Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33876643

RESUMO

Conventional paper information protection mainly relies on stimuli-responsive functional materials that can display color or luminescence under external stimuli; however, this method is rather predictable and can be easily cracked. In this work, a paper information protection scheme combining fluorescent invisible ink and artificial intelligence was proposed. The ink was prepared by dissolving carbon nanoparticles in water, which has a high quantum yield and outstanding light stability and salt stability, thus ensuring the integrity of information in complex environments. A five-layer convolutional neural network (one of the two mainstream architectures in today's artificial intelligence fields) was specially trained based on ultraviolet light excited symbols printed by invisible ink. Using this scheme, the correct information could only be read with the specially trained neural network after ultraviolet (UV) irradiation. Without this trained neural network or UV irradiation, misleading messages will be presented. Moreover, it was possible to design unpredictable and highly complex password books to further increase information security. This smart strategy provides new opportunities for high-level paper information encryption and also proposes new ideas for the applications of carbon nanoparticles and artificial intelligence.

2.
Anal Chem ; 93(17): 6831-6838, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33877817

RESUMO

Cytoplasmic microviscosity (CPMV) plays essential roles in governing the diffusion-mediated cellular processes and has been recognized as a reliable indicator of the cellular response of many diseases and malfunctions. Current CPMV studies are exclusively established by probe-assisted optical methods, which nevertheless necessitate the complicated synthesis and delivery of optical probes into cells and thus the issues of biocompatibility and bio-orthogonality. Using twin nanopipettes integrated with a patch-clamp system, a practical electrochemical single-cell measurement is presented, which is capable of real-time and long-term CPMV detection without cell disruption. Specifically, upon the operation of the twin nanopipettes, the cellular CPMV status, which is correlated to cytoplasmic ionic mobility, could be sensibly transduced via the ionic current passing through the nanosystem. The average CPMV value of HeLa cells was detected as ca. 86 cP. Notably, the correlation between chemotherapy and CPMV alterations makes this approach possible for the real-time and long-term assessment of the evolution of external stimuli, as exemplified by the two natural products taxol and colchicine. Integrated with the patch-clamp setup, this study features the first use of twin nanopipettes for electrochemical CPMV monitoring of single living cells, and it is expected to inspire more interest in the exploitation of dual- and multiple nanopipettes for advanced single-cell analysis.

3.
J Phys Chem Lett ; : 3740-3748, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33844544

RESUMO

Topological materials with robust topological surface states appear to be well-suited as electrochemical catalysts. However, few studies have been published on the development of non-noble metal topological catalysts, most likely because the topological properties tend to be attributed to the s and p orbital electrons, while transition-metal catalysis mainly involves d orbital electrons. Herein, we proposed a topological semimetallic (TSM) compound, VAl3, with a surface state consisting mainly of d orbital electrons, as an electrocatalyst for the hydrogen evolution reaction (HER). Density functional theory (DFT) calculations showed that the surface state electrons enhanced the adsorption of H atoms. Moreover, the transfer of surface state electrons between the surface and adsorbed H atoms was optimized through nickel doping. We experimentally prepared single-crystals VAl3 and V0.75Ni0.25Al3 alloys. Electrochemical analysis showed that not only did V0.75Ni0.25Al3 outperform VAl3 but also it was among the best non-noble metal topological HER electrocatalysts currently available.

4.
ACS Sens ; 6(4): 1529-1535, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33847485

RESUMO

Emerging nanopipette tools have demonstrated substantial potential for advanced single-cell analysis, which plays vital roles from fundamental cellular biology to biomedical diagnostics. Highly recyclable nanopipettes with easy and quick regeneration are of special interest for precise and multiple measurements. However, existing recycle strategies are generally plagued by operational complexity and limited efficiency. Light, acting in a noncontact way, should be the ideal external stimulus to address this issue. Herein, we present the photocontrolled nanopipette capable of probing cellular adenosine triphosphate (ATP) gradient at single-cell level with good sensitivity, selectivity, and reversibility, which stems from the use of ATP-specific azobenzene (Azo)-incorporated DNA aptamer strands (AIDAS) and thereby the sensible transduction of variable nanopore size by the ionic currents passing through the aperture. Photoisomerized conformational change of the AIDAS by alternative UV/vis light stimulation ensures its noninvasive regeneration and repeated detection. Inducement and inhibition of the cellular ATP could also be probed by this nanosensor.

5.
BMC Vet Res ; 17(1): 114, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33678162

RESUMO

BACKGROUND: Pyroptosis plays a pivotal role in the pathogenesis of many inflammatory diseases. The molecular mechanism by which pyroptosis is induced in macrophages following infection with pathogenic E. coli high pathogenicity island (HPI) will be evaluated in our study. RESULTS: After infection with the HPI+/HPI- strains and LPS, decreased macrophage cell membrane permeability and integrity were demonstrated with propidium iodide (PI) staining and the lactate dehydrogenase (LDH) assay. HPI+/HPI--infection was accompanied by upregulated expression levels of NLRP3, ASC, caspase-1, IL-1ß, IL-18 and GSDMD, with significantly higher levels detected in the HPI+ group compared to those in the HPI- group (P < 0.01 or P < 0.05). HPI+ strain is more pathogenic than HPI- strain. CONCLUSION: Our findings indicate that pathogenic E. coli HPI infection of Saba pigs causes pyroptosis of macrophages characterized by upregulated expression of pyroptosis key factors in the NLRP3/ASC/caspase-1 signaling pathway, direct cell membrane pore formation, and secretion of the inflammatory factor IL-1ß and IL-18 downstream of NLRP3 and caspase-1 activation to enhance the inflammatory response.

6.
J Mater Chem B ; 9(7): 1877-1887, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33533366

RESUMO

Acute organophosphorus pesticide poisoning (AOPP) is a worldwide health concern that has threatened human lives for decades, which attacks acetylcholinesterase (AChE) and causes nervous system disorders. Classical treatment options are associated with short in vivo half-life and side effects. As a potential alternative, delivery of mammalian-derived butyrylcholinesterase (BChE) offers a cost-effective way to block organophosphorus attack on acetylcholinesterase, a key enzyme in the neurotransmitter cycle. Yet the use of exotic BChE as a prophylactic or therapeutic agent is compromised by short plasma residence, immune response and unfavorable biodistribution. To overcome these obstacles, BChE nanodepots (nBChE) composed of a BChE core/polymorpholine shell structure were prepared via in situ polymerization, which showed enhanced stability, prolonged plasma circulation, attenuated antigenicity and reduced accumulation in non-targeted tissues. In vivo administration of nBChE pre- or post-organophosphorus exposure in a BALB/C mouse model resulted in potent prophylactic and therapeutic efficiency. To our knowledge, this is the first systematic delivery of non-human BChE to tackle AOPP. In addition, this work also opens up a new avenue for real applications in both research and clinical settings to cope with acute intoxication-related diseases.

7.
Nanoscale ; 13(13): 6394-6399, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33629094

RESUMO

Visible light-responsive dual-functional biodegradable mesoporous silica nanoparticles with drug delivery and lubrication enhancement were constructed by supramolecular interaction between azobenzene-modified mesoporous silica nanoparticles (bMSNs-AZO) and ß-cyclodextrin-modified poly(2-methacryloyloxyethyl phosphorylcholine) (CD-PMPC). Visible light could effectively trigger azobenzene isomerization and thus induce drug release after passing through the dermal tissue. Additionally, the hydration layer formed by CD-PMPC on the surface of the nanoparticles played an important role in lubrication enhancement, which was beneficial for the treatment of osteoarthritis.

8.
Pflugers Arch ; 473(3): 351-362, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33638007

RESUMO

Pathological remodeling includes alterations of ion channel function and calcium homeostasis and ultimately cardiac maladaptive function during the process of disease development. Biochemical assays are important approaches for assessing protein abundance and post-translational modification of ion channels. Several housekeeping proteins are commonly used as internal controls to minimize loading variabilities in immunoblotting protein assays. Yet, emerging evidence suggests that some housekeeping proteins may be abnormally altered under certain pathological conditions. However, alterations of housekeeping proteins in aged and diseased human hearts remain unclear. In the current study, immunoblotting was applied to measure three commonly used housekeeping proteins (ß-actin, calsequestrin, and GAPDH) in well-procured human right atria (RA) and left ventricles (LV) from diabetic, heart failure, and aged human organ donors. Linear regression analysis suggested that the amounts of linearly loaded total proteins and quantified intensity of total proteins from either Ponceau S (PS) blot-stained or Coomassie Blue (CB) gel-stained images were highly correlated. Thus, all immunoblotting data were normalized with quantitative CB or PS data to calibrate potential loading variabilities. In the human heart, ß-actin was reduced in diabetic RA and LV, while GAPDH was altered in aged and diabetic RA but not LV. Calsequestrin, an important Ca2+ regulatory protein, was significantly changed in aged, diabetic, and ischemic failing hearts. Intriguingly, expression levels of all three proteins were unchanged in non-ischemic failing human LV. Overall, alterations of human housekeeping proteins are heart chamber specific and disease context dependent. The choice of immunoblotting loading controls should be carefully evaluated. Usage of CB or PS total protein analysis could be a viable alternative approach for some complicated pathological specimens.

9.
Anal Chim Acta ; 1143: 173-180, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33384115

RESUMO

Herein, we describe a customized approach for facile preparation of three-dimensional (3D) NiO nanoflakes (NFs)/carbon fiber meshwork (CFM) and its validation as a common photocathode matrix for photoelectrochemical (PEC) bioanalysis, which to our knowledge has not been reported. Specifically, 3D NiO NFs/CFM was fabricated by a sequential liquid phase deposition and annealing process, which was then characterized by scanning electron microscopy, X-ray photoelectron spectrum, UV-vis absorption spectra and N2 adsorption-desorption measurement. Sensitized by BiOI and incorporated with an alkaline phosphatase (ALP)/tyrosinase (TYR) bi-enzyme cascade system, a sensitive split-type cathodic PEC bioanalysis for the determination of ALP was achieved. This method can detect ALP concentrations down to 3 × 10-5 U L-1 with a linear response range of 0.001-10 U L-1. Moreover, this proposed system exhibited good selectivity, stability and excellent performance for real sample analysis. This research features the facile preparation of 3D NiO NFs/CFM that could acts as a universal matrix for photocathodic analysis, and is envisioned to stimulate more effort for advanced 3D photocathode for PEC bioanalysis and beyond.

10.
Res Vet Sci ; 135: 113-120, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33465603

RESUMO

High pathogenicity island (HPI), which is widely distributed in Escherichia coli (E. coli), can enhance the pathogenicity of E. coli. Thus the HPI positive E. coli could pose a threat to human and animal health. It remains to be elucidated how HPI affects the virulence of pathogenic E. coli. Autophagy is an important mechanism to maintain cellular homeostasis and an innate immunity responses of organisms against pathogens. The interaction between pathogenic E. coli possessing HPI (E. coli HPI) and host autophagy system has not been reported. In this study, it was demonstrated that pathogenic E. coli induced autophagy in 3D4/21 macrophages and HPI was associated with enhanced autophagy through transmission electron microscopy, immunofluorescence and real-time PCR. The PI3K/Akt/mTOR pathway is an important negative regulatory pathway for autophagy. Through detecting the expression of key genes of PI3K/Akt/mTOR pathway, it was speculated that HPI enhanced the inhibition of the signaling pathway stimulated by pathogenic E. coli. Furthermore, HPI inhibited the secretion of IFN-γ, while the presence of HPI did not significantly affect the secretion of IL-1ß. This work is the first attempt to explore the interplay between HPI carried by pathogenic E. coli and host cell autophagy. The findings might enable better understanding of the contribution of HPI to pathogenicity.

11.
J Agric Food Chem ; 69(1): 584-591, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33377764

RESUMO

According to a simple guest-replacement fluorescence turn-on mechanism, we constructed a fluorescent probe system based on cucurbit[10]uril (Q[10]) and protonated acridine (AD) to detect the pesticide dodine (DD). Formation of a homoternary inclusion complex AD2@Q[10] in both aqueous solution and solid state was studied by means of 1H NMR spectroscopy and X-ray crystallography. Although AD can emit strong fluorescence in aqueous solution, the homoternary inclusion complex AD2@Q[10] does not exhibit any fluorescence. Upon the addition of the pesticide DD into the aqueous solution of AD2@Q[10], the AD molecules in the Q[10] cavity are displaced by the pesticide DD, and strong fluorescence recovers. The fluorescent probe system based on Q[10] and AD provided a wide determination of DD from 0 to 4.0 × 10-5 mol·L-1 with a low limit of detection of 1.827 × 10-6 mol·L-1. The guest-replacement fluorescence turn-on mechanism is also confirmed by 1H NMR spectroscopy. Further, the fluorescent probe can directly detect DD residues in real agricultural products, and obvious fluorescence signal was observed under UV irradiation.


Assuntos
Acridinas/química , Hidrocarbonetos Aromáticos com Pontes/química , Guanidinas/análise , Imidazóis/química , Praguicidas/análise , Cristalografia por Raios X , Fluorescência , Corantes Fluorescentes/química , Espectroscopia de Ressonância Magnética
12.
Circ Res ; 128(4): 455-470, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33334123

RESUMO

RATIONALE: We recently discovered pivotal contributions of stress kinase JNK2 (c-Jun N-terminal kinase isoform 2) in increased risk of atrial fibrillation through enhanced diastolic sarcoplasmic reticulum (SR) calcium (Ca2+) leak via RyR2 (ryanodine receptor isoform 2). However, the role of JNK2 in the function of the SERCA2 (SR Ca2+-ATPase), essential in maintaining SR Ca2+ content cycling during each heartbeat, is completely unknown. OBJECTIVE: To test the hypothesis that JNK2 increases SERCA2 activity SR Ca2+ content and exacerbates an arrhythmic SR Ca2+ content leak-load relationship. METHODS AND RESULTS: We used confocal Ca2+ imaging in myocytes and HEK-RyR2 (ryanodine receptor isoform 2-expressing human embryonic kidney 293 cells) cells, biochemistry, dual Ca2+/voltage optical mapping in intact hearts from alcohol-exposed or aged mice (where JNK2 is activated). We found that JNK2, but not JNK1 (c-Jun N-terminal kinase isoform 1), increased SERCA2 uptake and consequently elevated SR Ca2+ content load. JNK2 also associates with and phosphorylates SERCA2 proteins. JNK2 causally enhances SERCA2-ATPase activity via increased maximal rate, without altering Ca2+ affinity. Unlike the CaMKII (Ca2+/calmodulin-dependent kinase II)-dependent JNK2 action in SR Ca2+ leak, JNK2-driven SERCA2 function was CaMKII independent (not prevented by CaMKII inhibition). With CaMKII blocked, the JNK2-driven SR Ca2+ loading alone did not significantly raise leak. However, with JNK2-CaMKII-driven SR Ca2+ leak present, the JNK2-enhanced SR Ca2+ uptake limited leak-induced reduction in SR Ca2+, normalizing Ca2+ transient amplitude, but at a higher arrhythmogenic SR Ca2+ leak. JNK2-specific inhibition completely normalized SR Ca2+ handling, attenuated arrhythmic Ca2+ activities, and alleviated atrial fibrillation susceptibility in aged and alcohol-exposed myocytes and intact hearts. CONCLUSIONS: We have identified a novel JNK2-induced activation of SERCA2. The dual action of JNK2 in CaMKII-dependent arrhythmic SR Ca2+ leak and a CaMKII-independent uptake exacerbates atrial arrhythmogenicity, while helping to maintain normal levels of Ca2+ transients and heart function. JNK2 modulation may be a novel therapeutic target for atrial fibrillation prevention and treatment.

13.
Pharmacol Res ; 164: 105375, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33316384

RESUMO

Excessive binge alcohol intake is a common drinking pattern in humans, especially during holidays. Cessation of the binge drinking often leads to aberrant withdrawal behaviors, as well as serious heart rhythm abnormalities (clinically diagnosed as Holiday Heart Syndrome (HHS)). In our HHS mouse model with well-characterized binge alcohol withdrawal (BAW)-induced heart phenotypes, BAW leads to anxiety-like behaviors and cognitive impairment. We have previously reported that stress-activated c-Jun NH(2)-terminal kinase (JNK) plays a causal role in BAW-induced heart phenotypes. In the HHS brain, we found that activation of JNK2 (but not JNK1 and JNK3) in the prefrontal cortex (PFC), but not hippocampus and amygdala, led to anxiety-like behaviors and impaired cognition. DNA methylation mediated by a crucial DNA methylation enzyme, DNA methyltransferase1 (DNMT1), is known to be critical in alcohol-associated behavioral deficits. In HHS mice, JNK2 in the PFC (but not hippocampus and amygdala) causally enhanced total genomic DNA methylation via increased DNMT1 expression, which was regulated by enhanced binding of JNK downstream transcriptional factor c-JUN to the DNMT1 promoter. JNK2-specific inhibition either by an inhibitor JNK2I or JNK2 knockout completely offset c-JUN-regulated DNMT1 upregulation and restored the level of DNA methylation in HHS PFC to the baseline levels seen in sham controls. Strikingly, either JNK2-specific inhibition or genetic JNK2 depletion or DNMT1 inhibition (by an inhibitor 5-Azacytidine) completely abolished BAW-evoked behavioral deficits. In conclusion, our studies revealed a novel mechanism by which JNK2 drives BAW-evoked behavioral deficits through a DNMT1-regulated DNA hypermethylation. JNK2 could be a novel therapeutic target for alcohol withdrawal treatment and/or prevention.

14.
J Thorac Dis ; 12(11): 6780-6788, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33282379

RESUMO

Background: Type A Aortic Dissection (TAAD) remains a lethal disease of increasing incidence. However the incidence, standardized treatment and survival rates of TAAD is still a lack in China. This study aims to share the management strategy of TAAD from a developing center of this country. Methods: All subjects identified with TAAD in Nanjing Drum Tower Hospital, China, from Jan. 2002 to Dec. 2018 were included in this study. Of 1,037 individuals, 932 (89.9%) were underwent surgery. Based on annual case volume patients underwent surgery were stratified into three operative stages: Early, Middle and Current stage, and patient characteristics, operative trends and outcomes across the operative stages were assessed. Results: The annual admissions of patients increased from approximately 20 during 2002-2013 (early era), 100 during 2014-2016 (middle era) to 200 during 2017-2018 (current era). The median age of patients increased from 49.0 to 53.0 among different eras (P<0.001). The overall in-hospital mortality was 16.5%, which significantly decreased from 21.3% to 13.1% with eras (P=0.023). The median time from admission to surgery was remarkedly shorted from 30.4 h during the early era to 14.0 h during the current era. Compared with in the early era, the percentages of aortic arch repair were increased in middle or current eras, while total arch replacement decreased. Conclusions: During the last 16 years, the prevalence of TAAD was increasing, and the annual number of operations increased substantially in China. Hospital survival improved over time was challenging prompt management and suitable operations.

15.
Epigenomics ; 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33290106

RESUMO

Aims: Given the reversibility of methylation, biomarkers with discriminating ability are of great interest for targeted therapeutic sites. Materials & methods: Methylation array data of 461 lung adenocarcinoma (LUAD) patients comprising of 458 tumor and 32 LUAD paracancerous samples were compared using partial least squares discrimination analysis and receiver operating characteristics analysis. Results: A six-DNA methylation signature (corresponding to five genes) was found to significantly discriminate normal and LUAD samples. Kyoto Encyclopedia of Genes and Genomes analysis indicated enrichment of methylation sites in the Wnt pathway in LUAD compared with controls. Conclusion: This six-DNA methylation signature demonstrated potential as a novel biomarker for diagnosis and therapeutic targets. Further, inhibition of Wnt signaling pathway may be an important step in LUAD progression.

16.
Materials (Basel) ; 13(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291817

RESUMO

Dielectric elastomer actuators (DEAs) are an emerging type of soft actuation technology. As a fundamental unit of a DEA, the characteristics of compliant electrodes play a crucial role in the actuation performances of DEAs. Generally, the compliant electrodes can be categorized into uncured and cured types, of which the cured one commonly involves mixing conductive particles into an elastomeric matrix before curing, thus demonstrating a better long-term performance. Along with the increasing proportion of conductive particles, the electrical conductivity increases at the cost of a stiffer electrode and lower elongation at break ratio. For different DEA applications, it can be more desirable to minimize the electrode stiffness or to maximize its conductivity. In examination of the papers published in recent years, few works have characterized the effects of elastomeric electrodes on the outputs of DEAs, or of their optimizations under different application scenarios. In this work, we propose an experimental framework to characterize the performances of elastomeric electrodes with different formulas based on the two key parameters of stiffness and conductivity. An optimizing method is developed and verified by two different application cases (e.g., quasi-static and dynamic). The findings and the methods developed in this work can offer potential approaches for developing high-performance DEAs.

17.
Anal Chem ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301293

RESUMO

Engineered nanopipette tools have recently emerged as a powerful approach for electrochemical nanosensing, which has major implications in both fundamental biological research and biomedical applications. Herein, we describe a generic method of target-triggered assembly of aptamers in a nanopipette for nanosensing, which is exemplified by sensitive and rapid electrochemical single-cell analysis of adenosine triphosphate (ATP), a ubiquitous energy source in life and important signaling molecules in many physiological processes. Specifically, a layer of thiolated aptamers is immobilized onto a Au-coated interior wall of a nanopipette tip. With backfilled pairing aptamers, the engineered nanopipette is then used for probing intracellular ATP via the ATP-dependent linkage of the split aptamers. Due to the higher surface charge density from the aptamer assembly, the nanosensor would exhibit an enhanced rectification signal. Besides, this ATP-responsive nanopipette tool possesses excellent selectivity and stability as well as high recyclability. This work provides a practical single-cell nanosensor capable of intracellular ATP analysis. More generally, integrated with other split recognition elements, the proposed mechanism could serve as a viable basis for addressing many other important biological species.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33340231

RESUMO

New tools for single-cell interrogation enable deeper understanding of cellular heterogeneity and associated cellular behaviors and functions. Information of RNA expression in single cell could contribute to our knowledge of the genetic regulatory circuits and molecular mechanism of disease development. Although significant progresses have been made for intracellular RNA analysis, existing methods have a trade-off between operational complexity and practical feasibility. We address this challenge by combining the ionic current rectification property of nanopipette reactor with duplex-specific nuclease-assisted hybridization chain reaction for signal amplification to realize a simple and practical intracellular nanosensor with minimal invasiveness, which enables single-cell collection and electrochemical detection of intracellular RNA with cell-context preservation. Systematic studies on differentiation of oncogenic miR-10b expression levels in non-malignant breast cells, metastatic breast cancer cells as well as non-metastatic breast cancer cells were then realized by this nanotool accompanied by assessment of different drugs effects. This work has unveiled the ability of electrochemistry to probe intracellular RNA and opened new opportunities to study the gene expression and heterogeneous complexity under physiological conditions down to single-cell level.

19.
ACS Sens ; 5(12): 3827-3832, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33315371

RESUMO

This work presents the concept of establishing interfacial charge-transfer transitions (ICTT) on ferroelectric perovskites for efficient photoelectrochemical (PEC) bioanalysis. The model system was exemplified by using representative lead titanate (PbTiO3) and an enzyme tandem consisting of the isocitrate dehydrogenase (ICDH) and p-hydroxybenzoate hydroxylase (PHBH). The enzymatic generation of protocatechuic acid (PCA) can coordinate onto the surface of the PbTiO3 and hence form the ICTT that enables direct ligand-to-metal charge transfer from the highest occupied molecular orbital (HOMO) of PCA to the conduction band (CB) of PbTiO3 under light irradiation. Due to the ferroelectric polarization induced electric field of PbTiO3 and the surface polarity of PCA modification, enhanced charge separation of the ICTT contributes to the generation of anodic photocurrent and thus underlies a unique route for detecting the enzymatic activity or its substrate. For dehydrogenase detection, this strategy has better performance than some classical methodologies in terms of high sensitivity and improved selectivity. This work not only features ICTT establishment on ferroelectric perovskites for unique bioanalysis but also provides new insights into the utilization of ferroelectric perovskites for advanced PEC bioanalysis.

20.
ACS Appl Mater Interfaces ; 12(46): 51236-51248, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166449

RESUMO

Osteoarthritis (OA) is a chronic joint disease and its progression and pathogenesis are highly associated with the significant increase of joint friction and overproduction of reactive oxygen species (ROS) in inflammation. Combination of ROS elimination and lubrication enhancement may provide a novel strategy for the treatment of OA. In the present study, a pure biomaterial and nondrug system P(DMA-co-MPC), synthesized via free radical copolymerization, was designed and developed for the first time using 2-methacryloxyethyl phosphorylcholine (MPC) as a bioinspired lubricant and N-(3,4-dihydroxyphenethyl)methacrylamide (DMA) as an ROS scavenger. Our results showed that the P(DMA-co-MPC) aggregates could efficiently eliminate the ROS radicals and provide good lubrication property by adjusting the molar ratio of DMA and MPC in the copolymer. It is attributed to the antioxidant function of the hydroquinone moiety in DMA and the hydration lubrication effect of the zwitterionic phosphocholine group in MPC. Furthermore, the in vitro experiments demonstrated that the P(DMA-co-MPC) showed good biocompatibility with MC3T3-E1 cells and intracellular anti-inflammatory property by inhibiting the production of ROS and regulating the expression levels of pro-inflammatory cytokines, pain-related gene, anabolic genes, and catabolic genes. In conclusion, the drug-free P(DMA-co-MPC) aggregates developed herein can achieve dual functions of lubrication enhancement and anti-inflammatory effect and thus they may be representative as promising candidates for the treatment of OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...