Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Comput Stand Interfaces ; 83: 103643, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35400843

RESUMO

The COVID-19 pandemic has severely affected daily life and caused a great loss to the global economy. Due to the very urgent need for identifying close contacts of confirmed patients in the current situation, the development of automated contact tracing app for smart devices has attracted more attention all over the world. Compared with expensive manual tracing approach, automated contact tracing apps can offer fast and precise tracing service, however, over-pursing high efficiency would lead to the privacy-leaking issue for app users. By combing with the benign properties (e.g., anonymity, decentralization, and traceability) of blockchain, we propose an efficient privacy-preserving solution in automated tracing scenario. Our main technique is a combination of non-interactive zero-knowledge proof and multi-signature with public key aggregation. By means of aggregating multiple signatures from different contacts at the mutual commitment phase, we only need fewer zero-knowledge proofs to complete the task of identifying contacts. It inherently leads to the benefits of saving storage and consuming less time for running verification algorithm on blockchain. Furthermore, we perform an experimental comparison by timing the execution of signature verification with and without aggregate signature, respectively. It shows that our solution can actually preserve the full-fledged privacy protection property with a lower computational cost.

2.
BMC Neurol ; 22(1): 173, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546388

RESUMO

BACKGROUND: Many stroke survivors have multiple chronic diseases and complications coupled with various other factors which may affect their functional status. We aimed to investigate the factors associated with poor functional status in hospitalized patients with stroke in Shenzhen, China. METHODS: In this cross-sectional study, four urban hospitals were selected using convenient sampling, and all stroke patients in these four hospitals were included using cluster sampling. The functional status of stroke survivors was evaluated using Longshi Scale. Explanatory variables (factors affecting functional status comprising age, sex, body mass index, smoking, alcohol consumption, complications, and chronic conditions) were collected. Ordinal logistic regression was used to examine which factors were associated with poor functional status. RESULTS: Stroke survivors with poor functional status accounted for 72.14% and were categorised as the bedridden group based on Longshi scale, 21.67% of patients with moderate functional limitation were categorised as the domestic group, and 6.19% of the patients with mild functional restriction were categorised as the community group. The highest dependence scores were noted for feeding (73.39%), bowel and bladder management (69.74%) and entertainment (69.53%) among the bedridden group, and housework (74.29%) among the domestic group. In the adjusted model, the odds of poor functional status were higher among stroke patients with older age (odds ratio [OR] = 2.39, 95% CI: 1.55-3.80), female sex (OR = 1.73, 95% CI: 1.08-2.77), duration of stroke more than 12 months (OR = 1.94, 95% CI: 1.28-2.95), with pulmonary infection (OR = 10.91, 95% CI: 5.81-20.50), and with deep venous thrombosis (OR = 3.00, 95% CI: 1.28-7.04). CONCLUSIONS: Older adults (age ≥ 60 years) and women were more likely to exhibit poor functional status post-stroke. Pulmonary infection and deep venous thrombosis were related to an increased risk of being dependent on activities of daily living. Therefore, clinical and rehabilitation interventions aimed at preventing or treating these common complications should be addressed to deal with subsequent dysfunction post-stroke. Since all data were obtained in metropolitan areas where the economy is well developed, future studies should be conducted in rural areas and economically less developed cities.

3.
Nanoscale ; 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543212

RESUMO

Efficient interfacial light-electric interconversion in van der Waals (vdW) heterostructures is crucial for their optoelectronic applications. However, an in-depth understanding of the necessary process for device operation, namely interfacial charge transfer (CT), has thus far remained elusive. In this study, by using photon energy-dependent transient THz spectroscopy, we complementarily investigate the interfacial CT process in heterostructures comprising monolayers of WSe2 and graphene with varying stacking orders on a sapphire substrate. We observe that the CT mechanism of the sub-A-exciton excitation is different from that of the above-A-exciton excitation. Notably, the CT process occurs via a photo-thermionic emission for sub-A-exciton excitations and a direct electron (or hole) transfer for above-A-exciton excitations. Furthermore, we demonstrate that the effective electric field induced by the sapphire substrate could adjust the Schottky barrier from a p-type contact (WSe2/Gr/sapphire) to an n-type contact (Gr/WSe2/sapphire). Consequently, it is more beneficial for the photo-thermionic electrons to transfer from graphene to WSe2 over the Schottky barrier in Gr/WSe2/sapphire. These results can provide new insights into the CT process in graphene-transition metal dichalcogenide (TMDC) vdW interfaces, which are critical to potential optoelectronic applications of graphene-TMDC heterostructures.

4.
FASEB J ; 36(6): e22332, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35503088

RESUMO

Numerous studies have reported the pathogenic roles of C-reactive protein (CRP) and complement activation in diabetic kidney disease (DKD) individually. However, considering the potent regulatory effect of CRP on complement activation, it remains unclear whether CRP participates in DKD pathogenesis by regulating complement activation. Moreover, this work focuses on complement activation in rats, which aims at settling the dispute that whether rat CRP can activate the complement system. To address this question, the complement effectors C3a, C5a, and C5b-9 were examined in human patients with diabetic nephropathy (DN) and wt, Crp-/- , and huCRPtg rats with STZ-diabetic DKD. The Crp-/- rats showed more C3a accumulation in blood and glomeruli than wt and huCRPtg rats. The balance between autophagy and apoptosis was evaluated in DKD rats, and Crp-/- rats showed increased podocyte autophagy compared with wt and huCRPtg rats. Meanwhile, stable CRP-overexpression and CRP-knockout cell lines were established and used to demonstrate that CRP suppresses C3a-induced podocyte autophagy under high-glucose conditions. We further verified that the inhibition of C3a-induced podocyte autophagy by CRP was dependent on C3aR expression and that this effect could be reversed with a C3aR antagonist and agonist. Therefore, our findings provide evidence that CRP suppresses podocyte autophagy to accelerate the development of DKD by inhibiting C3a/C3aR axis signaling, which may help in the development of a new therapeutic strategy for the management of podocyte autophagy and DKD. In addition, rat CRP has been shown to be identical to human CRP in the activation of autologous complement and interspecific complement.


Assuntos
Proteínas de Transporte/metabolismo , Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Animais , Autofagia , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Complemento C3a , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Feminino , Humanos , Masculino , Podócitos/metabolismo , Ratos , Receptores de Complemento/genética , Receptores de Complemento/metabolismo
5.
PLoS One ; 17(5): e0267747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544482

RESUMO

BACKGROUND: Generalized regression neural network (GRNN) and logistic regression (LR) are extensively used in the medical field; however, the better model for predicting stroke outcome has not been established. The primary goal of this study was to compare the accuracies of GRNN and LR models to identify the most optimal model for the prediction of acute stroke outcome, as well as explore useful biomarkers for predicting the prognosis of acute stroke patients. METHOD: In a single-center study, 216 (80% for the training set and 20% for the test set) acute stroke patients admitted to the Shenzhen Second People's Hospital between December 2019 to June 2021 were retrospectively recruited. The functional outcomes of the patients were measured using Barthel Index (BI) on discharge. A training set was used to optimize the GRNN and LR models. The test set was utilized to validate and compare the performances of GRNN and LR in predicting acute stroke outcome based on the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, and the Kappa value. RESULT: The LR analysis showed that age, the National Institute Health Stroke Scale score, BI index, hemoglobin, and albumin were independently associated with stroke outcome. After validating in test set using these variables, we found that the GRNN model showed a better performance based on AUROC (0.931 vs 0.702), sensitivity (0.933 vs 0.700), specificity (0.889 vs 0.722), accuracy (0.896 vs 0.729), and the Kappa value (0.775 vs 0.416) than the LR model. CONCLUSION: Overall, the GRNN model demonstrated superior performance to the LR model in predicting the prognosis of acute stroke patients. In addition to its advantage in not affected by implicit interactions and complex relationship in the data. Thus, we suggested that GRNN could be served as the optimal statistical model for acute stroke outcome prediction. Simultaneously, prospective validation based on more variables of the GRNN model for the prediction is required in future studies.

6.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562981

RESUMO

Low phosphorus (P) availability limits soybean growth and yield. A set of potential strategies for plant responses to P deficiency have been elucidated in the past decades, especially in model plants such as Arabidopsis thaliana and rice (Oryza sativa). Recently, substantial efforts focus on the mechanisms underlying P deficiency improvement in legume crops, especially in soybeans (Glycine max). This review summarizes recent advances in the morphological, metabolic, and molecular responses of soybean to phosphate (Pi) starvation through the combined analysis of transcriptomics, proteomics, and metabolomics. Furthermore, we highlight the functions of the key factors controlling root growth and P homeostasis, base on which, a P signaling network in soybean was subsequently presumed. This review also discusses current barriers and depicts perspectives in engineering soybean cultivars with high P efficiency.

7.
J Cardiovasc Nurs ; 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35467581

RESUMO

BACKGROUND: Self-care is important for improving the health outcomes of individuals with chronic heart failure (CHF). However, predictors of self-care behaviors remain unclear in Chinese society. OBJECTIVE: The aims of this study were to explore predictors of self-care in Chinese patients with CHF and clarify the complex relationships between predictors and self-care behaviors guided by the Situation-Specific Theory of Heart Failure Self-Care. METHODS: A cross-sectional study was conducted among individuals hospitalized with CHF in China. Person, problem, and environmental factors pertaining to self-care were collected by a questionnaire survey. Self-care was assessed by the Self-Care of Heart Failure Index version 6. Direct and indirect relationships between factors and self-care behaviors and the mediating role of self-care confidence were analyzed by the structural equation model. RESULTS: In total, 204 participants were involved in this study. The Situation-Specific Theory of Heart Failure Self-Care model demonstrated a good fit (root mean square error of approximation, 0.046; goodness of fit index, 0.966; normed fit index, 0.914; comparative fit index, 0.971). Inadequate self-care capabilities were common among Chinese patients with CHF. Person-related factors (female gender, higher monthly income and educational level), problem-related factors (severe New York Heart Association function class and better instrumental activities of daily living), and environmental factors (better social support and living in more developed areas) were significant predictors of better self-care behaviors (P < .05). These associations were partly or fully mediated by self-care confidence. CONCLUSION: The Situation-Specific Theory of Heart Failure Self-Care can be used to guide research and practice in patients with CHF. Interventions and policies on promoting self-care in Chinese population living with CHF are encouraged, particularly for underserved populations.

8.
J Exp Bot ; 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35429161

RESUMO

Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and histone modification, but the precise mechanism is yet unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq) and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac with gene expression and transcript elongation. A set of 1,249 up-regulated, differentially expressed genes (DEGs) and 996 down-regulated DEGs showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac was observed during rice flag leaf aging. We produced a landscape of H3K9 acetylation- modified gene expression targets that includes known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis- related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac and elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.

9.
Bioact Mater ; 18: 138-150, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35387155

RESUMO

Despite the recent advances in artificial tissue and organ engineering, how to generate large size viable and functional complex organs still remains as a grand challenge for regenerative medicine. Three-dimensional bioprinting has demonstrated its advantages as one of the major methods in fabricating simple tissues, yet it still faces difficulties to generate vasculatures and preserve cell functions in complex organ production. Here, we overcome the limitations of conventional bioprinting systems by converting a six degree-of-freedom robotic arm into a bioprinter, therefore enables cell printing on 3D complex-shaped vascular scaffolds from all directions. We also developed an oil bath-based cell printing method to better preserve cell natural functions after printing. Together with a self-designed bioreactor and a repeated print-and-culture strategy, our bioprinting system is capable to generate vascularized, contractible, and long-term survived cardiac tissues. Such bioprinting strategy mimics the in vivo organ development process and presents a promising solution for in vitro fabrication of complex organs.

10.
Sci Rep ; 12(1): 5899, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393483

RESUMO

Social isolation induces stress, anxiety, and mild cognitive impairment that could progress towards irreversible brain damage. A probable player in the mechanism of social isolation-induced anxiety is astrocytes, specialized glial cells that support proper brain function. Using a social isolation mouse model, we observed worsened cognitive and memory abilities with reductions of Object Recognition Index (ORI) in novel object recognition test and Recognition Index (RI) in novel context recognition test. Social isolation also increased astrocyte density, reduced astrocyte size with shorter branches, and reduced morphological complexity in the hippocampus. Dihydromyricetin, a flavonoid that we previously demonstrated to have anxiolytic properties, improved memory/cognition and restored astrocyte plasticity in these mice. Our study indicates astrocytic involvement in social isolation-induced cognitive impairment as well as anxiety and suggest dihydromyricetin as an early-stage intervention against anxiety, cognitive impairment, and potential permanent brain damage.


Assuntos
Astrócitos , Disfunção Cognitiva , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Hipocampo , Camundongos , Isolamento Social/psicologia
11.
Water Res ; 218: 118495, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35489154

RESUMO

Granular activated carbon (GAC) filtration impacts pathogen colonization and bacterial communities in drinking water. However, the effects of ozone and heterogeneous Fenton oxidation on microbial community composition, in particular opportunistic pathogens (OPs), and their metabolic potential in biofilms and effluents from GAC filtration are not fully understood. The results of our pilot-scale test indicated that Fenton-GAC filtration removed more dissolved organic carbon (DOC, 1.25 mg/L) than ozone-GAC filtration (0.98 mg/L). Excitation-emission matrix (EEM) results showed that Fenton-GAC removed more tyrosine-like proteins and fulvic acid-like materials, while ozone-GAC removed more humic acid-like compounds and tryptophan-like proteins. Illumina HiSeq analysis indicated that Curvibacter and Hydrogenophaga dominated in the Fenton-GAC biofilm, while Bradyrhizobium, Aquabacterium and Limnobacter were predominant in the ozone-GAC biofilm. Functional prediction suggested that the microbial functional gene related to glyoxylate and dicarboxylate metabolism (the pathway for carbohydrate metabolism) was higher in the Fenton-GAC biofilm, resulting in higher contents of protein in extracellular polymeric substances (EPS) in the Fenton-GAC biofilm. Therefore, there were fewer bacteria that detached from the biofilm into the water during the Fenton-GAC filtration process. The lower EPS content in the effluents from Fenton-GAC resulted in bacteria, including OPs, being easier to remove by chlorine. However, ozone oxidation removed more bacteria, including different OPs, than Fenton oxidation, which contributed to fewer bacteria and OPs in the effluents from ozone-GAC. Overall, our results provide a Fenton-GAC treatment process to remove DOC and control OPs in drinking water systems, the cost of which was comparable to that of ozone-GAC.

12.
IEEE Trans Radiat Plasma Med Sci ; 6(2): 222-230, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35386935

RESUMO

4D-CBCT is a powerful tool to provide respiration-resolved images for the moving target localization. However, projections in each respiratory phase are intrinsically under-sampled under the clinical scanning time and imaging dose constraints. Images reconstructed by compressed sensing (CS)-based methods suffer from blurred edges. Introducing the average-4D-image constraint to the CS-based reconstruction, such as prior-image-constrained CS (PICCS), can improve the edge sharpness of the stable structures. However, PICCS can lead to motion artifacts in the moving regions. In this study, we proposed a dual-encoder convolutional neural network (DeCNN) to realize the average-image-constrained 4D-CBCT reconstruction. The proposed DeCNN has two parallel encoders to extract features from both the under-sampled target phase images and the average images. The features are then concatenated and fed into the decoder for the high-quality target phase image reconstruction. The reconstructed 4D-CBCT using of the proposed DeCNN from the real lung cancer patient data showed (1) qualitatively, clear and accurate edges for both stable and moving structures; (2) quantitatively, low-intensity errors, high peak signal-to-noise ratio, and high structural similarity compared to the ground truth images; and (3) superior quality to those reconstructed by several other state-of-the-art methods including the back-projection, CS total-variation, PICCS, and the single-encoder CNN. Overall, the proposed DeCNN is effective in exploiting the average-image constraint to improve the 4D-CBCT image quality.

13.
Front Cell Dev Biol ; 10: 873319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465325

RESUMO

Background: Exosomes plays a crucial role in intercellular communication of gastric cancer (GC), while long non-coding RNAs (lncRNAs) contributes to the tumorigenesis and progression of GC. This study aims to explore the prognostic exosomes-related lncRNAs of GC patients. Methods: Data of 375 GC patients were obtained from the TCGA database. The entire cohort was randomly divided into a training cohort and a validation cohort in a 2:1 ratio. Exosomes-related lncRNAs were identified by the Pearson correlation analysis with reported exosomes-related genes. LASSO Cox regression was used to construct the signature. Results: A prognostic signature consisting of 11 exosomes-related lncRNAs was identified, and patients with lower risk scores had a better prognosis than those with higher risk scores. ROC curves and multivariate Cox regression analysis showed that the signature was an independent risk factor for prognosis in both the training (HR: 3.254, 95% CI: 2.310-4.583) and validation cohorts (HR: 1.974, 95% CI: 1.108-3.517). Gene set enrichment analysis (GSEA) suggested associations between the signature and several immune-related pathways. The identified signature was shown to be associated with GC tumor microenvironment. The expression of two immune checkpoints was also increased in the high-risk group, including B7-H3 and VSIR, indicating the potential role of the identified signature in GC immunotherapies. Conclusion: A novel exosomes-related lncRNA signature, which may be associated with tumor immune microenvironment and potentially serve as an indicator for immunotherapy, has been identified to precisely predict the prognosis of GC patients.

14.
Clin Nucl Med ; 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35485853

RESUMO

ABSTRACT: 68Ga-FAPI-04 has great potential for the detection and staging evaluation of a variety of tumors. We report a case of suspected gallbladder carcinoma that was enrolled in a prospective study of 68Ga-FAPI-04 imaging at our institution. This case was later histopathologically confirmed as xanthogranulomatous cholecystitis. This demonstrates that xanthogranulomatous cholecystitis might be disguised as gallbladder carcinoma in 68Ga-FAPI-04 imaging. Thus, we suggest that nuclear clinicians evaluating 68Ga-FAPI-04 imaging should be aware of this possibility.

15.
Clin Nucl Med ; 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35485860

RESUMO

ABSTRACT: A 10-year-old girl with a right renal mass underwent 18F-FDG PET/CT and 68Ga-FAPI-04 PET/MRI for presurgical assessment of tumor invasion and malignant potential. The mass showed low 18F-FDG uptake and intense 68Ga-FAPI-04 uptake. Nephrectomy was performed, and the histopathologic diagnosis was aggressive PEComa (perivascular epithelioid cell tumor). This case showed that 68Ga-FAPI-04 PET outperformed 18F-FDG PET in detecting aggressive PEComa.

16.
IEEE Trans Med Imaging ; PP2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404810

RESUMO

Glioma grading during surgery can help clinical treatment planning and prognosis, but intraoperative pathological examination of frozen sections is limited by the long processing time and complex procedures. Near-infrared fluorescence imaging provides chances for fast and accurate real-time diagnosis. Recently, deep learning techniques have been actively explored for medical image analysis and disease diagnosis. However, issues of near-infrared fluorescence images, including small-scale, noise, and low-resolution, increase the difficulty of training a satisfying network. Multi-modal imaging can provide complementary information to boost model performance, but simultaneously designing a proper network and utilizing the information of multi-modal data is challenging. In this work, we propose a novel neural architecture search method DLS-DARTS to automatically search for network architectures to handle these issues. DLS-DARTS has two learnable stems for multi-modal low-level feature fusion and uses a modified perturbation-based derivation strategy to improve the performance on the area under the curve and accuracy. White light imaging and fluorescence imaging in the first near-infrared window (650-900 nm) and the second near-infrared window (1000-1700 nm) are applied to provide multi-modal information on glioma tissues. In the experiments on 1115 surgical glioma specimens, DLS-DARTS achieved an area under the curve of 0.843 and an accuracy of 0.634, which outperformed manually designed convolutional neural networks including ResNet, PyramidNet, and EfficientNet, and a state-of-the-art neural architecture search method for multi-modal medical image classification. Our study demonstrates that DLS-DARTS has the potential to help neurosurgeons during surgery, showing high prospects in medical image analysis.

17.
J Proteomics ; 262: 104597, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35489682

RESUMO

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease of unknown etiology in which the posttranslational modifications (PTMs) of proteins play an important role. PTMs, such as those involved in the formation of neutrophil extracellular traps (NETs), have been well studied. The excessive formation and release of NETs can mediate inflammation and joint destruction in RA. It has been gradually recognized that lysine malonylation (Kmal) can regulate some biological processes in some prokaryotes and eukaryotes. However, less is known about the role of Kmal in RA. We therefore performed proteome and malonylome analyses to explore the proteomic characteristics of the peripheral blood mononuclear cells from 36 RA patients and 82 healthy subjects. In total, 938 differentially expressed proteins (DEPs) and 42 differentially malonylated proteins (DMPs) with 55 Kmal sites were detected through a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analysis. Functional analysis showed that two DEPs with four malonylated sites and one DMP with a malonylated site were identified in the neutrophil extracellular trap formation (NETosis) pathway. Altogether, this study not only describes the characteristics of the malonylome in RA for the first time, but it also reveals that malonylation may be involved in the NETosis pathway. SIGNIFICANCE: This is the first report that reveals the proteomic features of Kmal in RA through a LC-MS/MS-based method. In this study, we found that several key DMPs were associated with the NETosis pathway, which contributes to the development of RA. The present results provide an informative dataset for the future exploration of Kmal in RA.

18.
J Proteomics ; 262: 104598, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35489685

RESUMO

Lysine acetylation (Kac) on histone promotes relaxation of the chromatin conformation and favors gene transcription to regulate oncogenesis, whereas the total acetylation profiling of oral squamous cell carcinoma (OSCC) is unknown. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was utilised to investigate lysine acetylation features of tumor tissues and adjacent normal tissues from 9 patients with OCSS. 282 upregulated Kac sites in 234 proteins and 235 downregulated Kac sites in 162 proteins between OSCC tissues and paired adjacent normal tissues were identified. Different acetylation proteins (DAPs) were analyzed through KEGG-based and MCODE. These DAPs are enriched in the ribosome biogenesis pathway. Survival Analysis of hub genes with TCGA database was performed. In addition, IPA software was used to explore the connection between 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) and the different expression of KATs and KDACs identified in our proteomic. The study is the first comparative study of Kac modification on oral squamous cell carcinoma. We propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC. SIGNIFICANCE: The study is the first comparative study of Kac modification on oral squamous cell carcinoma through LC-MS/MS-based modified proteomic. These DAPs are high enriched in the ribosome biogenesis pathway. Used MCODE and survival analysis, 9 core DAPs (RPS3, RPL24, RPL19, EIF4A2, RPL12, MYBPC1, RPS6, ARCN1, and TMEM9) were screened. IPA software was used to explore the connection between 9 core DAPs and the different expression of KATs and KDACs identified in our proteomic. In addition, we propose to put forward the hypothesis that the dysfunction of ribosome biogenesis caused by the change of Lysine acetylation, especially downregulated acetylation on RPS6 and RPS3 may associated with the pathogenesis of OSCC.

19.
CNS Neurosci Ther ; 28(6): 942-952, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35290717

RESUMO

BACKGROUND: Despite having an overall benign course, non-traumatic non-aneurysmal subarachnoid hemorrhage (naSAH) is still accompanied by a risk of clinical complications and poor outcomes. Risk factors and mechanisms of complications and poor outcomes after naSAH remain unknown. Our aim was to explore the effect of stress-induced hyperglycemia (SIH) on complication rates and functional outcomes in naSAH patients. METHODS: We retrospectively reviewed patients with naSAH admitted to our institution between 2013 and 2018. SIH was identified according to previous criterion. Symptomatic vasospasm, delayed cerebral infarction, and hydrocephalus were identified as main complications. Outcomes were reviewed using a modified Rankin Scale (mRS) at discharge, 3 months, and 12 months. A statistical analysis was conducted to reveal the associations of SIH with complications and outcomes. RESULTS: A total of 244 naSAH patients were included in the cohort with 74 (30.3%) SIH. After adjusting for age, gender, hypertension, Hunt and Hess (HH) grade, modified Fisher Scale (mFS), intraventricular hemorrhage (IVH), and subarachnoid blood distribution, SIH was significantly associated with symptomatic vasospasm (p < 0.001, 12.176 [4.904-30.231]), delayed cerebral infarction (p < 0.001, 12.434 [3.850-40.161]), hydrocephalus (p = 0.008, 5.771 [1.570-21.222]), and poor outcome at 12 months (p = 0.006, 5.506 [1.632-18.581]), whereas the correlation between SIH and poor outcome at discharge (p = 0.064, 2.409 [0.951-6.100]) or 3 months (p = 0.110, 2.029 [0.852-4.833]) was not significant. Incorporation of SIH increased the area under curve (AUC) of ROC in the combined model for predicting symptomatic vasospasm (p = 0.002), delayed cerebral infarction (p = 0.024), hydrocephalus (p = 0.037), and 12-month poor outcome (p = 0.087). CONCLUSIONS: SIH is a significant and independent risk factor for symptomatic vasospasm, delayed cerebral infarction, hydrocephalus, and long-term poor outcome in naSAH patients. Identifying SIH early after naSAH is important for decision-making and treatment planning.


Assuntos
Hidrocefalia , Hiperglicemia , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Infarto Cerebral , Humanos , Hidrocefalia/etiologia , Hiperglicemia/complicações , Estudos Retrospectivos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/terapia , Resultado do Tratamento , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/terapia
20.
Phys Med Biol ; 67(8)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35313293

RESUMO

Objective.4D-CBCT provides phase-resolved images valuable for radiomics analysis for outcome prediction throughout treatment courses. However, 4D-CBCT suffers from streak artifacts caused by under-sampling, which severely degrades the accuracy of radiomic features. Previously we developed group-patient-trained deep learning methods to enhance the 4D-CBCT quality for radiomics analysis, which was not optimized for individual patients. In this study, a patient-specific model was developed to further improve the accuracy of 4D-CBCT based radiomics analysis for individual patients.Approach.This patient-specific model was trained with intra-patient data. Specifically, patient planning 4D-CT was augmented through image translation, rotation, and deformation to generate 305 CT volumes from 10 volumes to simulate possible patient positions during the onboard image acquisition. 72 projections were simulated from 4D-CT for each phase and were used to reconstruct 4D-CBCT using FDK back-projection algorithm. The patient-specific model was trained using these 305 paired sets of patient-specific 4D-CT and 4D-CBCT data to enhance the 4D-CBCT image to match with 4D-CT images as ground truth. For model testing, 4D-CBCT were simulated from a separate set of 4D-CT scan images acquired from the same patient and were then enhanced by this patient-specific model. Radiomics features were then extracted from the testing 4D-CT, 4D-CBCT, and enhanced 4D-CBCT image sets for comparison. The patient-specific model was tested using 4 lung-SBRT patients' data and compared with the performance of the group-based model. The impact of model dimensionality, region of interest (ROI) selection, and loss function on the model accuracy was also investigated.Main results.Compared with a group-based model, the patient-specific training model further improved the accuracy of radiomic features, especially for features with large errors in the group-based model. For example, the 3D whole-body and ROI loss-based patient-specific model reduces the errors of the first-order median feature by 83.67%, the wavelet LLL feature maximum by 91.98%, and the wavelet HLL skewness feature by 15.0% on average for the four patients tested. In addition, the patient-specific models with different dimensionality (2D versus 3D) or loss functions (L1 versus L1 + VGG + GAN) achieved comparable results for improving the radiomics accuracy. Using whole-body or whole-body+ROI L1 loss for the model achieved better results than using the ROI L1 loss alone as the loss function.Significance.This study demonstrated that the patient-specific model is more effective than the group-based model on improving the accuracy of the 4D-CBCT radiomic features analysis, which could potentially improve the precision for outcome prediction in radiotherapy.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico/métodos , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...