both). mLI-RADS III and IV further increased sensitivity (reader 1/reader 2: 80%/81% vs. 70%, p < 0.001/< 0.001; 94%/92% vs. 70, p < 0.001/< 0.001) but with trend-level (reader 1/reader 2: 85%/80% vs. 95%, p = 0.125/0.063) or significant (reader 1/reader 2: 64%/62% vs. 95%, p < 0.001/< 0.001) specificity reductions. CONCLUSIONS: Expanding the v2018 LR-5 criteria to include nonrim APHE plus at least one additional major feature or no APHE plus at least two additional major features significantly increases sensitivity without significantly reducing specificity for small HCC. Confirmation is warranted in multi-center prospective studies.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33043421

RESUMO

The cation-independent bioflocculant (59LF) extracted from Klebsiella sp. 59L was characterized. 59LF consisted of protein (4.8%) and total sugar (85.2%) with high molecular weight (93.82% of 2120 kDa), and total sugar was composed of 76.45% of neutral sugar, 3.65% of uronic acid, and 1.43% of amino sugar. Results indicated that 59LF was pH tolerant and thermally stable, and the maximum yield of 59LF was 4.078 g/L after 48 h culture. The optimal flocculating activity for Kaolin particles was obtained when the dosage of 59LF was 7.0 mg/L without additional metal ions as coagulant aids. Furthermore, the surface properties of 59LF were observed using a Fourier-transform infrared spectrophotometer and X-ray photoelectron spectroscopy, whereas a porous structure was detected by a scanning electron microscope. Thus, a primary flocculation mechanism of 59LF was proposed. This study provided a potential cation-independent bioflocculant with high productivity and low dosage in future application.

19.
BMJ Open ; 10(10): e038879, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33040015

RESUMO

INTRODUCTION: Due to immature brain development, preterm infants are more likely to develop neurological developmental defects compared with full-term infants. Most preterm infants without neurodevelopmental damage can eventually reach the same scholastic level as their same-age peers; however, some show persistent impairment. Breast feeding (BF), which is an important public health measure, is of great significance for preterm infants. Various active substances in breast milk promote the development of the brain and central nervous system in premature infants. We present a protocol for a prospective longitudinal cohort study to explore the effect of in-hospital BF on brain development in preterm infants and possible influencing factors. METHODS AND ANALYSIS: This study will enrol 247 Chinese preterm infants (gestational age: 30-34 weeks) delivered in Women's Hospital School of Medicine, Zhejiang University, and transferred to the neonatal intensive care unit. Demographic, clinical and in-hospital BF data will be collected through electronic medical records. Moreover, follow-up data will be obtained by telephone, interview or online. Measurements will be obtained using the Breastfeeding Self-Efficacy Scale-Short Form, neuroimaging with functional near-infrared spectroscopy, extrauterine growth restriction and the Ages and Stages Questionnaire. Follow-up will be performed at 3, 6 and 12 months after birth. ETHICS AND DISSEMINATION: This study has been approved by the Women's Hospital School of Medicine Zhejiang University Medical Ethics Committee (2019-058). The study results are expected to be published in peer-reviewed journals and reported at relevant national and international conferences. TRIAL REGISTRATION NUMBER: ChiCTR1900027648; Pre-results.

20.
Shanghai Kou Qiang Yi Xue ; 29(3): 250-256, 2020 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-33043340

RESUMO

PURPOSE: To compare the mechanical properties of 3D-printed titanium meshes and pre-shaped titanium meshes, and to evaluate the effects of 3D-printed titanium meshes on cell proliferation and differentiation. METHODS: 3D- printed titanium meshes were produced and prepared with laser printing machine. The mechanical properties were analyzed by static tension and compression load test. Bone marrow mesenchymal stem cells (BMSCs) were extracted from 4-week-old male SD rats. BMSCs were co-cultured with 3D-printed titanium meshes of different apertures. Cell counting kit-8 (CCK-8) assay was used to detect cell proliferation. Alkaline phosphatase (ALP) activity assay was used to test ALP activity. The expression of related osteogenic genes was tested by real-time PCR. The adhesion and growth of BMSCs were investigated by scanning electron microscopy (SEM) and living / dead cell staining. SPSS 22.0 software package was used for statistical analysis of the results. RESULTS: The results of 3D-printing Ti-meshes tension and compression loading experiment were excellent. The 3D-printing Ti-meshes showed no inhibitory effects on cell proliferation, survival and adhesion, but had a positive effect on osteogenesis of BMSCs. CONCLUSIONS: The mechanical properties of 3D-printed Ti-meshes are excellent. The 3D-printed Ti-meshes have good biocompatibility.


Assuntos
Implantes Dentários , Titânio , Animais , Masculino , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Telas Cirúrgicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA