Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 651
Filtrar
1.
Adv Mater ; : e2402401, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634328

RESUMO

Quasi-solid-state batteries (QSSBs) are gaining widespread attention as a promising solution to improve battery safety performance. However, the safety improvement and the underlying mechanisms of QSSBs remain elusive. Herein, a novel strategy combining high-safety ethylene carbonate-free liquid electrolyte and in situ polymerization technique is proposed to prepare practical QSSBs. The Ah-level QSSBs with LiNi0.83Co0.11Mn0.06O2 cathode and graphite-silicon anode demonstrate significantly improved safety features without sacrificing electrochemical performance. As evidenced by accelerating rate calorimetry tests, the QSSBs exhibit increased self-heating temperature and onset temperature (T2), and decreased temperature rise rate during thermal runaway (TR). The T2 has a maximum increase of 48.4 °C compared to the conventional liquid batteries. Moreover, the QSSBs do not undergo TR until 180 °C (even 200 °C) during the hot-box tests, presenting significant improvement compared to the liquid batteries that run into TR at 130 °C. Systematic investigations show that the in-situ-formed polymer skeleton effectively mitigates the exothermic reactions between lithium salts and lithiated anode, retards the oxygen release from cathode, and inhibits crosstalk reactions between cathode and anode at elevated temperatures. The findings offer an innovative solution for practical high-safety QSSBs and open up a new sight for building safer high-energy-density batteries. This article is protected by copyright. All rights reserved.

2.
Plant Biotechnol J ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593377

RESUMO

Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.

3.
Poult Sci ; 103(6): 103648, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38574460

RESUMO

Avian infectious bronchitis virus (IBV) still causes serious economic losses in the poultry industry. Currently, there are multiple prevalent genotypes and serotypes of IBVs. It is imperative to develop a new diagnosis method that is fast, sensitive, specific, simple, and broad-spectrum. A monoclonal hybridoma cell, N2D5, against the IBV N protein was obtained after fusion of myeloma SP2/0 cells with spleen cells isolated from the immunized Balb/c mice. The N2D5 monoclonal antibody (mAb) and the previously prepared mouse polyclonal antibody against the IBV N protein were used to target IBV as a colloidal gold-mAb conjugate and a captured antibody, respectively, in order to develop an immunochromatographic strip. The optimal pH and minimum antibody concentration in the reaction system for colloidal gold-mAb N2D5 conjugation were pH 6.5 and 30 µg/mL, respectively. Common avian pathogens were tested to evaluate the specificity of the strip and no cross-reaction was observed. The sensitivity of the strip for detecting IBV was 10-1.4522 EID50/mL. The strip showed a broad-spectrum cross-reactive capacity for detecting IBV antigens, including multiple IBV genotypes in China and all of the seven serotypes of IBV that are currently prevalent in southern China. Additionally, the result can be observed within 2 min without any equipment. The throat and cloacal swab samples of chickens that were artificially infected with three IBV strains were tested using the developed strip and the qPCR method; the strip test demonstrated a high consistency in detecting IBV via qPCR gene detection. In conclusion, the immunochromatographic strip that was established is rapid, sensitive, specific, simple, practical, and broad-spectrum; additionally, it has the potential to serve as an on-site rapid detection method of IBV and can facilitate the surveillance and control of the disease, especially in resource-limited areas.

4.
J Agric Food Chem ; 72(11): 5926-5934, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457471

RESUMO

Glycinin (11S) and ß-conglycinin (7S) from soybean (glycine max) cause diarrhea and intestinal barrier damage in young animals. Understanding the mechanisms underlying the damage caused by 7S and 11S, it is vital to develop strategies to eliminate allergenicity. Consequently, we investigated 7S/11S-mediated apoptosis in porcine intestinal epithelial (IPEC-J2) cells. IPEC-J2 cells suffered endoplasmic reticulum stress (ERS) in response to 7S and 11S, activating protein kinase RNA-like ER kinase, activating transcription factor 6, C/EBP homologous protein, and inositol-requiring enzyme 1 alpha. 4-Phenylbutyric acid (4-PBA) treatment alleviated ERS; reduced the NLR family pyrin domain containing 3, interleukin-1ß, and interleukin-18 levels; inhibited apoptosis; increased mitofusin 2 expression; and mitigated Ca2+ overload and mitochondria-associated ER membrane (MAM) dysfunction, thereby ameliorating IPEC-J2 injury. We demonstrated the pivotal role of ERS in MAM dysfunction and 7S- and 11S-mediated apoptosis, providing insights into 7S- and 11S-mediated intestinal barrier injury prevention and treatment.


Assuntos
Antígenos de Plantas , Apoptose , Globulinas , Soja , Fenilbutiratos , Proteínas de Armazenamento de Sementes , Proteínas de Soja , Animais , Suínos , Retículo Endoplasmático , Mitocôndrias , Estresse do Retículo Endoplasmático
5.
Environ Int ; 185: 108545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447454

RESUMO

Over the last few years, the cumulative use of antibiotics in healthcare institutions, as well as the rearing of livestock and poultry, has resulted in the accumulation of antibiotic resistance genes (ARGs). This presents a substantial danger to human health worldwide. The characteristics of airborne ARGs, especially those transferred from outdoors to indoors, remains largely unexplored in neighborhoods, even though a majority of human population spends most of their time there. We investigated airborne ARGs and mobile genetic element (MGE, IntI1), plant communities, and airborne microbiota transferred indoors, as well as respiratory disease (RD) prevalence using a combination of metabarcode sequencing, real-time quantitative PCR and questionnaires in 72 neighborhoods in Shanghai. We hypothesized that (i) urbanization regulates ARGs abundance, (ii) the urbanization effect on ARGs varies seasonally, and (iii) land use types are associated with ARGs abundance. Supporting these hypotheses, during the warm season, the abundance of ARGs in peri-urban areas was higher than in urban areas. The abundance of ARGs was also affected by the surrounding land use and plant communities: an increase in the proportion of gray infrastructure (e.g., residential area) around neighborhoods can lead to an increase in some ARGs (mecA, qnrA, ermB and mexD). Additionally, there were variations observed in the relationship between ARGs and bacterial genera in different seasons. Specifically, Stenotrophomonas and Campylobacter were positively correlated with vanA during warm seasons, whereas Pseudomonas, Bacteroides, Treponema and Stenotrophomonas positively correlated with tetX in the cold season. Interstingly, a noteworthy positive correlation was observed between the abundance of vanA and the occurrence of both rhinitis and rhinoconjunctivitis. Taken together, our study underlines the importance of urbanization and season in controlling the indoor transfer of airborne ARGs. Furthermore, we also highlight the augmentation of green-blue infrastructure in urban environments has the potential to mitigate an excess of ARGs.


Assuntos
Genes Bacterianos , Urbanização , Humanos , Antibacterianos/farmacologia , China , Resistência Microbiana a Medicamentos/genética
6.
Huan Jing Ke Xue ; 45(3): 1457-1467, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471861

RESUMO

Urban rivers are the main receptors and transporters of microplastic pollution. Understanding the occurrence and environmental risk of microplastics in urban rivers can provide theoretical basis for further control of microplastic pollution. The Sishui River, a tributary of the Yellow River, was selected as the research object. A total of nine water samples were collected from sewage outlets of the Sishui River (Xingyang section). The microplastics in the collected samples were characterized by their sizes, shapes, and colors using a microscope. It was found that microplastics were mostly in the form of transparent fibers and fragments in the water body of sewage outlets, of which the size below 500 µm was relatively high. In addition, PET and PE polymers were identified as the main types using a laser infrared imager. The correlation analysis showed that there was a significant correlation between the PET and PE, indicating that they were similar in origin. The results of the environmental risk assessment showed that the type of microplastics was the main factor affecting the assessment results, whereas the risk values of six sewage samples containing PVC were high. However, the value of pollution load index revealed a low risk level of pollutants in the study area.

7.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38343324

RESUMO

Cross-linkers play a critical role in capturing protein dynamics in chemical cross-linking mass spectrometry techniques. Various types of cross-linkers with different backbone features are widely used in the study of proteins. However, it is still not clear how the cross-linkers' backbone affect their own structure and their interactions with proteins. In this study, we systematically characterized and compared methylene backbone and polyethylene glycol (PEG) backbone cross-linkers in terms of capturing protein structure and dynamics. The results indicate the cross-linker with PEG backbone have a better ability to capture the inter-domain dynamics of calmodulin, adenylate kinase, maltodextrin binding protein and dual-specificity protein phosphatase. We further conducted quantum chemical calculations and all-atom molecular dynamics simulations to analyze thermodynamic and kinetic properties of PEG backbone and methylene backbone cross-linkers. Solution nuclear magnetic resonance was employed to validate the interaction interface between proteins and cross-linkers. Our findings suggest that the polarity distribution of PEG backbone enhances the accessibility of the cross-linker to the protein surface, facilitating the capture of sites located in dynamic regions. By comprehensively benchmarking with disuccinimidyl suberate (DSS)/bis-sulfosuccinimidyl-suberate(BS3), bis-succinimidyl-(PEG)2 revealed superior advantages in protein dynamic conformation analysis in vitro and in vivo, enabling the capture of a greater number of cross-linking sites and better modeling of protein dynamics. Furthermore, our study provides valuable guidance for the development and application of PEG backbone cross-linkers.


Assuntos
Polietilenoglicóis , Proteínas , Polietilenoglicóis/química , Proteínas/química , Espectrometria de Massas , Conformação Proteica , Simulação de Dinâmica Molecular
8.
Res Vet Sci ; 169: 105177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350170

RESUMO

Subclinical ketosis (SCK) in dairy cows is often misdiagnosed because it lacks clinical signs and detection indicators. However, it is highly prevalent and may transform into clinical ketosis if not treated promptly. Due to the negative energy balance, a large amount of fat is mobilized, producing NEFA that exceeds the upper limit of liver processing, which in turn leads to the disturbance of liver lipid metabolism. The silent information regulator 1 (SIRT1) is closely related to hepatic lipid metabolism disorders. Exosomes as signal transmitters, also play a role in the circulatory system. We hypothesize that the circulating exosome-mediated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα)-SIRT1 pathway regulates lipid metabolism disorders in SCK cows. We extracted the exosomes required for the experiment from the peripheral circulating blood of non-ketotic (NK) and SCK cows. We investigated the effect of circulating exosomes on the expression levels of mRNA and protein of the AMPKα-SIRT1 pathway in non-esterified fatty acid (NEFA)-induced dairy cow primary hepatocytes using in vitro cell experiments. The results showed that circulating exosomes increased the expression levels of Lipolysis-related genes and proteins (AMPKα, SIRT1, and PGC-1α) in hepatocytes treated with 1.2 mM NEFA, and inhibited the expression of lipid synthesis-related genes and protein (SREBP-1C). The regulation of exosomes on lipid metabolism disorders caused by 1.2 mM NEFA treatment showed the same trend as for SIRT1-overexpressing adenovirus. The added exosomes could regulate NEFA-induced lipid metabolism in hepatocytes by mediating the AMPKα-SIRT1 pathway, consistent with the effect of transfected SIRT1 adenovirus.


Assuntos
Doenças dos Bovinos , Exossomos , Cetose , Transtornos do Metabolismo dos Lipídeos , Feminino , Animais , Bovinos , Metabolismo dos Lipídeos/fisiologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Ácidos Graxos não Esterificados , Exossomos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/veterinária , Proteínas Quinases Ativadas por AMP/genética , Cetose/veterinária , Doenças dos Bovinos/metabolismo
9.
Food Chem ; 446: 138697, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402773

RESUMO

Dry-cured ham is important source of bioactive peptides. In this study, the antioxidant activities of peptides and components from low and fully salted dry-cured hams were compared by peptidomics. And novel antioxidant peptides were identified and characterized. The results showed that the peptides (<3 KDa) extracted from low-salt dry-cured ham had higher antioxidant activity. Therefore, the antioxidant peptides in low-salt dry-cured ham were further characterized and the mechanism of their antioxidant activity was investigated. From the five candidate peptides selected, we found DWPDARGIWHND (DD12) to be highly stable, non-sensitizing, and non-toxic with the highest free radical scavenging activity. Molecular docking predicted that DD12 interacted with Keap1 through hydrogen-bond formation and hydrophobic interactions, suggesting that DD12 had good cellular antioxidant activity. DD12 peptide can bind to DPPH• and ABTS•+, resulting in strong free radical scavenging activity. Our findings support the development and application of natural antioxidant peptides in dry-cured ham.


Assuntos
Produtos da Carne , Carne de Porco , Antioxidantes/química , Simulação de Acoplamento Molecular , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Peptídeos/química , Cloreto de Sódio/química , Cloreto de Sódio na Dieta , Produtos da Carne/análise , Radicais Livres
10.
Chemistry ; : e202400555, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372453

RESUMO

Chalcogen bond catalysis, particularly cationic hypervalent chalcogen bond catalysis, is considered to be an effective strategy for organocatalysis. In this work, the cationic hypervalent chalcogen bond catalysis for the Povarov reaction between N-benzylideneaniline and ethyl vinyl ether was investigated by density functional theory (DFT). The catalytic reaction involves the cycloaddition process and the proton transfer process, and the rate-determining step is the cycloaddition process. Cationic hypervalent tellurium derivatives bearing CF3 and F groups exhibit superior catalytic activity. For the rate-determining step, the Gibbs free energy barrier decreases as the positive electrostatic potential of the chalcogen bond catalysts increases. More importantly, the Gibbs free energy barrier has a strong linear correlation with the electrostatic energy of the chalcogen bond in the catalyst-substrate complex. Furthermore, the catalytic reactions include the endo pathway and exo pathway. The C-H⋅⋅⋅π interaction between the substituent of the ethyl vinyl ether and the aryl ring of the N-benzylideneaniline contributes to the endo-selectivity of the reaction. This research contributes to a deeper understanding of chalcogen bond catalysis, providing insights for designing chalcogen bond catalysts with high performance.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38409719

RESUMO

BACKGROUND: As a malignant tumor, osteosarcoma (OS) ranks first place among adolescent cancers and is susceptible to developing resistance to chemotherapeutic agents. Differently, traditional Chinese medicine (TCM) has multiple pharmacodynamic targets and complex biological components, which can inhibit tumor survival and drug resistance and gradually play an important role in the treatment of sarcoma. METHODS: This study is to systematically evaluate the safety and efficacy of TCM combined with chemotherapy performed in the clinical treatment of OS. Based on multiple mainstream databases, eleven articles on the relationship between natural products and chemotherapy involving 656 patients were selected from all the literature published as of June 2022. Revman 5.4 software was used for a comprehensive search analysis, supplemented by established exclusion criteria, the Jadad scale, and the evaluation methods provided by Cochrane. RESULTS: The efficiency of TCM combined with chemotherapy was significantly increased compared with chemical drugs alone [OR=2.56, 95% CI (1.36,4.79), Z=2.92, P=0.003]. Meanwhile, the adverse reactions such as nausea and vomiting, hepatotoxicity, and hematological changes caused by chemical drugs were alleviated correspondingly. CONCLUSION: This study indicates that the mode of TCM combined with chemotherapy sheds light on the clinical treatment of OS, which is much better than the one-way mode.

12.
Huan Jing Ke Xue ; 45(1): 36-47, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216456

RESUMO

Nitrate (NO3-), sulfate (SO42-), and ammonium (NH4+) are important components of PM2.5, and studying their characteristics and influencing factors is essential for the continuous improvement of air quality. A series of online instruments were used to analyze the chemical components of PM2.5 in Zhengzhou in the summer of 2020. The results showed that the average ρ(PM2.5) was (28 ±13) µg·m-3, showing a daily variation characteristic of high at night and low during the day. The main concentrations of NO3-, SO42-, and NH4+ were (7.8 ±6.7), (7.2 ±3.7), and (5.5 ±3.1) µg·m-3, accounting for 22%, 21%, and 16% in PM2.5, respectively. The proportions of NO3- (27%) and SO42- (23%) in PM2.5, respectively, increased with the increase in PM2.5 and O3 concentration. In addition, the proportions of NO3- and NH4+ increased under low wind speed, high humidity, low temperature, and rainfall conditions. Moreover, the proportion of NO3- showed a daily variation characteristic of high at night and low during the day, whereas the opposite was true for SO42-. The gas-particle partitioning process of NH4NO3 was the main factor affecting the concentrations of NO3- and NH4+ in PM2.5. Low temperature, high humidity, and high aerosol water content concentrations favored the partitioning of HNO3 and NH3 to the particulate phase. High pH also favored the partitioning of gas-phase HNO3 to NO3-; however, it was not conducive to the partition of NH3 to NH4+. These trends partially explained the increase in the concentration and proportion of NO3- in PM2.5 under different scenarios.

13.
J Phys Chem A ; 128(3): 507-527, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38214658

RESUMO

As important noncovalent interactions, halogen bonds have been widely used in material science, supramolecular chemistry, medicinal chemistry, organocatalysis, and other fields. In the past 15 years, halogen bond catalysis has become a developed field in organocatalysis for the catalysts' advantages of being environmentally friendly, inexpensive, and recyclable. Halogen bonds can induce various organic reactions, and halogen bond catalysis has become a powerful alternative to the fully explored hydrogen bond catalysis. From a physical chemistry view, this perspective provides an overview of the latest progress and key examples of halogen bond catalysis via activation of the lone pair systems of organic functional group, π systems, and metal complexes. The research progresses in halogen bond catalysis by our group were also introduced.

14.
Environ Sci Pollut Res Int ; 31(8): 11727-11734, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224435

RESUMO

Bromate is receiving increased attention as a typical disinfection by-product in aquatic environments, but bromate toxicity tests on invertebrate such as Brachionus calyciflorus rotifer are inadequate. In the present study, the long-term toxicity tests on B. calyciflorus were performed during 21 days under the exposure of different bromate concentrations and two algal density conditions. Furthermore, we evaluated the feeding behaviors of the rotifers under the impact of bromate. The maximum population density of rotifers was significantly reduced at 100 and 200 mg/L bromate exposure at the two algal density conditions. However, we observed that the maximum population density and population growth rate of rotifers were higher at 3.0 × 106 cells/mL algal density than those at 1.0 × 106 cells/mL under the same conditions of bromate exposure. These results suggest that higher food density may have alleviated the negative effects of bromate on rotifers. Meanwhile, the ingestion rate at an algal density of 3.0 × 106 cells/mL was higher than that at 1.0 × 106 cells/mL. The present study provides a basic reference to comprehensively evaluate the toxic effects of bromate on aquatic organisms.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Bromatos/toxicidade , Alimentos , Ingestão de Alimentos , Crescimento Demográfico , Poluentes Químicos da Água/toxicidade
15.
Hepatol Int ; 18(1): 4-31, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864725

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the third leading cause of cancer-related deaths globally. Hepatic arterial infusion chemotherapy (HAIC) treatment is widely accepted as one of the alternative therapeutic modalities for HCC owing to its local control effect and low systemic toxicity. Nevertheless, although accumulating high-quality evidence has displayed the superior survival advantages of HAIC of oxaliplatin, fluorouracil, and leucovorin (HAIC-FOLFOX) compared with standard first-line treatment in different scenarios, the lack of standardization for HAIC procedure and remained controversy limited the proper and safe performance of HAIC treatment in HCC. Therefore, an expert consensus conference was held on March 2023 in Guangzhou, China to review current practices regarding HAIC treatment in patients with HCC and develop widely accepted statements and recommendations. In this article, the latest evidence of HAIC was systematically summarized and the final 22 expert recommendations were proposed, which incorporate the assessment of candidates for HAIC treatment, procedural technique details, therapeutic outcomes, the HAIC-related complications and corresponding treatments, and therapeutic scheme management.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Resultado do Tratamento , Artéria Hepática/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fluoruracila/uso terapêutico , Infusões Intra-Arteriais
16.
J Environ Sci (China) ; 138: 439-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135409

RESUMO

The booming development of rare earth industry and the extensive utilization of its products accompanied by urban development have led to the accelerated accumulation of rare earth elements (REEs) as emerging pollutants in atmospheric environment. In this study, the variation of REEs in PM2.5 with urban (a non-mining city) transformation was investigated through five consecutive years of sample collection. The compositional variability and provenance contribution of REEs in PM2.5 were characterized, and the REEs exposure risks of children and adults via inhalation, ingestion and dermal absorption were also evaluated. The results showed an increase in the total REEs concentration from 46.46 ± 35.16 mg/kg (2017) to 81.22 ± 38.98 mg/kg (2021) over the five-year period, with Ce and La making the largest contribution. The actual increment of industrial and traffic emission source among the three pollution sources was 1.34 ng/m3. Coal combustion source displayed a downward trend. Ingestion was the main exposure pathway for REEs in PM2.5 for both children and adults. Ce contributed the most to the total intake of REEs in PM2.5 among the population, followed by La and Nd. The exposure risks of REEs in PM2.5 in the region were relatively low, but the trend of change was of great concern. It was strongly recommended to strengthen the concern about traffic-related non-exhaust emissions of particulate matter.


Assuntos
Poluentes Atmosféricos , Metais Terras Raras , Adulto , Criança , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Cidades , Monitoramento Ambiental/métodos , Metais Terras Raras/análise , China
17.
Comput Biol Chem ; 108: 108001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154317

RESUMO

The interaction of multiple drugs could lead to severe events, which cause medical injuries and expenses. Accurate prediction of drug-drug interaction (DDI) events can help clinicians make effective decisions and establish appropriate therapy programs. However, there exist two issues worthy of further consideration. (i) The global features of drug molecules should be paid attention to, rather than just their local characteristics. (ii) The fusion of multi-source features should also be studied to capture the comprehensive features of the drug. This study designs a Multi-Source Feature Fusion framework with Multiple Attention blocks named MSFF-MA-DDI that utilizes multimodal data for DDI event prediction. MSFF-MA-DDI can (i) encode global correlations between long-distance atoms in drug molecular sequences by a self-attention layer based on a position embedding block and (ii) fuse drug sequence features and heterogeneous features (chemical substructure, target, and enzyme) through a multi-head attention block to better represent the features of drugs. Experiments on real-world datasets show that MSFF-MA-DDI can achieve performance that is close to or even better than state-of-the-art models. Especially in cold start scenarios, the model can achieve the best performance. The effectiveness of the model is also supported by the case study on nervous system drugs. The source codes and data are available at https://github.com/BioCenter-SHU/MSFF-MA-DDI.


Assuntos
Software , Interações Medicamentosas
18.
J Am Chem Soc ; 145(50): 27531-27538, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38054906

RESUMO

Single-atom catalysts exhibit promising electrocatalytic activity, a trait that can be further enhanced through the introduction of heteroatom doping within the carbon skeleton. Nonetheless, the intricate relationship between the doping positions and activity remains incompletely elucidated. This contribution sheds light on an inductive effect of single-atom sites, showcasing that the activity of the oxygen reduction reaction (ORR) can be augmented by reducing the spatial gap between the doped heteroatom and the single-atom sites. Drawing inspiration from this inductive effect, we propose a synthesis strategy involving ligand modification aimed at precisely adjusting the distance between dopants and single-atom sites. This precise synthesis leads to optimized electrocatalytic activity for the ORR. The resultant electrocatalyst, characterized by Fe-N3P1 single-atom sites, demonstrates remarkable ORR activity, thus exhibiting great potential in zinc-air batteries and fuel cells.

19.
Phys Chem Chem Phys ; 26(1): 477-484, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38078846

RESUMO

Halogen bond donor catalysts have been widely used in organic reactions because they are environmentally friendly, inexpensive and recyclable. The [4+2] cycloaddition reaction is a key reaction in organic synthesis because of its ease of use, fast speed, and wide range of applications. In this work, halogen bond catalysis in the [4+2] cycloaddition reaction between 2-alkenylindoles was investigated based on DFT calculations. There are two modes of I⋯π halogen bond catalysis: either on the ethenyl of 2-alkenylindole (mode A) or on the five-membered ring of 2-alkenylindole (mode B). Both modes involve two steps: the formation of carbon-carbon bonds and the formation of six-membered rings. Gibbs free energy barriers were determined to investigate the stereoselectivity of the endo pathway and exo pathway. For mode A, the exo products were more easily generated when the substituent R = H, and the N-H⋯π interaction promoted high endo selectivity in the case of the substituent R = Ph. For mode B, an increasing proportion of endo products can be obtained in the order of catalyst I2, IBr and ICl. The π⋯π interaction of the substituent R = Ph promotes the [4+2] cycloaddition reaction, which is consistent with the experimental observation that R = Ph has a higher yield than R = H. The study of different catalytic modes and stereoselectivity would provide new ideas for the further study of the [4+2] cycloaddition reaction.

20.
Front Cell Infect Microbiol ; 13: 1243441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089819

RESUMO

Introduction: There is a clinical challenge in diagnosing tuberculous pleurisy accurately and promptly, highlighting the urgent need for a rapid and sensitive diagnostic method. This study aimed to evaluate the diagnostic accuracy of metagenomic next-generation sequencing (mNGS) and GeneXpert Mycobacterium tuberculosis (MTB) for identifying tuberculous pleurisy and analyzing the microbial profiles of both tuberculous and non-tuberculous pleural effusions. Methods: The study enrolled 31 patients with suspected tuberculous pleurisy, of which 15 were confirmed to have tuberculous pleurisy and subsequently allocated to the tuberculous pleurisy group (TP group), while the remaining 16 individuals were assigned to the non-tuberculous pleurisy group (NTP group). mNGS and GeneXpert MTB were performed on pleural effusion samples, and the diagnostic accuracy of both tests was compared. We employed established formulas to compute crucial indicators, including sensitivity, specificity, missed diagnosis rate, misdiagnosed rate, positive predictive value (PPV), and negative predictive value (NPV). Results: The results showed that both tests had high specificity (100%) and positive predictive value (100%) for detecting tuberculous pleurisy, along with comparable sensitivity (46.67% for mNGS and 40.0% for GeneXpert MTB). Further analysis of the combined efficacy of mNGS and GeneXpert MTB showed that the combined test had a sensitivity of 66.67% and a specificity of 100%. mNGS analysis revealed that MTB was detected in 7 out of 15 patients with tuberculous pleural effusions, while non-tuberculous pleural effusions were associated with a diverse range of microbial genera and species. The most frequently detected genera at the microbial genus level in the NTP group were Microbacterium spp. (6/16), Prevotella spp. (5/16), and Campylobacter spp. (5/16). Discussion: These findings suggest that mNGS and GeneXpert MTB are useful diagnostic tools for identifying patients with tuberculous pleurisy, and mNGS can provide valuable insights into the microbial profiles of both tuberculous and non-tuberculous pleural effusions.


Assuntos
Mycobacterium tuberculosis , Derrame Pleural , Tuberculose Pleural , Humanos , Mycobacterium tuberculosis/genética , Tuberculose Pleural/diagnóstico , Tuberculose Pleural/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...