Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.342
Filtrar
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(2): 181-186, 2020 Feb 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-32386045

RESUMO

The pathogenesis of neuromyelitisoptica spectrum disorders (NMOSD) is influenced by a combination of genetic and environmental factors, including infectious agents. Several viral and bacterial infectious diseases are related to the onset and the relapse of NMOSD.The cases of NMOSD with bacterial meningitis have also been reported. Different infections play different role and outcomes in NMOSD.However,the major pathogenesis contains bystander activation, molecular mimicry, and systemic infection triggering independent central nervous system diseases. Viral and bacteria infections are closely related to NMOSD.We recommend that patients with NMOSD and altered mental status need to complete infectious examination, including a lumbar cone puncture.

2.
J Pharmacol Sci ; 2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32387002

RESUMO

yeyachun and danshen exist as Chinese patent medicine, Xuemai Tong, and are clearly effective at alleviating liver fibrosis (LF). Previous studies have indicated that triterpenoids from yeyachun (EFT), and phenolic acids from danshen (SMP) are effective in the treatment of LF. The regulation of intestinal flora is an effective method for treating LF. The aim of this study was to investigate the effect of a mixture of EFT and SMP on carbon tetrachloride (CCl4) induced LF. Our results showed the mixture significantly decreased liver damage and fibrosis index, and maintained liver tissue composition, compared to the model group. Moreover, the imbalance of symptoms of intestinal flora was improved. The mixture also caused changes to metabolites of gut flora. Furthermore, the expression of CD68 in liver tissues from the treated groups was significantly decreased when compared to the model group. However, no significant difference was observed from microstructure of gut tissues and LPS concentrations in the serum between mixture treated mice and model mice. This study suggests that the mixture of EFT and SMP had a significant effect on CCl4 induced LF, and the mechanism of this action, at least in part, involved the regulation of intestinal flora and their metabolites.

3.
Virol J ; 17(1): 62, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349760

RESUMO

BACKGROUND: H6 subtype influenza viruses were prevalent in domestic poultry and wild birds, which also could pose potential threat to humans. However, little is known about the prevalence of H6 subtype viruses in wild birds in eastern China, a crucial stopover or wintering site for migratory wild birds along the East Asian-Australasian Flyway. METHODS: During the routine surveillance in 2016-2017, H6 subtype AIVs positive samples were identified, and the representative strains were selected for further sequence and phylogenetic analysis and the pathogenicity in mice were evaluated. RESULTS: Among the 30 H6 positive samples, there were at least four subtypes H6N1, H6N2, H6N5 and H6N8 co-circulated in Shanghai, China. Genetic analysis showed the 8 representative isolates shared homology with different AIV sub-lineages isolated from domestic ducks or wild birds in different countries along the East Asian-Australasian flyways, and were classified into 7 new genotypes. The pathogenicity to mice showed that these H6 viruses could replicate efficiently in the lungs without prior adaptation, but could not cause mice death. CONCLUSIONS: Eight novel strains belonged to H6N1, H6N2, H6N5 and H6N8 subtypes were isolated. Phylogenetic analyses revealed multiple origins of internal genes indicative of robust reassortment events and frequent wild birds-poultry interaction encouraging the evolution and emergence of new genotypes. The pathogenicity to mammals should be closely monitored to prevent the emergence of novel pandemic viruses.

4.
Chem Eng Sci ; : 115727, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32362678

RESUMO

Baculovirus systems are used for various purposes, but the kinetics of the infection process is not fully understood yet. We investigated the dynamics of virion movement from a medium toward the interior of insect cells and established a mechanistic model that shows an excellent fit to experimental results. It also makes possible a description of the viral dynamics on the cell surface. A novel measurement method was used to distinguish between infected cells that carry virions on their surfaces, cells that carry virions in their interior, and those carrying virions both inside and on their surface. The maximum number of virions carried by a cell: 55 viruses/cell, and the time required for viral internalization, 0.8 h , are reported. This information is particularly useful for assessing the infection efficacy and the required number of virions needed to infect a given cell population. Although our model specifically concerns the infection process of Sf9 insect cells by baculovirus, it describes general features of viral infection. Some of the model features may eventually be applicable in the studies towards palliation of the COVID-19 outbreak.

5.
ACS Nano ; 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32356966

RESUMO

Structural DNA nanotechnology can produce a wide range of 3D nanostructures with programmable structure and size at <5 nm resolution. However, it is challenging to dry these structures without capillary force-induced damage. As a result, the applications of 3D DNA nanostructures have long been limited in aqueous environments. Ready access to free-standing 3D DNA nanostructures in the dry state could revolutionize many research areas, especially in the development of low-density, high-strength materials. Here we report a method to obtain free-standing wireframe 3D DNA tetrahedra in air on a solid substrate, such as SiO2 and mica, by absorbing uranyl acetate and lyophilization. The dried DNA tetrahedron structure, 93 ± 2 nm in height, withstands 42 ± 22 nN of loading force. The effective hardness (9.1 ± 5.1 MPa) and Young's modulus (77 ± 48 MPa) of this low-density (70.7 kg/m3) DNA-inorganic hybrid nanostructure are comparable to other reported low-density high-strength materials.

6.
Chem Soc Rev ; 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32393930

RESUMO

Mussel-inspired chemistry, owing to its unique and versatile functions to manipulate dynamic molecular-scale interactions, has emerged as a powerful tool for the rational design and synthesis of new hydrogels. In particular, possessing a myriad of unique advantages that are otherwise impossible by conventional counterparts, mussel-inspired hydrogels have been widely explored in numerous fields such as biomedical engineering, soft electronics and actuators, and wearable sensors. Despite great excitement and vigor, a comprehensive and timely review on this emerging topic is missing. In this review, we discuss (1) the fundamental interaction mechanisms underpinning the spectacular wet adhesion in natural mussels and mussel-inspired materials; (2) the key routes to engineering hydrogels by leveraging on the interactions of mussel-inspired building blocks; (3) the emerging applications of mussel-inspired hydrogels, especially in the areas of flexible electronics and biomedical engineering; (4) the future perspectives and unsolved challenges of this multidisciplinary field. We envision that this review will provide an insightful perspective to stimulate new thinking and innovation in the development of next-generation hydrogels and beyond.

7.
Mol Ther ; 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32353321

RESUMO

Severed CNS axons fail to regenerate in adult mammals and there are no effective regenerative strategies to treat patients with CNS injuries. Several genes, including phosphatase and tensin homolog (PTEN) and Krüppel-like factors, regulate intrinsic growth capacity of mature neurons. The Lin28 gene is essential for cell development and pluripotency in worms and mammals. In this study, we evaluated the role of Lin28a in regulating regenerative capacity of diverse populations of CNS neurons in adult mammals. Using a neuron-specific Thy1 promoter, we generated transgenic mice that overexpress Lin28a protein in multiple populations of projection neurons, including corticospinal tracts and retinal ganglion cells. We demonstrate that upregulation of Lin28a in transgenic mice induces significant long distance regeneration of both corticospinal axons and the optic nerve in adult mice. Importantly, overexpression of Lin28a by post-injury treatment with adeno-associated virus type 2 (AAV2) vector stimulates dramatic regeneration of descending spinal tracts and optic nerve axons after lesions. Upregulation of Lin28a also enhances activity of the Akt signaling pathway in mature CNS neurons. Therefore, Lin28a is critical for regulating growth capacity of multiple CNS neurons and may become an important molecular target for treating CNS injuries.

8.
Eur J Neurol ; 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433813

RESUMO

BACKGROUND: Acute ischemic stroke (AIS) is a vital cause of mortality and morbidity in China. Many AIS patients develop early neurological deterioration (END). This study was aimed to construct a nomogram to predict END in AIS patients. METHODS: AIS patients in Nanjing First Hospital were recruited as the training cohort. Additional patients in Nantong Third People's Hospital were enrolled as the validation cohort. Multivariate logistic regression was utilized to establish the nomogram. Discrimination and calibration performance of the nomogram was tested by concordance index (c-index) and calibration plots. Decision curve analysis (DCA) was employed to assess the utility of the nomogram. RESULTS: We recruited 1889 and 818 patients in the training and validation cohorts, respectively. Age (odds ratio [OR], 1.075; 95% confidence interval [CI], 1.059-1.091), diabetes mellitus (OR, 1.673; 95% CI, 1.181-2.370), atrial fibrillation (OR, 3.297; 95% CI, 2.005-5.421), previous antiplatelet (OR, 0.473; 95% CI, 0.301-0.744), hyper-sensitive C-reactive protein (Hs-CRP) (OR, 1.049; 95% CI, 1.036-1.063) and baseline National Institutes of Health Stroke Scale (NIHSS) (OR, 1.071; 95% CI, 1.045-1.098) were associated with END and incorporated in the nomogram. C-index was 0.826 (95% CI, 0.785-0.885) and 0.798 (95% CI, 0.749-0.847) in the training and validation cohorts. By DCA, the model was relevant between thresholds of 0.06 and 0.90 in the training cohort, as well as 0.08 and 0.77 in the validation cohort. CONCLUSIONS: The nomogram comprised of Hs-CRP, age, diabetes mellitus, atrial fibrillation, previous antiplatelet and baseline NIHSS may predict the risk of END in AIS patients.

9.
Microb Cell Fact ; 19(1): 104, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410635

RESUMO

BACKGROUND: Marine macroalgae Gelidium amansii is a promising feedstock for production of sustainable biochemicals to replace petroleum and edible biomass. Different from terrestrial lignocellulosic biomass, G. amansii is comprised of high carbohydrate content and has no lignin. In previous studies, G. amansii biomass has been exploited to obtain fermentable sugars along with suppressing 5-hydroxymethylfurfural (HMF) formation for bioethanol production. In this study, a different strategy was addressed and verified for dual production of D-galactose and HMF, which were subsequently oxidized to D-galactonic acid and 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) respectively via Pseudomonas putida. RESULTS: G. amansii biomass was hydrolyzed by dilute acid to form D-galactose and HMF. The best result was attained after pretreatment with 2% (w/w) HCl at 120 °C for 40 min. Five different Pseudomonas sp. strains including P. putida ATCC 47054, P. fragi ATCC 4973, P. stutzeri CICC 10402, P. rhodesiae CICC 21960, and P. aeruginosa CGMCC 1.10712, were screened for highly selective oxidation of D-galactose and HMF. Among them, P. putida ATCC 47054 was the outstanding suitable biocatalyst converting D-galactose and HMF to the corresponding acids without reduced or over-oxidized products. It was plausible that the pyrroloquinoline quinone-dependent glucose dehydrogenase and undiscovered molybdate-dependent enzyme(s) in P. putida ATCC 47054 individually played pivotal role for D-galactose and HMF oxidation. Taking advantage of its excellent efficiency and high selectivity, a maximum of 55.30 g/L D-galactonic acid and 11.09 g/L HMFCA were obtained with yields of 91.1% and 98.7% using G. amansii hydrolysates as substrate. CONCLUSIONS: Valorization of G. amansii biomass for dual production of D-galactonic acid and HMFCA can enrich the product varieties and improve the economic benefits. This study also demonstrates the perspective of making full use of marine feedstocks to produce other value-added products.

10.
Eur J Med Chem ; 198: 112389, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32388115

RESUMO

Novel methods for peptides structural modification and bioactivity optimization are highly needed in peptide-based drug discovery. Herein, we explored the use gemfibrozil (GFZ) as an albumin binder to enhance the stability and improve the bioactivity of peptides. Short-acting Xenopus glucagon-like peptide-1 (xGLP-1) analogues with anti-diabetic activity were selected as the starting point. Mono-GFZ conjugation, peptide sequence hybridization, and dimeric-GFZ derivatization were successively used to generate novel GFZ-xGLP-1 conjugates, biologically screened by various in vitro and in vivo models. Dimeric-GFZ modified conjugate 3b was finally identified as a promising anti-diabetic candidate with high albumin binding affinity, enhanced in vivo stability in SD rats, and long-acting hypoglycemic activity in db/db mice. Moreover, GFZ endowed 3b with strong lipid-regulating ability in DIO and db/db mice. In a twelve-week study, chronic administration of 3b in db/db mice resulted in sustained glycemic control, to a greater extent than liraglutide and semaglutide. In addition, 3b showed comparable therapeutic efficacies to liraglutide and semaglutide on HbA1c and pancreas islets protection. Our studies reveal 3b as a potential candidate for the treatment of metabolic diseases and indicate dimeric-GFZ modification as a novel method for peptide optimization.

11.
Acta Otolaryngol ; : 1-5, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374200

RESUMO

Background: Lermoyez syndrome (LS) is a rare auditory disorder, the details of LS remain unclear.Objectives: To investigate the grades of endolymphatic hydrops (ELH) and clinical characteristics of clinically diagnosed LS.Material and methods: Nine patients with clinically diagnosed LS were included. three-dimensional-real-infra red imaging characteristics were analyzed. ELH grades and detailed clinical characteristics were evaluated.Results: The group consisted of two women and seven men with an age at presentation of 48.4 ± 10.9 (28-61) years, an onset age of 40.9 ± 12.0 (23-58) years, and a disease duration of 7.6 ± 7.5 years. Of the nine patients, ELH was observed in 100% of the patients on the clinically affected side. In addition, 22.2% of vestibular ELH and 77.8% of cochlear ELH were classified as mild or moderate in grade.Conclusions and significance: The patients with LS had Meniere's triad, fluctuation of hearing that occurred in a reverse relationship to that of the vertiginous attack, and vestibular and cochlear ELH, which may suggest that LS is a variant of MD. However, the sex difference and milder cochlear ELH in LS compared with those in typical MD may indicate an underlying intrinsic difference in the mechanism of LS.

12.
Hepatology ; 2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32359177

RESUMO

Coronavirus disease 2019 (COVID-19) is a new infectious disease. To reveal the hepatic injury related to this disease and its clinical significance, we conducted a multicenter retrospective cohort study that included 5,771 adult patients with COVID-19 pneumonia in Hubei Province. We reported the distributional and temporal patterns of liver injury indicators in these patients and determined their associated factors and death risk. Longitudinal liver function tests were retrospectively analyzed and correlated with the risk factors and death. Liver injury dynamic patterns differed in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin (TBIL). AST elevated first, followed by ALT, in severe patients. ALP modestly increased during hospitalization and largely remained in the normal range. The fluctuation in TBIL levels was mild in the non-severe and the severe group. AST abnormality was associated with the highest mortality risk compared to other indicators of liver injury during hospitalization. Common factors associated with elevated liver injury indicators were lymphocyte count decrease, neutrophil count increase, and male gender. CONCLUSION: The dynamic patterns of liver injury indicators and their potential risk factors may provide an important explanation for the COVID-19-associated liver injury. Because elevated liver injury indicators, particularly AST, are strongly associated with the mortality risk, our study indicates that these parameters should be monitored during hospitalization.

13.
J Colloid Interface Sci ; 575: 388-398, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32388285

RESUMO

HYPOTHESIS: Developing separation membranes functionalized by polymer brushes with high separation efficiency and good cycling stability is of great importance for oil/water separation, yet is still challenged. EXPERIMENTS: In this work, the covalently embedded polyzwitterionic brush-functionalized nanofibrous membrane was developed for efficient and durable oil/water separation. The nanofibrous membrane was prepared by the electrospinning method using initiator-embedded polyacrylonitrile (PAN) resin, followed by novel subsurface-initiated atom transfer radical polymerization (SSI-ATRP) to graft embedded poly(sulfobetaine methacrylate) brushes (PSBMA). The hydration ability, underwater oil adhesion, oil/water separation performance as well as self-cleaning properties of the as prepared membrane (PAN-sg-PSBMA) were systematically studied. FINDINGS: The PAN-sg-PSBMA membrane exhibited extraordinary hydration ability and underwater superoleophobicity with extremely low oil adhesion, which outperformed conventional polymer brush-modified membrane (PAN-g-PSBMA). The PAN-sg-PSBMA membrane was able to separate both oil/water mixture and surfactant-stabilized emulsions with ultrahigh permeation flux and separation efficiency. Moreover, compared with PAN-g-PSBMA, PAN-sg-PSBMA membrane exhibited unprecedented recycling stability in both permeation flux and separation efficiency, which is attributed to mechanical robustness of embedded polymer brushes and outstanding antifouling ability. The current findings revealed that embedded polymer brushes from SSI-ATRP could offer a promising design of functionalized nanofibrous membrane for highly efficient and durable oil/water separation.

14.
J Ethnopharmacol ; 259: 112940, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32389853

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora sinensis (Lour.) Merr. belongs to the family Menispermaceae. It is called LeZhe and is widely used as a kind of folk medicine especially in the Tibetan Plateau of China. T. sinensis has the functions of clearing away heat and detoxification, dispelling wind and dredging collaterals, calming and soothing the nerves. T. sinensis is an effective medicine for the prevention and treatment of aging diseases such as Alzheimer's disease (AD) in the Tibetan Plateau of China, whereas its material basis and underlying mechanisms are not clear. The aim of this study was to investigate the material basis and potential mechanisms of T. sinensis in the treatment of AD by using network pharmacology and molecular docking. MATERIALS AND METHODS: In this study, targets were collected from DrugBank database, Therapeutic Target Database (TTD) and literatures reports for the treatment of AD. Compounds were searched by literatures and systematic separation from T. sinensis. The molecular docking experiment was carried out by using Autodock Vina software to screen the bioactive compounds in T. sinensis and target proteins for AD. Then, the "compound-target network" was constructed by Cytoscape software. The drug-like properties of the active compounds were analyzed by pKCSM performs, and the protein-protein interaction (PPI) network was constructed by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). The Kyoto Encyclopedia of Genes and Genomes (KEGG) target pathway enrichment analysis was carried out by Database for Annotation, Visualization and Integrated Discovery (DAVID). Furthermore, the protective effect of neurons of two active compounds were verified with the injury cell model of PC12 and primary hippocampus neurons induced by Aß25-35. Finally, the key proteins of related pathways were quantitatively analyzed with Western blot method. RESULTS: In total, 105 compounds and 38 targets have been screened. The main active compounds contained berberine, which belongs to alkaloids, Aurantiamide acetate, N-P-coumaroyltyramine, which belongs to amides, Trans-syringin and 3-demethyl-phillyrin, which belongs to phenylpropanoids. The targets covered inflammation-related proteins, including Protein kinase B (AKT), Phosphoinositide 3-kinase (PI3K), Tyrosine-protein kinase JAK1 (JAK1), mammalian target of rapamycin (mTOR), tumor necrosis factor alpha (TNF-α), Neuronal NOS (NOS1), and cholinergic function-related proteins, including α4-Nicotinic acetylcholine receptor (α4 nAChR), Muscarinic acetylcholine receptor M1 (Muscarnic M1). Inflammation and cholinergic dysfunction were the center of the network and occupy a dominant position. And the results of enrichment analysis shown the pathways mainly contained phosphoinositide-3-kinase/Akt (PI3K/Akt) signal pathway, neurotrophic factors (NTFs) signal pathway, Hypoxia-inducible factor 1 (HIF-1) signal pathway, mechanistic Target of Rapamycin (mTOR) signal pathway, Tumor necrosis factor (TNF) signal pathway, insulin resistance (IR). The results of in vitro assays showed that the tested compounds could significantly improve the survival rate and inhibit the apoptosis of PC12 cells and primary hippocampal neurons injured by Aß25-35. Western blot results showed that T. sinensis had a significant effect on the expression of protein PI3K and Akt. CONCLUSION: Our results revealed that T. sinensis could prevent and treat AD through a multi-compound-multi-target-multi-pathway regulatory network. Our work also expected to provide new ideas and theoretical bases for searching for the active compounds in T. sinensis and potential mechanism in the prevention and treatment of AD by the network pharmacology and molecular docking. The results of in vitro assay and in vivo assay supported the results of molecular docking.

15.
Disaster Med Public Health Prep ; : 1-2, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295658

RESUMO

Since the first report of the 2019 novel coronavirus disease (COVID-19) in December 2019 in Wuhan, China, the outbreak of the disease has been continuously evolving. Until March 17, 2020, 185, 178 cases had been confirmed, including 81,134 cases in China and 104,044 cases outside of China. In this comment, we report the unexpected beneficial effect of a deployable rapid-assembly shelter hospital on the prevention and treatment of COVID-19. We describe the shelter hospital maintenance, treatment mode and primary treatment methods, which will provide a valuable experience in dealing with public health emergencies, such as COVID-19, for other countries and areas.

16.
Cell Rep ; 31(3): 107537, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320663

RESUMO

In addition to altered gene expression, pathological cytoskeletal dynamics in the axon are another key intrinsic barrier for axon regeneration in the central nervous system (CNS). Here, we show that knocking out myosin IIA and IIB (myosin IIA/B) in retinal ganglion cells alone, either before or after optic nerve crush, induces significant optic nerve regeneration. Combined Lin28a overexpression and myosin IIA/B knockout lead to an additive promoting effect and long-distance axon regeneration. Immunostaining, RNA sequencing, and western blot analyses reveal that myosin II deletion does not affect known axon regeneration signaling pathways or the expression of regeneration-associated genes. Instead, it abolishes the retraction bulb formation and significantly enhances the axon extension efficiency. The study provides clear evidence that directly targeting neuronal cytoskeleton is sufficient to induce significant CNS axon regeneration and that combining altered gene expression in the soma and modified cytoskeletal dynamics in the axon is a promising approach for long-distance CNS axon regeneration.

17.
Sensors (Basel) ; 20(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290518

RESUMO

A challenging rescue task for the underground disaster is to guide survivors in getting away from the dangerous area quickly. To address the issue, an escape guidance path developing method is proposed based on anisotropic underground wireless sensor networks under the condition of sparse anchor nodes. Firstly, a hybrid channel model was constructed to reflect the relationship between distance and receiving signal strength, which incorporates the underground complex communication characteristics, including the analytical ray wave guide model, the Shadowing effect, the tunnel size, and the penetration effect of obstacles. Secondly, a trustable anchor node selection algorithm with node movement detection is proposed, which solves the problem of high-precision node location in anisotropic networks with sparse anchor nodes after the disaster. Consequently, according to the node location and the obstacles, the optimal guidance path is developed by using the modified minimum spanning tree algorithm. Finally, the simulations in the 3D scene are conducted to verify the performance of the proposed method on the localization accuracy, guidance path effectiveness, and scalability.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32252519

RESUMO

With the rapid development of the data security technology, increasing attention has been paid to programmable memory materials with desirable security. However, most conventional memory devices only have a single switchable color state. In this research, a kind of pH-responsive Chameleon luminescent sensor (Lap@Eu-OFX, Lap = laponite, OFX = ofloxacin) based on lanthanide doping has been fabricated, which can realize highly contrast, dynamically controlled full-color display by changing the pH value of the solution. The advanced programmable security inks, including the green and red luminescent inks, have been prepared and used to protect confidential information. More interestingly, triethylamine and hydrochloric acid are selected as encryption and decryption reagents, which can repeatedly switch the emission color of important data. Hence, the high-tech security inks show great potential in data coding, multiencryption, and decryption under UV light. Furthermore, the designed dual-channel memory device, Lap@Eu-OFX@CS (CS = Chitosan), enables reversible synchronous switching of sol-gel and emission color when converting from acid to base conditions. This can be dynamically monitored by a subsequent logic gate system and can be converted and stored into binary values. This work provides an effective approach for the design and promising application of information encryptor, smart monitor, and circuit controllers.

19.
BMC Neurol ; 20(1): 134, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32290835

RESUMO

BACKGROUND: For acute ischemic stroke (AIS) patient receiving mechanical thrombectomy (MT), renal dysfunction was an independent risk factor of contrast-induced nephropathy which may affect clinical outcomes. However, the influence of renal function on stroke outcomes is still controversial. Thus, we aim to investigate the association between renal function and outcomes of AIS patients receiving MT. METHODS: All consecutive stroke patients receiving MT were included in a prospective stroke registry in China from April 2015 to February 2019. Estimated glomerular filtration rate (eGFR) was measured on admission and categorized into G1 (≥ 90 ml/min/1.73 m2), G2 (60-89 ml/min/1.73 m2), G3a (45-59 ml/min/1.73 m2) and G3b-5 (≤44 ml/min/1.73 m2). Multivariable logistic regression analysis was performed to evaluate the association between eGFR and recanalization rate (thrombolysis in cerebral infarction scale 2b-3), symptomatic intracranial hemorrhage (sICH), death in hospital, death at 3 months and poor functional outcome (modified Rankin Scale 3-6 at 3 months). RESULTS: A total of 373 patients were included in the study. Of them, 130 (34.9%) patients were in the eGFR group G1, 170 (45.6%) in G2, 46 (12.3%) in G3a, 27 (7.2%) in G3b-5. In multivariable logistic regression analysis, reduced eGFR was associated with increased risk of sICH (G3a, p = 0.016) and 3-month death (G3b-5, p = 0.025). However, no significant effects were observed between reduced eGFR and the risk of recanalization rate (p = 0.855), death in hospital (p = 0.970), and poor functional outcome (p = 0.644). CONCLUSIONS: For AIS patients underwent MT, reduced eGFR was associated with increased risk of sICH and 3-month death. However, there were no appreciable effects of reduced eGFR on recanalization rate, death in hospital and 3-month functional outcome.

20.
Chem Commun (Camb) ; 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32242575

RESUMO

The sucessful grafting of highly polar polymer chains both on the surface and in the subsurface of PDMS via subsurface initiated ATRP for the improved antibiofouling performance is enabled by the diffusion of organic solvents (in a water-based binary solvent) which act as not only a "carrier" for hydrophilic monomers but also a "sweller" for the PDMS substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA