Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.961
Filtrar
1.
Poult Sci ; 102(4): 102501, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36736138

RESUMO

Since 1999, QX-like (GI-19) avian infectious bronchitis viruses have been the predominant strains in China till now. Vaccination is the most effective way to control the disease, while live attenuated vaccine is widely used. In the current research, we evaluated the effect of several monovalent and bivalent live IBV vaccines in young chickens against the QX-like (GI-19) IBV infection. The results showed that monovalent 4/91 and bivalent Ma5+LDT3 vaccines could provide efficient protection in day-old chickens that reduced morbidity and mortality, ameliorated histopathology lesions, and reduced viral loads were observed. These data suggest that vaccination through nasal route with monovalent 4/91 or bivalent Ma5+LDT3 in day-old chickens could serve a safe and effective vaccination strategy for controlling QX-like (GI-19) infectious bronchitis virus.

2.
BMC Neurol ; 23(1): 50, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721101

RESUMO

BACKGROUND AND OBJECTIVE: Liver fibrosis has been considered a predictor of cardiovascular disease. This study aimed to evaluate whether the degree of liver fibrosis is related to post-stroke depression (PSD) at 3 months follow-up. METHODS: We prospectively and continuously enrolled patients with first-ever ischemic stroke from June 2020 to January 2022. Liver fibrosis was measured after admission by calculating the Fibrosis-4 index (FIB-4) and stratified into two categories (< 2.67 versus ≥ 2.67). Patients with a 17-item Hamilton Depression Scale score > 7 were further evaluated using the Chinese version of the structured clinical interview of DSM-IV, for diagnosing PSD at 3 months. RESULTS: A total of 326 patients (mean age 66.6 years, 51.5% male) were recruited for the study. As determined by the FIB-4 score, 80 (24.5%) patients had advanced liver fibrosis. During the follow-up, PSD was observed in 91 patients, which accounted for 27.9% (95% confidence interval [CI] 25.5%-30.5%) of the cohort. The prevalence of advanced liver fibrosis was higher in PSD patients than those without PSD (40.0% versus 24.0%; P = 0.006). After adjustment for covariates in the multivariate logistic analysis, advanced fibrosis was significantly associated with PSD (odds ratio [OR], 1.88; 95% CI, 1.03-3.42; P = 0.040). Similar results were found when the FIB-4 was analyzed as a continuous variable. CONCLUSIONS: This study found that advanced liver fibrosis was associated with an increased risk of 3-month PSD. FIB-4 score may be valuable for screening depressive symptoms in ischemic stroke patients.


Assuntos
Depressão , AVC Isquêmico , Cirrose Hepática , Idoso , Feminino , Humanos , Masculino , Depressão/epidemiologia , Depressão/etiologia , AVC Isquêmico/complicações , AVC Isquêmico/epidemiologia , Cirrose Hepática/complicações , Cirrose Hepática/epidemiologia
3.
J Colloid Interface Sci ; 637: 10-19, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36682114

RESUMO

Platinum group metal (PGM)-free catalysts represented by nitrogen and iron co-doped carbon (Fe-N-C) catalysts are desirable and critical for metal-air batteries, but challenges still exist in performance and stability. Here, cerium oxides (CeOx) are incorporated into a two-dimensional Fe-N-C catalyst (FeNC-Ce-950) via a host-guest strategy. The Ce4+/Ce3+ redox system creates a large number of oxygen vacancies for rapid O2 adsorption to accelerate the kinetics of oxygen reduction reaction (ORR). Consequently, the as-synthesized FeNC-Ce-950 catalyst exhibits a half-wave potential (E1/2) of 0.921 V and negligible decay (<2 mV for ΔE1/2) after 5,000 accelerated durability cycles, significantly outperforming most of ORR catalysts reported in recent years and precious metal counterparts. When applied in a zinc-air battery, it demonstrates a peak power density of 175 mW cm-2 and a specific capacity of 757 mAh gZn-1. This study also provides a reference for the exploration of Fe-N-C catalysts decorated with variable valence metal oxides.

4.
Sci Total Environ ; : 161711, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36682563

RESUMO

The frequency of extreme drought events has been rising worldwide, but due to its unpredictability, how plants will respond remains poorly understood. Here, we aimed to characterize how the hydraulics and photosynthesis of savanna plants respond to extreme drought, and tested whether they can subsequently recover photosynthesis after drought. There was an extreme drought in 2019 in Southwest (SW) China. We investigated photosynthetic gas exchange, leaf-, stem-, and whole-shoot hydraulic conductance of 18 plant species with diverse leaf habits (deciduous, semi-deciduous and evergreen) and growth forms (tree and shrub) from a dry-hot valley savanna in SW China for three rainy seasons from 2019 to 2021. We also compared photosynthetic gas exchange to those of a regular year (2014). We found that leaf stomatal and hydraulic conductance and maximum photosynthetic rate were significantly lower during the drought in 2019 than in the wetter years. In 2019, all studied plants maintained stomatal conductance at their minimum level observed, which could be related to high vapor pressure deficits (VPD, >2 kPa). However, no significant difference in stem and shoot hydraulic conductance was detected across years. The reductions in leaf hydraulic conductance and stomatal regulation under extreme drought might help keep the stem hydraulic function. Stomatal conductance and photosynthesis after drought (2020 and 2021) showed comparable or even higher values compared to that of 2014, suggesting high recovery of photosynthetic gas exchange. In addition, the response of hydraulic and photosynthetic traits to extreme drought was convergent across leaf habits and growth forms. Our results will help better understand the physiological mechanism underlying the response of savanna ecosystems to climate change.

5.
mSphere ; : e0059422, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36655998

RESUMO

Magnaporthe oryzae and Ustilaginoidea virens are two filamentous fungal pathogens that threaten rice production worldwide. Genetic tools that permit fast gene deletion and silencing are of great interest for functional genomics of fungal pathogens. As a revolutionary genome editing tool, clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) enable many innovative applications. Here, we developed a CRISPR interference (CRISPRi) toolkit using nuclease activity dead Cas9 (dCas9) to silence genes of interest in M. oryzae and U. virens. We optimized the components of CRISPRi vectors, including transcriptional repression domains, dCas9 promoters, and guide RNA (gRNA) promoters. The CRISPRi tool was tested using nine gRNAs to target the promoters of MoATG3, MoATG7, and UvPal1. The results indicated that a single gRNA could direct the dCas9-fused transcriptional repression domain to efficiently silence the target gene in M. oryzae and U. virens. In both fungi, the target genes were repressed >100-fold, and desired phenotypes were observed in CRISPRi strains. Importantly, we showed that multiple genes could be easily silenced using polycistronic tRNA-gRNA in CRISPRi. Furthermore, gRNAs that bind different promoter regions displayed variable repression levels of target genes, highlighting the importance of gRNA design for CRISPRi efficiency. Together, this study provides an efficient and robust CRISPRi tool for targeted gene silencing in M. oryzae and U. virens. Owing to its simplicity and multiplexity, CRISPRi will be a useful tool for gene function discovery in fungal pathogens. IMPORTANCE Many devastating plant diseases are caused by fungal pathogens that evolve rapidly to adapt to host resistance and environmental changes. Therefore, genetic tools that enable fast gene function discovery are needed to study the pathogenicity and stress adaptation of fungal pathogens. In this study, we adopted the CRISPR/Cas9 system to silence genes in Magnaporthe oryzae and Ustilaginoidea virens, which are two dominant fungal pathogens that threaten rice production worldwide. We present a versatile and robust CRISPRi toolkit that represses target gene expression >100-fold using a single gRNA. We also demonstrated that CRISPRi could simultaneously silence multiple genes using the tRNA-gRNA strategy. The CRISPRi technologies described in this study would accelerate the functional genomics of fungal pathogens.

6.
New Phytol ; 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36651017

RESUMO

Mistletoes play important roles in biogeochemical cycles. Although many studies have compared nutrient concentrations between mistletoes and their hosts, no general patterns have been found and the nutrient uptake mechanisms in mistletoes have not been fully resolved. To address the water and nutrient relations in mistletoes compared with their hosts, we measured 11 nutrient elements, two isotope ratios and two leaf morphological traits for 11 mistletoe and 104 host species from four sites across a large environmental gradient in southwest China. Mistletoes had significantly higher phosphorus, potassium, and boron concentrations, nitrogen isotope ratio, and lower carbon isotope ratio (δ13 C) indicative of lower water-use efficiency than hosts, but other elements were similar to those in hosts. Sites explained most of the variation in the multidimensional trait space. With increasing host nitrogen concentration, both mistletoe δ13 C and the difference between mistletoe and host δ13 C increased, providing evidence to support the "nitrogen parasitism hypothesis". Host nutrient concentrations were the best predictors for that of the mistletoe nutrient elements in most cases. Our results highlight the important roles of environmental conditions and host nutrient status in determining mistletoe nutrient pools, which together explain their trophic interactions with hosts in subtropical and tropical ecosystems.

7.
Chemosphere ; 317: 137912, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681198

RESUMO

Bio-trickling filters (BTFs) use an inert filler to purify pollutants making them prone to clogging due to bacterial accumulation. To investigate the performance of a non-inert filler in BTF and its cooperation with insects to relieve clogging, a vertical BTF was constructed with a loofah/Pall ring/polydimethylsiloxane composite filler and selected bacteria to purify toluene. The BTF was started up within 17 d and restarted within 3 d after starvation for 12-16 d. Its average removal efficiency was >90% at steady state. The maximum elimination capacity of 86.4 g·(m3·h)-1 was obtained at a volume capacity of 96.2 g·(m3·h)-1. The introduction of holometabolous insects (Clogmia albipunctata) rapidly removed the biofilm and accelerated the degradation of the loofah, which alleviated clogging. Furthermore, confocal laser scanning microscope (CLSM) observations showed that the biofilm polysaccharides were difficult to remove, while lipids were readily lost. Analysis of microbial diversity over time and space revealed that the dominant bacterium, Comamonas, was replaced by diverse microflora with no obvious dominant genus. Insect introduction and loofah migration had little effect on the evolution of microflora. This study provides a promising approach to operating BTFs with less clogging.

8.
Exp Neurol ; 362: 114323, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36690057

RESUMO

In this study, we investigated the effect of neuregulin-1 (NRG1) on demyelination and neurological function in an ischemic stroke model, and further explored its neuroprotective mechanisms. Adult male ICR mice underwent photothrombotic ischemia surgery and were injected with NRG1 beginning 30 min after ischemia. Cylinder and grid walking tests were performed to evaluate the forepaw function. In addition, the effect of NRG1 on neuronal damage/death (Cresyl violet, CV), neuronal nuclei (NeuN), nestin, doublecortin (DCX), myelin basic protein (MBP), non-phosphorylated neurofilaments (SMI-32), adenomatous polyposis coli (APC), erythroblastic leukemia viral oncogene homolog (ErbB) 2, 4 and serine-threonine protein kinase (Akt) in cortex were evaluated using immunohistochemistry, immunofluorescence and western blot. The cylinder and grid walking tests exposed that treatment of NRG1 observably regained the forepaw function. NRG1 treatment reduced cerebral infarction, restored forepaw function, promoted proliferation and differentiation of neuron and increased oligodendrogliogenesis. The neuroprotective effect of NRG1 is involved in its activation of PI3K/Akt signaling pathway via ErbB2, as shown by the suppression of the effect of NRG1 by the PI3K inhibitor LY294002. Our results demonstrate that NRG1 is effective in ameliorating the both acute phase neuroprotection and long-term neurological functions via resumption of neuronal proliferation and differentiation and oligodendrogliogenesis in a male mouse model of ischemic stroke.

9.
Biomed Pharmacother ; 160: 114315, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36716661

RESUMO

Gastric ulcer (GU) is one of the most prevalent digestive system diseases in humans, and it has been linked to inflammation. Previous studies have demonstrated the anti-inflammatory potential of isoalantolactone (IAL), a sesquiterpene lactone isolated from Radix Inulae. However, the pharmacological effects of IAL on GU and its mechanism of action are still unclear. Hence, the present study is aimed to investigate the anti-inflammatory potential of IAL on GU. Firstly, we assessed the effect of IAL on ethanol-induced injury of human gastric epithelial cells and the levels of inflammatory cytokines in cell culture supernatants. Then, the anti-inflammatory effects of IAL were confirmed in vivo using zebrafish inflammation models. Furthermore, the mechanism of IAL against GU was preliminarily discussed through network pharmacology and molecular docking studies. Quantitative real-time PCR assays were also used to confirm the mechanism of IAL action. ALB, EGFR, SRC, HSP90AA1, and CASP3 were found for the first time as the key targets of the IAL anti-GU. PI3K-Akt signaling pathway and Th17 cell differentiation were identified to play a crucial role in the anti-GU effects of IAL. In conclusion, we found that IAL has anti-inflammatory effects both in vitro and in vivo, and showed potential protective effects against ethanol-induced GU.

10.
Chemosphere ; 314: 137700, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587916

RESUMO

Microbes serve as important components of ecosystem services and biogeochemical processes in plateau lakes. However, the features of microbiota assembly, abundance and diversity in plateau lakes remain unclear. The microbial communities in surface water from nine plateau lakes in Yunnan Plateau, southwestern China, in the dry and rainy seasons were explored using 16S rRNA gene and 18S rRNA gene sequencing. The results showed that the bacterial community compositions were homogeneous while those of micro-eukaryotes were heterogeneous in plateau lakes. In both seasons, the bacterial phyla of Proteobacteria and Actinobacteriota predominated in oligotrophic lakes. The mesotrophic lakes were dominated by Proteobacteria, Actinobacteriota, Bacteroidota and Cyanobacteria. The eutrophic lakes were mainly dominated by Proteobacteria, Actinobacteriota and Cyanobacteria. The phylum SAR_k_norank had the major micro-eukaryotes in these plateau lakes. The alpha-diversity of bacteria declined in the rainy season, while that of micro-eukaryotes varied from lake to lake. The drivers of microbiotic community assembly in the dry season were identified as nutrient level-related factors. In the rainy season, however, the microbiota in oligotrophic lakes were related to nutrient levels. Microbial communities were driven by precipitation in mesotrophic and eutrophic lakes with large water volumes, while those in lakes with small water volumes were regulated by nutrient level-related factors. Our findings pose first and unique insights into the microbiota of the nine plateau lakes in Yunnan Plateau, providing important ecological knowledge for these lakes with different characteristics.


Assuntos
Cianobactérias , Microbiota , Lagos/química , China , RNA Ribossômico 16S/genética , Cianobactérias/genética , Proteobactérias/genética , Água
11.
Exp Lung Res ; : 1-14, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719141

RESUMO

Purpose: Endoplasmic reticulum (ER) stress regulates mucus hypersecretion, and may activate downstream factors via TBK1 signaling to induce gene expression. However, it remains unclear whether ER stress promotes airway mucus secretion through the TBK1 pathway. We aimed to investigate the role of the TBK1 pathway in the regulation of MUC5AC expression in a mouse model of house dust mite (HDM)-induced allergic asthma. Materials and Methods: Mice with HDM-induced asthma and human bronchial epithelial BEAS-2B cells were treated with amlexanox, an anti-allergy drug (25 µM), or 4-PBA (10 mM). Tissue and cell samples were collected. Tissue samples were stained with hematoxylin and eosin (H&E) or periodic acid Schiff (PAS) to evaluate pathology. Protein expression was analyzed by western blotting and immunofluorescence. Results: Mice exposed to HDM presented ER stress and hypersecretion of mucus Muc5ac from airway epithelial cells (p < 0.001). Similar results were observed in BEAS-2B cells following exposure to HDM. Both in vivo and in vitro studies revealed that HDM-induced ER stress induced MUC5AC overexpression via TBK1 signaling. Amlexanox and 4-PBA markedly reduced mucus production and weakened the TBK1 signal, which mediates MUC5AC hypersecretion. Conclusion: TBK1 plays a pivotal role in HDM-induced ER stress, leading to overproduction of MUC5AC in the asthmatic airway epithelium. The overproduction of MUC5AC can be significantly decreased by inhibiting TBK1 or ER stress using 4-PBA. These findings highlight potential target-specific therapies for patients with chronic allergic asthma.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36705989

RESUMO

The severe shuttling behavior in the discharging-charging process largely hampers the commercialization of lithium-sulfur (Li-S) batteries. Herein, we design a bifunctional separator with an ultra-lightweight MnO2 coating to establish strong chemical adsorption barriers for shuttling effect alleviation. The double-sided polar MnO2 layers not only trap the lithium polysulfides through extraordinary chemical bonding but also ensure the uniform Li+ flux on the lithium anode and inhibit the side reaction, resulting in homogeneous plating and stripping to avoid corrosion of the Li anode. Consequently, the assembled Li-S battery with the MnO2-modified separator retains a capacity of 665 mA h g-1 at 1 C after 1000 cycles at the areal sulfur loading of 2.5 mg cm-2, corresponding to only 0.028% capacity decay per cycle. Notably, the areal loading of ultra-lightweight MnO2 coating is as low as 0.007 mg cm-2, facilitating the achievement of a high energy density of Li-S batteries. This work reveals that the polar metal oxide-modified separator can effectively inhibit the shuttle effect and protect the Li anode for high-performance Li-S batteries.

13.
Virology ; 579: 94-100, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36623353

RESUMO

Virus-like particles (VLPs) are extremely potent, safe, and serviceable vaccine platforms. Good assembly efficiency of VLPs is the key to reducing vaccine production costs and eliciting a robust immune response. This study adopted CpG and Poly (I:C) as scaffolds to facilitate the assembly of foot-and-mouth disease virus (FMDV) VLPs in vitro. The VLPs and the co-assembly products were characterized by particle size, zeta potential, gel retardation measurement, nuclease digestion experiments, size-exclusion chromatography, transmission electron microscopy and circular dichroism analysis. Our results indicated the successful encapsulation of CpG and Poly (I:C) inside VLPs without any effect on shape or size. Vaccination in mice also elicited a robust immune response. This study demonstrated that CpG and Poly (I:C) improved the efficiency of FMDV VLPs assembly and enhanced immune response, further proposing a new idea for improving the efficiency of VLPs assembly and enriching the in vitro VLPs assembly strategies.

14.
MedComm (2020) ; 4(1): e199, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36628295

RESUMO

In this study, we evaluated the effectiveness and safety of bisoprolol, metoprolol, carvedilol, and nebivolol in the treatment of chronic heart failure. The results demonstrated that bisoprolol improved the prognosis of chronic heart failure in comparison with carvedilol, and carvedilol exerted similar effects as metoprolol succinate and nebivolol and better effect than metoprolol tartrate (evidence levels: bisoprolol > carvedilol = metoprolol succinate = nebivolol > metoprolol tartrate; " > " means "prior to").

16.
Artigo em Inglês | MEDLINE | ID: mdl-36680430

RESUMO

Four new PKS-NRPS-derived macrolide lactams (1-4) with three unique ring fusion types were discovered from the Arctic sponge-associated actinomycete Streptomyces somaliensis 1107 using a genome mining strategy. Their structures were elucidated by a combination of HRESIMS, NMR spectroscopic analyses, and single crystal X-ray diffraction methods. Biosynthetically, a novel gene cluster sml consisting of three polyketide synthases and one hybrid polyketide synthase-nonribosomal peptide synthetase together with cytochrome P450s and flavin-containing monooxygenases and oxidoreductases was demonstrated to assemble the unique skeleton. Pharmacological studies revealed that compound 1 displayed a potent anti-inflammatory effect without cytotoxicity. It inhibited IL-6 and TNF-α release in the serum of LPS-stimulated RAW264.7 macrophage cells with IC50 values of 5.76 and 0.18 µM, respectively, and modulated the MAPK pathway. Moreover, compound 1 alleviated LPS-induced systemic inflammation in our transgenic fluorescent zebrafish model.

17.
Eur J Med Chem ; 249: 115122, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36680987

RESUMO

Neurotoxic α-Syn fibers, the main components of Lewy bodies, play a key role in the development of PD characterized by a progressive loss of dopaminergic neurons. Here, we designed and synthesized the hybrids of polyphenolic/quinone acids. The candidate compounds showed high α-Syn aggregation inhibitory activities in vitro with IC50 down to 1.6 µM. The inhibition went through the aggregation process by stabilizing the conformation of α-Syn proteostasis and preventing ß-sheets aggregation, especially in the lag phase. Furthermore, the candidate drugs could disintegrate the preformed varisized aggregates into pony-size aggregates and functional monomers and continually inhibit the re-aggregation. The activities of anti-aggregation and aggregates depolymerization result in the reduction of inclusions in neuron cells. The candidate drugs also show high anti-oxidation and low cytotoxicity. They finally repair the damaged neurons in 6-OHDA-lesioned C57 mice and significantly improve PD-like symptoms of the PD model mice. The hybrids are promising molecules for PD prevention and therapy.© 2022 Elsevier Masson SAS. All rights reserved.

18.
Cell Death Differ ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681779

RESUMO

Innate immunity is the first line to defend against pathogenic microorganisms, and Toll-like receptor (TLR)-mediated inflammatory responses are an essential component of innate immunity. However, the regulatory mechanisms of TLRs in innate immunity remain unperfected. We found that the expression of E3 ligase Ring finger protein 99 (RNF99) decreased significantly in peripheral blood monocytes from patients infected with Gram negative bacteria (G-) and macrophages stimulated by TLRs ligands, indicating the role of RNF99. We also demonstrated for the first time, the protective role of RNF99 against LPS-induced septic shock and dextran sodium sulfate (DSS)-induced colitis using RNF99 knockout mice (RNF99-/-) and bone marrow-transplanted mice. In vitro experiments revealed that RNF99 deficiency significantly promoted TLR-mediated inflammatory cytokine expression and activated the NF-κB and MAPK pathways in macrophages. Mechanistically, in both macrophages and HEK293 cell line with TLR4 stably transfection, RNF99 interacted with and degraded TAK1-binding protein (TAB) 2, a regulatory protein of the kinase TAK1, via the lysine (K)48-linked ubiquitin-proteasomal pathway on lysine 611 of TAB2, which further regulated the TLR-mediated inflammatory response. Overall, these findings indicated the physiological significance of RNF99 in macrophages in regulating TLR-mediated inflammatory reactions. It provided new insight into TLRs signal transduction, and offered a novel approach for preventing bacterial infections, endotoxin shock, and other inflammatory ills.

19.
Sci Rep ; 13(1): 1048, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658204

RESUMO

Acute Stanford type A aortic dissection (ATAAD) with sudden onset and high mortality requiries a standard Bentall operation and a accurate prognosis in common, together with alteration of CO2 combining power (CO2CP) and serum sodium rase concern, hence, we evaluated the prognostic value of CO2CP combined with serum sodium in ATAAD patients. This retrospective study included 183 patients who underwent Bentall operation for ATAAD from 2015 to 2021 in the Fourth Hospital of Hebei Medical University, subsequently followed grouping by the levels of CO2CP and serum sodium. The study endpoint was 30-day all-cause mortality, and the prognostic value of CO2CP combined with serum sodium levels in ATAAD patients were evaluated with multivariate logistic regression method. The postoperative incidence of in-hospital death and adverse events in patients with ATAAD were 18% and 25.7%, respectively. Combination of CO2CP and serum sodium for predicting ATAAD death and adverse events presented a higher predictive value than each single indicator with ROC curve analysis (the AUC of CO2CP combined with serum sodium was 0.786, 95% CI 0.706-0.869, P < 0.001), along with CO2CP < 22.5 mmol/L + serum sodium > 138.5 mmol/L group had the worst prognostic. Multivariate regression analyse showed that CO2CP < 22.5 mmol/L combined with serum sodium > 138.5 mmol/L preferably predicted the prognosis of ATAAD (OR =6.073, 95% CI 2.557-14.425, P < 0.001). Consistently, the cumulative 30-day survival after surgery in ATAAD patients with the low CO2CP and high serum sodium simultaneously was the worst (log-rank P < 0.05). The combination of CO2CP and serum sodium increases the predictive value of prognosis, which is conducive to risk stratification of patients with ATAAD.


Assuntos
Dióxido de Carbono , Humanos , Estudos Retrospectivos , Mortalidade Hospitalar , Prognóstico , Sódio
20.
Artigo em Inglês | MEDLINE | ID: mdl-36690857

RESUMO

2,4,6-Trichloroanisole (2,4,6-TCA) has aroused a special concern for their odor problem and potential threats. In this study, the degradation of 2,4,6-TCA by UV/chlorination with different UV sources was compared, including low-pressure mercury lamp (LPUV, 254 nm) and ultraviolet light-emitting diode (UV-LED, 275 and 285 nm). The maximum removal of 2,4,6-TCA can be achieved by 275-nm UV-LED/chlorination in neutral and alkaline conditions which was 80.0%. The reaction, kinetics, and water matrix parameters on 2,4,6-TCA degradation were also evaluated. During UV-LED (275 nm)/chlorination, 2,4,6-TCA degradation was mainly caused by direct UV photolysis and indirect hydroxyl radical (HO·) oxidation, while reactive chlorine radicals (RCSs) had a negligible contribution. The second-order rate constant between HO· and 2,4,6-TCA was determined as 3.1 × 109 M-1 s-1. Increasing initial chlorine dosage and decreasing 2,4,6-TCA concentration or pH value significantly promoted 2,4,6-TCA degradation during UV/chlorination process. The presence of natural organic matter (NOM) and bicarbonate (HCO3-) can inhibit 2,4,6-TCA degradation, while chloride ion (Cl-) had a negligible effect. The kinetic model for 2,4,6-TCA degradation was established and validated, and the degradation pathways were proposed based on the identified intermediates. Furthermore, UV-LED (275 nm)/chlorination also exhibited a promising effect on 2,4,6-TCA removal in real water, which can be used to control 2,4,6-TCA pollution and odor problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...