Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 195: 110492, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32203777

RESUMO

A pot experiment was conducted to evaluate the effects of combined application of cadmium (Cd)-resistant bacteria (J) and calcium carbonate + sepiolite (G) on both Cd bioavailability in contaminated paddy soil and on Cd accumulation in rice plants. Adding the mixture (J + G) to the soils significantly increased soil pH, decreased extractable Cd contents, and increased Fe/Mn-oxide Cd and organic-bound Cd contents. The applying of J + G, J and G decreased Cd contents in various rice tissues (roots, stems and leaves, husks, and brown rice grains) to different degrees. Compared with those of the CK, Cd contents decreased by 17.8%-53.3% in the roots, 12.3%-27.4% in the stems and leaves, 25.4%-44.6% in the husks, and 28.8%-55.7% in the brown rice grains for the application of J + G; Cd contents decreased by 8.2%-28.5% in the roots, 11.5%-32.0% in the husks, and 27.8%-45.9% in the brown rice grains for the application of J; Cd contents decreased by 12.9%-26.5% in the roots, in the stems and leaves decreased by 4.6%-34.1% in the stems and leaves, 60.2%-79.7% in the husks, and 35.7%-47.6% in the brown rice grains for the application of G. The alone application of bacteria (J) could reduce the bioavailability of Cd in soil and the contents of Cd in brown rice grains to some extent. Moreover, when the bacteria were applied in combination with mineral (J + G), it was a more effective method than the alone application of J or G to reduce the soil Cd bioavailability. Under all the tested conditions, applications of J4+G4 (320 mL kg-1 of J + 8 g kg-1 of G) resulted in the greatest reduction in Cd contents in brown rice grains. Overall, the results indicated that the combination of Cd-resistant bacteria and mineral material could effectively reduce Cd bioavailability in paddy soils and inhibit Cd accumulation in brown rice grains.

2.
Mol Psychiatry ; 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127647

RESUMO

Schizophrenia is a highly heritable mental disorder characterized by functional dysconnectivity across the brain. However, the relationships between polygenic risk factors and connectome-wide neural mechanisms are unclear. Here, combining genetic and multiparadigm fMRI data of 623 healthy Caucasian adults drawn from the Human Connectome Project, we found that higher schizophrenia polygenic risk scores were significantly correlated with lower functional connectivity in a large-scale brain network primarily encompassing the visual system, default-mode system, and frontoparietal system. Such correlation was robustly observed across multiple fMRI paradigms, suggesting a brain-state-independent neural phenotype underlying individual genetic liability to schizophrenia. Moreover, using an independent clinical dataset acquired from the Consortium for Neuropsychiatric Phenomics, we further demonstrated that the connectivity of the identified network was reduced in patients with schizophrenia and significantly correlated with general cognitive ability. These findings provide the first evidence for connectome-wide associations of schizophrenia polygenic risk at the systems level and suggest that disrupted integration of sensori-cognitive information may be a hallmark of genetic effects on the brain that contributes to the pathogenesis of schizophrenia.

3.
Rev Assoc Med Bras (1992) ; 66(1): 74-80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130385

RESUMO

OBJECTIVE: This study aims to investigate the application value of magnetic resonance (MR) hydrography of the inner ear in cochlear implantation. METHODS: 146 patients were enrolled. MR hydrography and spiral CT examinations for the intracranial auditory canal were performed before surgery, and all imaging results were statistically analyzed in order to explore the application value of MR hydrography of the inner ear in cochlear implantation. RESULTS: 146 patients (292 ears) were examined. Among these patients, 13 were diagnosed with abnormal vestibular aqueducts (20 ears) by MR hydrography, while five were diagnosed with this disease by CT; 15 patients were diagnosed with inner ear malformation (19 ears) by MR hydrography, while 11 were diagnosed by CT (four were misdiagnosed); five patients were diagnosed with internal acoustic canal stenosis (eight ears) by MR hydrography, while two were diagnosed by CT (three were misdiagnosed); and four patients were diagnosed with cochlear fibrosis (five ears) by MR hydrography, while four were diagnosed by CT (four ears). The correct rate of diagnosis was 77.40% (113/146) based on CT, while the rate was 93.84% (137/146) based on MR hydrography. CONCLUSIONS: MR hydrography imaging technique can be applied to the preoperative evaluation of cochlear implantation, providing accurate and reliable anatomic information on the inner membranous labyrinth and nerves in the internal acoustic canal and an accurate basis for the diagnosis of cochlear fibrosis and nerve development. This has a guiding significance for the selection of treatment schemes.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32150370

RESUMO

A porous cationic Ag(I) coordination polymer, [Ag(1,2,4,5-p4b)](SbF6) (TJNU-302) with the ligand 1,2,4,5-p4b (1,2,4,5-tetra(pyridin-4-yl)benzene), is reported that shows high sorption capacity (211 mg g-1) and distribution coefficient Kd (5.8 × 105 mL g-1) as well as outstanding selectivity in 500 times excess of CO32- or PO43- anion for perrhenate removal. TJNU-302 can act as a crystalline turn-off sensor for perrhenate upon UV radiation. In this way, a test paper strip for sensing ReO4- could be produced. In water solution, TJNU-302 shows an efficient fluorescence quenching response to ReO4- ion, with the highest quenching percentage (86%) among all reported ReO4- sensors. These results could be elucidated by the bonding properties of single-crystal structures of TJNU-302 before and after perrhenate sorption, as well as density functional theory (DFT) calculations.

5.
Chem Commun (Camb) ; 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32211641

RESUMO

This work presents a simple approach to access uniform fiber-like micelles by single-step crystalization-driven co-self-assembly of a polyferrocenyldimethylsilane (PFS) block copolymer with a trace of a PFS homopolymer. The length of micelles in the µm range could be controlled by changing the amount of homopolymer in the mixture.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32103429

RESUMO

The use of Napier grass to remediate heavy metal-contaminated soil is a new phytoremediation technique. The objective of this study was to evaluate the ability of Napier grass (Pennisetum purpureum Schumach.) to remediate Cd- and Zn-contaminated cultivated soil under nonmowing and mowing and the possibility of safe utilization of the stem and leaf after detoxification by liquid extraction. Three Napier grass varieties, P. purpureum cv. Mott (PM), P. purpureum cv. Red (PR), and P. purpureum cv. Guiminyin (PG), were planted in a field with 3.74 mg kg-1 Cd and 321.26 mg kg-1 Zn for 180 days. The maximum amounts of Cd and Zn removed by PG were 197.5 and 5023.9 g ha-1, respectively, almost equaling those of hyperaccumulators. Compared with nonmowing, mowing did not decrease the Cd and Zn contents in various tissues but increased the biomasses of PM, PR, and PG by 86.6%, 18.9%, and 26.1%, respectively. Compared with nonmowing, the amounts of Cd removed by PM, PR, and PG under mowing increased by 110.5%, 40.0%, and 107.9%, respectively, and that of Zn increased by 63.0%, 53.1%, and 71.6%. The dominant Cd and Zn chemical fractions in Napier grass were the pectate- and protein-integrated fractions. After liquid extraction, although the nutrient element (Ca, K, Mg, and Mn) contents in the stem and leaf were reduced significantly, the Cd and Zn contents decreased below the limit of the Chinese Hygienic Standard for Feeds, and the crude protein content was largely retained. Such detoxified stems and leaves can be safely used as feeds or as raw materials for energy production.

7.
Neuroscience ; 430: 1-11, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32014436

RESUMO

Depression is a serious global affective disorder and one of the most common neurological diseases. Tanshinone IIA (TSA) is the mainly active constituent of Salvia miltiorrhiza and has diverse biological effects, including anti-inflammatory and antioxidant effects and significant neuroprotective effects against cerebral ischemia and Alzheimer's disease. However, whether TSA has an antidepressant effect remains unknown. The present study attempted to explore the antidepressant effects and the mechanism of TSA by examining the brain-derived neurotrophic factor (BDNF) expression in the hippocampus of depressive mice. The tail suspension test (TST) and forced swim test (FST) showed that TSA can significantly reduce the immobility time of depressed mice. Chronic administration of TSA increased p-ERK and p-CREB, BDNF proteins in mice hippocampus. We further explored the potential mechanism of TSA' antidepressant effect. TSA significantly increased the expression of p-ERK, p-CREB and BDNF proteins in dexamethasone-treated PC12 cells, and this enhancement was suppressed by pretreatment with the extracellular signal-regulated kinase (ERK) inhibitor SL327. Moreover, we observed that SL327 treatment markedly suppressed the increased levels of p-ERK, p-CREB and BDNF in mice hippocampus induced by TSA, preventing the antidepressant effects of TSA. Taken together, our results suggest that the antidepressant-like effects of TSA were mediated by ERK-CREB-BDNF pathway in mice hippocampus.

8.
Pest Manag Sci ; 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32077251

RESUMO

BACKGROUND: RNA interference (RNAi)-based pest management requires efficient delivery and large-batch production of double-stranded (ds)RNA. We previously developed a nanocarrier-mediated dsRNA delivery system that could penetrate an insect's body and efficiently silence gene expression. However, there is a great need to improve the plasmid-Escherichia coli system for the mass production of dsRNA. Here, for efficient dsRNA production, we removed the rnc gene encoding endoribonuclease RNase III in E. coli BL21(DE3) and matched with the RNAi expression vector containing a single T7 promoter. RESULTS: The novel pET28-BL21(DE3) RNase III-system was successfully constructed to express vestigial (vg)-dsRNA against Harmonia axyridis. dsRNA was extracted and purified from cell cultures in four E. coil systems, and the yields of dsRNA in pET28-BL21(DE3) RNase III-, pET28-HT115(DE3), L4440-BL21(DE3) RNase III- and L4440-HT115(DE3) were 4.23, 2.75, 0.88 and 1.30 µg mL-1 respectively. The dsRNA expression efficiency of our novel E. coil system was three times that of L4440-HT115(DE3), a widely used dsRNA production system. The RNAi efficiency of dsRNA produced by our system and by biochemical synthesis was comparable when injected into Harmonia axyridis. CONCLUSION: Our system expressed dsRNA more efficiently than the widely used L4440-HT115(DE3) system, and the produced dsRNA showed a high gene-silencing effect. Notably, our pET28-BL21(DE3) RNase III-system provides a novel method for the mass production of dsRNA at low cost and high efficiency, which may promote gene function analysis and RNAi-based pest management. © 2020 Society of Chemical Industry.

9.
Carbohydr Polym ; 233: 115860, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059911

RESUMO

A novel multiple active sites cellulose-based adsorbent (MCC/TEPAA-BCTTC) with a high density of multiple active adsorption sites (N, O, S) was prepared by using epichlorohydrin cross-linking microcrystalline cellulose (MCC) with tetraethylenepentamine (TEPA), followed by grafting with bis(carboxymethyl) trithiocarbonate (BCTTC). It was shown that the removal rates of MCC/TEPAA-BCTTC for Pb(II) (1 mg/L), Cu(II) (3 mg/L) and Cr(VI) (1 mg/L) reached 100 %, 98 % and 99 %, respectively, and the remaining concentration after adsorption reached the United States Environmental Protection Agency (US EPA) standards for Pb(II) and Cu(II) and the China integrated wastewater discharge standard for Cr(VI). These results indicate that the high removal rate of MCC/TEPAA-BCTTC for removing anionic and cationic heavy metal ions in low-concentration mixed heavy metal ions environments was mainly due to the high density of multiple adsorption sites that act via multiple cooperative mechanisms.

10.
Environ Pollut ; 260: 113970, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-32014742

RESUMO

Nano-Fe3O4-modified biochar (BC-Fe) was prepared by the coprecipitation of nano-Fe3O4 on a rice husk biochar surface. The effects of BC-Fe on cadmium (Cd) bioavailability in soil and on Cd accumulation and translocation in rice (Oryza sativa L. cv. 'H You 518') were investigated in a pot experiment with 7 application rates (0.05-1.6%, w/w). BC-Fe increased the biomass of the rice plants except for the roots and affected the concentration and accumulation of Cd and Fe in the plants. The Cd concentrations of brown rice were significantly decreased by 48.9%, 35.6%, and 46.5% by the 0.05%, 0.2%, and 0.4% BC-Fe treatments, respectively. Soil cation exchange capacity (CEC) increased by 9.4%-164.1% in response to the application of BC-Fe (0.05-1.6%), while the soil Cd availability decreased by 6.81%-25.0%. However, 0.8-1.6% BC-Fe treatments promoted Cd transport to leaves, which could increase the risk of Cd accumulation in brown rice. Furthermore, BC-Fe application promoted the formation of iron plaque and enhanced the root interception of Cd. The formation of iron plaque reduced the toxicity of Cd to rice roots, but this barrier effect was limited and had an interval threshold (DCB-Fe: 22.5-27.3 g·kg-1) under BC-Fe treatments.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32069235

RESUMO

Background Elevated serum uric acid concentrations have been associated with metabolic syndrome. However, only limited information is available on the prevalence of hyperuricaemia in adolescents. Therefore, the aim of our cross-sectional study was to study the prevalence of hyperuricaemia and dietary patterns in adolescents aged 13-16 years living in Yangzhou, China. Methods Adolescents were asked to complete a 20-item food frequency questionnaire (FFQ) and provide an overnight fasting finger-prick sample. Principal component analysis (PCA) with varimax rotation was used to derive the dietary patterns that might be associated with high uric acid concentrations. Results A total of 1070 adolescents were recruited. Of these, 53.6% (n = 574) were females, and 58.5% (n = 625) were within the normal body mass index (BMI) range. The males had a significantly higher serving size and frequency in their weekly food consumption, including meat, poultry, Chinese cereal staple foods and Western-style fast foods, than the females (all p < 0.02). The overall mean serum uric acid concentration and prevalence of hyperuricaemia were 368.6 ± 114.5 µmol/L and 37.9%, respectively. The prevalence of hyperuricaemia was 4.633 times greater among the participants who were overweight and obese than among those who were underweight. On the other hand, the prevalence of hyperuricaemia was 0.694 times lower among the participants who had normal weight than those who were underweight. Conclusions The prevalence of hyperuricaemia was relatively high in Chinese adolescents. The prevention of hyperuricaemia measures should be strengthened in adolescents to effectively control for obesity and gout, which tend to persist into adulthood.

12.
Talanta ; 211: 120743, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070598

RESUMO

In this work, a novel imidazolium ionic liquid-functionalized poly(quinine)-modified silica stationary phase (Sil-PQn-MIm) was successfully synthesized via surface radical chain transfer and nucleophilic substitution reaction. The modified silica was confirmed by series of characterizations including Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The multi-mode chromatographic performances of the Sil-PQn-MIm column were investigated by anion-exchange mode for separation of aromatic acid samples, hydrophilic interaction mode for separation of nucleosides/nucleobases and sulfanilamides, and reversed-phase mode for separation of alkylbenzenes, benzene and polycyclic aromatic hydrocarbons (PAHs), and the Tanaka test mixtures, respectively. As expected, compared to the Sil-PQn column only with quinine as functional group, the Sil-PQn-MIm column further modified by imidazolium ionic liquid possessed higher separation performance, especially for the separation of nucleosides/nucleobases. The effects including buffer concentration, pH, organic solvent content and column temperature on chromatographic performance were studied, which proved that multiple interactions including electrostatic, hydrophobic and hydrophilic interactions can be simultaneously existed between the stationary phase and the analytes. In addition, reproducibility and efficiency of the Sil-PQn-MIm column were also investigated, the results illustrated that the stationary phase have good enough reproducibility (RSDs 0.15%-0.72%, n = 7) and high efficiency (plates per meter, ~90000 plates/m). In conclusion, the prepared stationary phase with multiple-mode retention capabilities could realize separation for various types of samples by optimizing chromatographic conditions, even for some chiral compounds.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32100214

RESUMO

To investigate the differences in cadmium (Cd) and lead (Pb) uptake and translocation among rape cultivars and genotypes and select suitable rape cultivars for both safe production and soil remediation, a field experiment was carried out with 39 rape cultivars of three genotypes on a farmland polluted with Cd and Pb in eastern Hunan Province, China. The Cd and Pb contents in rape tissues were measured, and the amount of Cd and Pb removed was calculated. The results showed that Cd in rape plants accumulated mostly in stems, while Pb accumulated mostly in roots. The Cd accumulation in various rape tissues followed the sequence stem > root > husk > rapeseed, while the Pb accumulation followed the sequence root > stem > husk > rapeseed. The total Cd and Pb removed by planting rape were 4.50-23.6 g ha-1 and 5.85-13.7 g ha-1, respectively, and the Cd and Pb contents in rapeseeds were in the range 0.11-0.47 mg kg-1 and 0.03-0.84 mg kg-1, respectively. Only the Pb content in rapeseed of "Youyan 9" exceeded the limit of the maximum levels of contaminants in foods (GB2762-2017, Pb ≤ 0.2 mg kg-1). In this experiment, the roots of most rape cultivars showed a greater capacity for Cd transport, while the stems showed a greater capacity for Pb transport. Except for the TFstem-husk for Cd, there were no significant differences in the TFs and BAFs of 39 rape cultivars, and clear variations in Cd content were found in the stems of the three genotypes, while there was no significant difference in the Cd and Pb contents in the other tissues. In the farmland polluted with Cd and Pb, planting "Xiangzayou 695" and "Youyan 2013" not only reduced soil pollution but also allowed the production of safe rapeseed.

14.
Nanoscale ; 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022061

RESUMO

Rechargeable aqueous zinc-ion batteries (ZIBs) have attracted significant attention in the energy storage field. Manganese-based materials are the most promising cathode materials for ZIBs but they suffer from low electronic conductivity. Herein, a high-performance cathode for ZIBs based on nanocomposites consisting of mixed-valence manganese dioxide (Mn III and IV) and polypyrrole (MnOx/PPy) is prepared through an efficient one-step organic/inorganic interface redox reaction. The role of polypyrrole (PPy) in the MnOx/PPy cathode is elaborated. It not only provides an effective conductive network for MnOx but also contributes to the capacity of the composite. By optimizing the amount of PPy, the MnOx/PPy composite with 12 wt% PPy exhibits the highest capacity. As a result, the corresponding Zn-MnOx/PPy battery delivers a high capacity (302.0 mA h g-1 at 0.15 A g-1), excellent rate performance (159.9 mA h g-1 at 3 A g-1) and superior cycling stability. Furthermore, the results of ex situ characterization analysis reveal that H+ and Zn2+ insertion/extraction both occur in MnOx/PPy particles during the discharging/charging process, while only Zn2+ insertion/extraction occurs in the PPy electrode. This work develops an efficient one-step synthesis method for large scale production of manganese-based materials/conducting polymers as the cathode for ZIB application, and provides an insight into its energy storage mechanism.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32108468

RESUMO

Despite the fact that lithium-sulfur batteries are regarded as promising next-generation rechargeable battery systems owning to high theoretical specific capacity (1675 mA h g-1) and energy density (2600 W h kg-1), several issues such as poor electrical conductivity, sluggish redox kinetics, and severe "shuttle effect" in electrodes still hinder their practical application. MXenes, novel two-dimensional materials with high conductivity, regulable interlayer spacing, and abundant functional groups, are widely applied in energy storage and conversion fields. In this work, a Ti3C2/carbon hybrid with expanded interlayer spacing is synthesized by one-step heat treatment in molten potassium hydroxide. The subsequent experiments indicate that the as-prepared Ti3C2/carbon hybrid can effectively regulate polysulfide redox conversion and has strong chemisorption interaction to polysulfides. Consequently, the Ti3C2/carbon-based sulfur cathode boosts the performance in working lithium-sulfur batteries, in terms of an ultrahigh initial discharge capacity (1668 mA h g-1 at 0.1 C), an excellent rate performance (520 mA h g-1 at 5 C), and an outstanding capacity retention of 530 mA h g-1 after 500 cycles at 1 C with a low capacity fade rate of 0.05% per cycle and stable Coulombic efficiency (nearly 99%). The above results indicate that this composite with high catalytic activity is a potential host material for further high-performance lithium-sulfur batteries.

17.
Am J Psychiatry ; 177(3): 223-232, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906708

RESUMO

OBJECTIVE: Anxiety disorders are common and often disabling. The goal of this study was to examine the genetic architecture of anxiety disorders and anxiety symptoms, which are also frequently comorbid with other mental disorders, such as major depressive disorder. METHODS: Using one of the world's largest biobanks including genetic, environmental, and medical information, the Million Veteran Program, the authors performed a genome-wide association study (GWAS) of a continuous trait for anxiety (based on score on the Generalized Anxiety Disorder 2-item scale [GAD-2], N=199,611) as the primary analysis and self-report of physician diagnosis of anxiety disorder (N=224,330) as a secondary analysis. RESULTS: The authors identified five genome-wide significant signals for European Americans and one for African Americans on GAD-2 score. The strongest were on chromosome 3 (rs4603973) near SATB1, a global regulator of gene expression, and on chromosome 6 (rs6557168) near ESR1, which encodes an estrogen receptor. The locus identified on chromosome 7 (rs56226325, MAF=0.17) near MAD1L1 was previously identified in GWASs of bipolar disorder and schizophrenia. The authors replicated these findings in the summary statistics of two major published GWASs for anxiety, and also found evidence of significant genetic correlation between the GAD-2 score results and previous GWASs for anxiety (rg=0.75), depression (rg=0.81), and neuroticism (rg=0.75). CONCLUSIONS: This is the largest GWAS of anxiety traits to date. The authors identified novel genome-wide significant associations near genes involved with global regulation of gene expression (SATB1) and the estrogen receptor alpha (ESR1). Additionally, the authors identified a locus (MAD1L1) that may have implications for genetic vulnerability across several psychiatric disorders. This work provides new insights into genetic risk mechanisms underpinning anxiety and related psychiatric disorders.

18.
Exp Cell Res ; 388(2): 111838, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31930964

RESUMO

The receptor tyrosine kinase MET plays a vital role in skeletal muscle development and in postnatal muscle regeneration. However, the effect of MET on myogenesis of myoblasts has not yet been fully understood. This study aimed to investigate the effects of MET on myogenesis in vivo and in vitro. Decreased myonuclei and down-regulated expression of myogenesis-related markers were observed in Met p.Y1232C mutant heterozygous mice. To explore the effects of MET on myoblast proliferation and differentiation, Met was overexpressed or interfered in C2C12 myoblast cells through the lentiviral transfection. The Met overexpression cells exhibited promotion in myoblast proliferation, while the Met deficiency cells showed impediment in proliferation. Moreover, myoblast differentiation was enhanced by the stable Met overexpression, but was impaired by Met deficiency. Furthermore, this study demonstrated that SU11274, an inhibitor of MET kinase activity, suppressed myoblast differentiation, suggesting that MET regulated the expression of myogenic regulatory factors (MRFs) and of desmin through the classical tyrosine kinase pathway. On the basis of the above findings, our work confirmed that MET promoted the proliferation and differentiation of myoblasts, deepening our understanding of the molecular mechanisms underlying muscle development.

19.
Neurochem Int ; 134: 104656, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31899197

RESUMO

Neuronal apoptosis is one of the main pathophysiological events in the early brain injury (EBI) post subarachnoid hemorrhage (SAH). Wnt-3a, one of the endogenous wnt ligands crucial in neurogenesis, has been proven to be efficacious in neuroprotection in traumatic brain injury and ischemic stroke. The glycolytic enzyme aldolase C and ribosome biogenesis protein PPAN were revealed to be linked to wnt signaling pathway. The aim of the study was to explore the antiapoptotic effects of intranasal wnt-3a through Frizzled-1 (Frz-1)/aldolase C/PPAN pathway in SAH. Approaches for assessment included SAH grade, Garcia test, brain water content evaluation, rotarod test, Morris water maze test, Western blot, immunofluorescence and transmission electron microscopy. The results showed that wnt-3a improved the neurological scores, brain water content and long-term neurobehavioral functions after SAH. Wnt-3a increased the level of Frz-1, aldolase C, ß-catenin, PPAN and the Bcl-2/Bax ratio; and decreased the level of axin and cleaved caspase-3 (CC-3). The anti-apoptotic effect of wnt-3a was further evidenced by TUNEL staining and subcellular structure imaging. Frz-1 siRNA and aldolase C siRNA offset the effects of wnt-3a; and restoration of aldolase C by aldolase C CRISPR in Frz-1 siRNA preconditioned SAH rats salvaged the level of Frz-1, aldolase C, PPAN and reduced axin and CC-3. In summary, intranasal administration of wnt-3a alleviates neuronal apoptosis through Frz-1/aldolase C/PPAN pathway in the EBI of SAH rats. The feasible intranasal route and the long-lasting neuroprotective property of wnt-3a is of great clinical relevance.

20.
Nanoscale ; 12(3): 2103-2110, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31913379

RESUMO

Quantum dots (QDs) have shown great potential for next generation displays owing to their fascinating optoelectronic characteristics. In this work, we present a novel full-color display based on blue organic light emitting diodes (BOLEDs) and patterned red and green QD color conversion layers (CCLs). To enable efficient blue-to-green or blue-to-red photoconversion, micrometer-thick QD films with a uniform surface morphology are obtained by utilizing UV-induced polymerization. The uniform QD layers are directly inkjet printed on red and green color filters to further eliminate the residual blue emissions. Based on this QD-BOLED architecture, a 6.6-inch full-color display with 95% Broadcasting Service Television 2020 (BT.2020) color gamut and wide viewing-angles is successfully demonstrated. The inkjet printing method introduced in this work provides a cost-effective way to extend the applications of QDs for full-color displays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA