Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.997
Filtrar
1.
J Proteomics ; 230: 103983, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32961345

RESUMO

Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen causing meningitis in humans and pigs. However, information on the comparative protein expression of the blood-brain barrier (BBB) following SS2 infection is limited. Deletion of the serine/threonine kinase (stk) gene can decrease the ability of SS2 to invade the BBB. In the present study, bEnd.3 cells were used as the BBB model, and a SILAC comparative quantitative proteomic study of bEnd.3 cells infected with the SS2 ZY05719 or Δstk strain was performed to determine the differences between these strains infections. Compared with ZY05719-infected cells, 241 proteins were highly upregulated, and 81 were significantly downregulated in Δstk-infected cells. The obtained data revealed major changes in the proteins involved in RNA process, host cytoskeleton, tight junction disruption and immune response. Some differentially expressed proteins were screened by quantitative real-time PCR to examine their regulation at the transcriptional level, and western blot analysis was used to validate the changes of some selected proteins at the translational level. The results obtained in this study may be useful to understand the host response to SS2 infection and provide crucial clues to decipher how STK expression in SS2 helps the bacteria penetrate the BBB. SIGNIFICANCE: A SILAC comparative quantitative proteomic assay was performed in bEnd.3 cells infected with the SS2 ZY05719 or Δstk strain. 241 upregulated and 81 downregulated differentially expressed proteins (DEPs) were identified. DEPs are involved in RNA process, host cytoskeleton, tight junction disruption and immune response. Some DEPs were examined by qPCR and western blot assays, which were similar to those of their corresponding proteins in the quantitative proteomics analysis.

2.
Genomics ; 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33189778

RESUMO

Deregulation of protein synthesis may be involved in multiple aspects of cancer, such as gene expression, signal transduction and drive specific cell biological responses, resulting in promoting cancer growth, invasion and metastasis. Study the molecular mechanisms about translational control may help us to find more effective anti-cancer drugs and develop novel therapeutic opportunities. Recently, the researchers had focused on targeting translational machinery to overcome cancer, and various small molecular inhibitors targeting translation factors or pathways have been tested in clinical trials and exhibited improving outcomes in several cancer types. There is no doubt that an insight into the class of translation regulation protein would provide new target for pharmacologic intervention and further provide opportunities to develop novel anti-tumor therapeutic interventions. In this review, we summarized the developments of translational control in cancer survival and progression et al, and highlighted the therapeutic approach targeted translation regulation to overcome the cancer.

3.
Chemistry ; 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33191540

RESUMO

Using the redox-active tetrathiafulvalene tetrabenzoate (TTFTB 4- ) as the linker, we constructed a series of stable and porous rare-earth metal-organic frameworks (RE-MOFs), [RE 9 (µ 3 -OH) 13 (µ 3 -O)(H 2 O) 9 (TTFTB) 3 ] ( 1-RE , where RE = Y, Sm, Gd, Tb, Dy, Ho, and Er). The RE 9 (µ 3 -OH) 13 (µ 3 -O) (H 2 O) 9 ](CO 2 ) 12 clusters within 1-RE act as segregated single-molecule magnets (SMMs) displaying slow relaxation. Interestingly, upon oxidation by I 2 , the S = 0 TTFTB 4- linkers of 1-RE were converted into S = ½ TTFTB •3+ radical linkers which introduced exchange-coupling between SMMs and modulated the relaxation. Furthermore, the SMM property can be restored by the reduction in N, N -dimethylformamide. These results highlight the advantage of MOFs in the construction of redox-switchable SMMs.

4.
Chem Commun (Camb) ; 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130831

RESUMO

Functionalization of optical waveguides with submicron coatings of zinc peroxide (ZnO2) and silica (SiO2) nanoparticles (NPs) is reported that enabled selective concentration of acetone vapors in the vicinity of the waveguide, boosting the sensitivity of a mid infrared (MIR) on-chip detector. Controlled thickness was achieved by introducing precise control of the substrate withdrawal speed to the layer-by-layer (LbL) deposition technique.

5.
Biomed Pharmacother ; 131: 110791, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152948

RESUMO

Therapeutic targeting of extracellular proteins has attracted huge attention in treating human diseases. The lysyl oxidases (LOXs) are a family of secreted copper-dependent enzymes which initiate the covalent crosslinking of collagen and elastin fibers in the extracellular microenvironment, thereby facilitating extracellular matrix (ECM) remodeling and ECM homeostasis. Apart from ECM-dependent roles, LOXs are also involved in other biological processes such as epithelial-to-mesenchymal transition (EMT) and transcriptional regulation, especially following hypoxic stress. Dysregulation of LOXs is found to underlie the onset and progression of multiple pathologies, such as carcinogenesis and cancer metastasis, fibrotic diseases, neurodegeneration and cardiovascular diseases. In this review, we make a comprehensive summarization of clinical and experimental evidences that support roles of for LOXs in disease pathology and points out LOXs as promising therapeutic targets for improving prognosis. Additionally, we also propose that LOXs reshape cell-ECM interaction or cell-cell interaction due to ECM-dependent and ECM-independent roles for LOXs. Therapeutic intervention of LOXs may have advantages in the maintenance of communication between ECM and cell or intercellular signaling, finally recovering organ function.

6.
Mil Med Res ; 7(1): 55, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33172500

RESUMO

BACKGROUND: Plasma expanders are widely used for acute normovolemic hemodilution (ANH). However, existing studies have not focused on large-volume infusion with colloidal plasma expanders, and there is a lack of studies that compare the effects of different plasma expanders. METHODS: The viscosity, hydrodynamic radius (Rh) and colloid osmotic pressure (COP) of plasma expanders were determined by a cone-plate viscometer, Zetasizer and cut-off membrane, respectively. Sixty male rats were randomized into five groups with Gelofusine (Gel), Hydroxyethyl Starch 200/0.5 (HES200), Hydroxyethyl Starch 130/0.4 (HES130), Hydroxyethyl Starch 40 (HES40), and Dextran40 (Dex40), with 12 rats used in each group to build the ANH model. ANH was performed by the withdrawal of blood and simultaneous infusion of plasma expanders. Acid-base, lactate, blood gas and physiological parameters were detected. RESULTS: Gel had a lower intrinsic viscosity than HES200 and HES130 (P < 0.01), but at a low shear rate in a mixture of colloids, red cells and plasma, Gel had a higher viscosity (P < 0.05 or P < 0.01, respectively). For hydroxyethyl starch plasma expanders, the COP at a certain concentration decreases from 11.1 mmHg to 6.1 mmHg with the increase of Rh from 10.7 nm to 20.2 nm. A severe ANH model, with the hematocrit of 40% of the baseline level, was established and accompanied by disturbances in acid-base, lactate and blood gas parameters. At the end of ANH and 60 min afterward, the Dex40 group showed a worse outcome in maintaining the acid-base balance and systemic oxygenation compared to the other groups. The systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) decreased significantly in all groups at the end of ANH. The DBP and MAP in the Dex40 group further decreased 60 min after the end of ANH. During the process of ANH, the Dex40 group showed a drop and recovery in SBP, DBP and MAP. The DBP and MAP in the HES200 group were significantly higher than those in the other groups at some time points (P < 0.05 or P < 0.01). CONCLUSION: Gel had a low intrinsic viscosity but may increase the whole blood viscosity at low shear rates. Rh and COP showed a strong correlation among hydroxyethyl starch plasma expanders. Dex40 showed a worse outcome in maintaining the acid-base balance and systemic oxygenation compared to the other plasma expanders. During the process of ANH, Dex40 displayed a V-shaped recovery pattern for blood pressure, and HES200 had the advantage in sustaining the DBP and MAP at some time points.

7.
Dalton Trans ; 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33179664

RESUMO

As newly emerging proton-conducting materials, metal-organic frameworks (MOFs) have been attracting wide attention in the field of proton exchange membrane fuel cells. However, for most of the MOF materials, long-term stability is a huge obstacle for practical applications. So, the structural stability of MOFs is the critical prerequisite for the design and development of modified materials with excellent proton conductivity. In this review, stable UiO-66 derivatives were chosen as the research object, and modification methods including post-synthesis modification and hybridization were mainly summarized. Based on the reported typical functionalization strategies, we found that the modified UiO-66 derivatives and their composite membranes demonstrate ultra-high proton conductivity similar to that of commercial Nafion, indicating their great application potential in fuel cells. This Frontier article focuses on the recent development in the modification of UiO-66 type frameworks and their composite membranes and the tuning of proton conductivity with structural factors.

8.
J Sci Food Agric ; 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33179763

RESUMO

BACKGROUND: Ridge-furrow mulching farming system (RFMs) aims to increase field productivity and improve water use efficiency. To explore environment-friendly and efficient farming system is a central aspect of rainfed wheat field management in Kenya where rainfall utilization is at low level. We introduced RFMs (including plastic film and grass straw mulching) to semiarid Kenya to evaluate its effects on field productivity, rainwater utilization, soil quality and economic profitability using old and modern wheat cultivars from 2012 to 2013. RESULTS: Across the cultivars, the RFMs increased grain yield, aboveground biomass and water use efficiency by 74-163%, 36-104% and 89-273%, respectively, compared with conventional flat planting (control). RFMs significantly shortened vegetative period while prolonged reproductive period. The net economic output under RFMs was 74-165% higher than that of controlled practice. Grass straw mulching achieved the highest economic output to input ratio, almost 45% higher than plastic film mulching did, despite the former harvested only 82% of the maximum field productivity by the latter. Compared with the control, grass straw mulching promoted the contents of soil organic carbon, total nitrogen, and C: N ratio by 14%, 8%, and 5% respectively, while the obviously decreased values in these parameters were observed under plastic mulching. CONCLUSION: Through reducing soil water loss, and improving rainwater use efficiency and soil quality, ridge-furrow grass straw mulching would be a sustainable option to boost field productivity and thus ensure local food security in rainfed agricultural areas of Kenya. This article is protected by copyright. All rights reserved.

10.
Theranostics ; 10(26): 12189-12203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204337

RESUMO

Objective: Gout, induced by monosodium urate (MSU) crystal deposition in joint tissues, provokes severe pain and impacts life quality of patients. However, the mechanisms underlying gout pain are still incompletely understood. Methods: We established a mouse gout model by intra-articularly injection of MSU crystals into the ankle joint of wild type and genetic knockout mice. RNA-Sequencing, in vivo molecular imaging, Ca2+ imaging, reactive oxygen species (ROS) generation, neutrophil influx and nocifensive behavioral assays, etc. were used. Results: We found interleukin-33 (IL-33) was among the top up-regulated cytokines in the inflamed ankle. Neutralizing or genetic deletion of IL-33 or its receptor ST2 (suppression of tumorigenicity) significantly ameliorated pain hypersensitivities and inflammation. Mechanistically, IL-33 was largely released from infiltrated macrophages in inflamed ankle upon MSU stimulation. IL-33 promoted neutrophil influx and triggered neutrophil-dependent ROS production via ST2 during gout, which in turn, activated transient receptor potential ankyrin 1 (TRPA1) channel in dorsal root ganglion (DRG) neurons and produced nociception. Further, TRPA1 channel activity was significantly enhanced in DRG neurons that innervate the inflamed ankle via ST2 dependent mechanism, which results in exaggerated nociceptive response to endogenous ROS products during gout. Conclusions: We demonstrated a previous unidentified role of IL-33/ST2 in mediating pain hypersensitivity and inflammation in a mouse gout model through promoting neutrophil-dependent ROS production and TRPA1 channel activation. Targeting IL-33/ST2 may represent a novel therapeutic approach to ameliorate gout pain and inflammation.

11.
Acta Orthop Traumatol Turc ; 54(5): 497-501, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33155558

RESUMO

OBJECTIVE: This study aimed to investigate the anatomical relationship between the subscapularis tendon and glenosubscapularal ligament (GSL) that we accidentally identified from our previous study on a rabbit shoulder model and to determine whether this anatomical relationship has an impact on the rabbit shoulder model for studying the human chronic rotator cuff pathology. METHODS: In this study, 15 male New Zealand rabbits aged 12 weeks and weighing 2.5 kg were used. Moreover, 3 rabbits were sacrificed for the anatomical and histological investigation of the relationship between the subscapularis tendon and GSL at baseline. The remaining 12 rabbits underwent the subscapularis tendon tenotomy from the lesser tuberosity using a standardized procedure. The GSL was cut on the left side and preserved on the right side. For histomorphometric analysis, 6 rabbits were first sacrificed at 6 weeks and then the remaining 6 rabbits at 12 weeks. RESULTS: In all the rabbits, GSL was identified, connecting the upper portion of glenoid and subscapularis muscle-tendon junction. The mean thickness of the middle portion of GSL was 1.1±0.2 mm; the mean length of GSL was 8.4±2.3 mm. The mean widths of the proximal and distal attachments were 2.4±0.3 and 4.2±0.5 mm, respectively. The mean size of the native subscapularis muscle fibers was 122.6±4.3 µm2. The mean size of the muscle fibers in shoulders with tenotomy alone was 112.6±6.2 and 102.6±4.8 µm2 at 6 and 12 weeks, respectively. The mean size of the muscle fibers in shoulders with tenotomy plus GSL cut severing was 88.3±9.7 and 56.4±5.2 µm2 at 6 and 12 weeks, respectively. The significant muscle atrophy was observed both at 6 and 12 weeks in the shoulders with tenotomy plus GSL cut compared with those with tenotomy alone as well as those with the native subscapularis. However, the muscle atrophy was not significantly different in the shoulders with tenotomy alone at different time points. CONCLUSION: Because GSL may prevent the subscapularis retraction, the rabbit subscapularis tendon model may not be suitable for studying the human chronic rotator cuff pathology if GSL is neglected or preserved.

12.
Drug Des Devel Ther ; 14: 4775-4788, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192053

RESUMO

Diabetic cardiomyopathy (DCM) characterized by diastolic and systolic dysfunction independently of hypertension and coronary heart disease, eventually develops into heart failure, which is strongly linked to a high prevalence of mortality in people with diabetes mellitus (DM). Sodium-glucose cotransporter type2 inhibitors (SGLT2Is) are a novel type of hypoglycemic agent in increasing urinary glucose and sodium excretion. Excitingly, the EMPA-REG clinical trial proved that empagliflozin significantly reduced the relative risk of cardiovascular (CV) death and hospitalization for heart failure (HHF) in patients with type 2 DM (T2DM) plus CV disease (CVD). The EMPRISE trial showed that empagliflozin decreased the risk of HHF in T2DM patients with and without a CVD history in routine care. These beneficial effects of SGLT2Is could not be entirely attributed to glucose-lowering or natriuretic action. There could be potential direct mechanisms of SGLT2Is in cardioprotection. Recent studies have shown the effects of SGLT2Is on cardiac iron homeostasis, mitochondrial function, anti-inflammation, anti-fibrosis, antioxidative stress, and renin-angiotensin-aldosterone system activity, as well as GlcNAcylation in the heart. This article reviews the current literature on the effects of SGLT2Is on DCM in preclinical studies. Possible molecular mechanisms regarding potential benefits of SGLT2Is for DCM are highlighted, with the purpose of providing a novel strategy for preventing DCM.

13.
Front Cell Infect Microbiol ; 10: 570261, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194808

RESUMO

The skin represents the exterior interface between the human body with the environment while providing a home to trillions of the commensal microorganisms-collectively referred to as the skin microbiota. These microbes that coexist in an established balance play a pivotal role in the protection of cutaneous health and the orchestration of skin homeostasis. However, the well-controlled but delicate balance can be perturbed by alterations in the skin microbial communities, namely, dysbiosis, often due to commensals defeated by pathogens competing for space and nutrients, which leads to the occurrence of multiple cutaneous disorders. In view of this, the analysis of skin microbiota constituents in skin diseases is crucial for defining the role of commensal microbes and treatment of skin diseases. Emerging evidence shows that the ecology-based therapy of microbial transplantation has been proven as a valid therapeutic strategy for cutaneous disorders caused by skin microbial dysbiosis. Although its mechanism is not well-understood, there are already some applications for ecology-based therapy with the aim of correcting the imbalances on the cutaneous ecosystem. In this review, we summarize the interactions between dysbiosis and the cutaneous disorders, including homeostasis and dysbiosis of skin microbiota, microbial composition in skin diseases, and the mechanisms and applications of reversing or ameliorating the dysbiosis by the targeted manipulation of the skin microbiota, which may contribute to aid development of therapeutic modality for ecology-based therapy.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33038039

RESUMO

The ability to assemble intricately connected topologies from primary or secondary building units (SBUs) provides great prospective to expand the library of metal-organic frameworks (MOFs). Further development of MOFs requires an establishment of hierarchical interaction within the framework. Herein, we report a series of mesoporous rare-earth (RE) MOFs that are constructed from an unusual 12-connected π-stacked pyrene supramolecular building block and a typical 12-connected RE 6 cluster (RE = Eu, Y, Yb, Tb, and Ce). The judicious design of a butterfly-shape pyrene ligand with a tert-butyl substituent enables the formation of the disordered 12-connected organic SBUs on its strong intermolecular π-π interactions. The assembly of 12-connected inorganic cuboctahedron SBUs and 12-connected organic distorted hexagonal prism SBUs generates an unprecedented network that can be further simplified into a 4,4-connected pts net linked from planar square and tetrahedra. This work provides fresh insights into the design and synthesis of frameworks constructed from coordinatively, covalently and noncovalently linked building units, and also offers accesses to unknown MOF structures based on organic SBUs that still remains largely undiscovered.

15.
Mol Neurobiol ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33029740

RESUMO

Recent evidence suggests that hypoxia preconditioning can alter the microRNA (miRNA) profile of extracellular vesicles (EVs) and has better neuroprotective effects when enriched miRs are delivered to recipients. However, the roles of exosomal miRNAs in regulating ischaemia-reperfusion (IR)-induced pain hypersensitivity are largely unknown. Thus, we isolated EVs from normoxia-conditioned neurons (Nor-VSC EVs) and Hypo-VSC EVs by ultracentrifugation. After the initial screening by a microarray analysis and quantitative RT-PCR (qRT-PCR), miR-126-3p, which was detected as the most altered miR in the Hypo-VSC EVs, was further confirmed by applying GW4869 to inhibit exosomal secretion. Moreover, transfection with a miR-126 mimic obviously increased miR-126-3p expression in Nor-VSC EVs, whereas a miR-126 inhibitor prevented the increase in miR-126-3p in Hypo-VSC EVs. A rat model of pain was established by performing 8-min occlusion of the aorta. Following IR, compared with the Nor-VSC EVs- or antagomir-126-injected rats, the Hypo-VSC EVs-injected rats displayed improved pain hypersensitivity demonstrated as higher PWT and PWL values. Mechanistically, PIK3R2 is a target of miR-126-3p and might be a modulator of the phosphoinositide 3-kinase (PI3K)/Akt pathway as the PIK3R2 and PI3K immunoreactivities in each group were changed in opposite directions. Compared with the controls, higher protein levels of PI3K and phosphorylated Akt but lower levels of phosphorylated nuclear factor-κ B (NF-κB), tumour necrosis factor (TNF)-α and interleukin (IL)-1ß were detected in the spinal cords of the Hypo-VSC EVs-injected rats, and these effects were impaired by an injection of Hypo-VSC EVs combined with antagomir-126. Collectively, the miR-126-3p-enriched Hypo-VSC EVs attenuated IR-induced pain hypersensitivity by restoring miR-126-3p expression in the injured spinal cord and subsequently modulating PIK3R2-mediated PI3K/Akt and NF-κB signalling pathways.

16.
Zootaxa ; 4861(1): zootaxa.4861.1.2, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055867

RESUMO

The Anotylus nitidifrons group (Coleoptera: Staphylinidae: Oxytelinae) is studied and five new species are described from China: Anotylus sculptifrons Wang Zhou, sp. nov. (Hubei, Yunnan), A. corrugifrons Wang Zhou, sp. nov. (Guangxi), A. applanatifrons Wang Zhou, sp. nov. (Zhejiang), A. declivisculptilis Wang Zhou, sp. nov. (Guangxi), A. scabrifrons Wang Zhou, sp. nov. (Sichuan). The taxonomic history of Anotylus nitidifrons group is briefly reviewed and another Chinese species is redescribed. Color plates and line-drawing are provided for all new species and other two species known from China. A key to the Chinese species of Anotylus nitidifrons group is included in the paper.


Assuntos
Besouros , Distribuição Animal , Estruturas Animais , Animais , China , Tamanho do Órgão
17.
Zootaxa ; 4759(2): zootaxa.4759.2.8, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33056924

RESUMO

This paper reports one new genus, Cyanocypus gen. nov. and one new species, Cyanocypus leukos sp. nov. from Yunnan, China. A comparison between the new genus and other related genera is provided and the diagnostic characters are illustrated.


Assuntos
Besouros , Distribuição Animal , Estruturas Animais , Animais , China
18.
Eur J Pharmacol ; : 173630, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045197

RESUMO

Glucocorticoids are commonly used in clinic, but the immunosuppression seriously hinders their usage. Herein, immunomodulatory effect of artesunate (AS) on hydrocortisone (HC)-induced immunosuppression was investigated. HC-induced immunosuppression mice (HC mice) were established by intramuscular administration with HC (20 mg/kg) once a day for 5 consecutive days. The results showed HC mice challenged with Escherichia coli on the sixth day presented a lower ability to clear bacteria, decreased TNF-α in blood, decreased spleen index and thymus index. Significantly, AS (20 mg/kg) treatment not only enhanced the ability of HC mice to clear bacteria, but also increased spleen index, the levels of pro-inflammatory cytokines from 78.7 ± 12.1 ng/ml (TNF-α) and 48.7 ± 8.6 pg/ml (IL-6) to 174.0 ± 90.5 ng/ml and 783.3 ± 90.5 pg/ml, number of white blood cells in blood, and sIgA in colon. Subsequently, HC-induced immunosuppression peritoneal macrophages model (HC cells) was established via addition of HC (0.5 µg/ml) for 0.5 h, and then LPS (100 ng/ml) was added to clarify the functional status of the cells. The results showed HC inhibited TNF-α and IL-6 mRNA expressions and their release, but AS (2.5 µg/ml) could increase TNF-α and IL-6 mRNA expressions and their release. AS inhibited GILZ mRNA up-regulated by HC and increases TLR4/NF-κB p65 expressions down-regulated by HC. Our findings revealed that AS's effect is closely related to the improvement of the TLR4/NF-κB signal transduction pathway via inhibiting the up-regulation of GILZ mRNA, demonstrating AS does possess immunomodulatory effects and is worth further investigation in the future.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33095288

RESUMO

OBJECTIVE: Olanzapine is widely prescribed for patients with mental disorders; however, it may induce metabolic dysfunction. Metformin is an efficient adjuvant for preventing olanzapine-induced metabolic dysfunction in clinical practice. Although the mechanism of how metformin prevents this metabolic dysfunction remains unknown, changes in the gut-liver axis are considered a potential explanation. METHODS: Forty-eight male rats were gavaged with olanzapine and/or metformin for 35 consecutive days. Body weight, food intake, and water intake were measured daily. Histopathological and biochemical tests were performed to evaluate the metabolic dysfunction. The 16S rRNA obtained from fecal bacterial DNA was assessed. RESULTS: Olanzapine treatment increased the body weight, blood glucose and triglyceride levels, and the number of adipocytes in the liver. While coadministration of metformin, there was a dose-dependent reverse of the abnormal changes induced by olanzapine treatment. Both olanzapine and metformin treatments altered the composition of the gut microbiota. Bacteroides acidifaciens and Lactobacillus gasseri were possibly played a positive role in metformin-mediated olanzapine-induced metabolic dysfunction prevention. CONCLUSION: Metformin prevented olanzapine-induced metabolic dysfunction and regulated the gut microbiota in a dose-dependent manner.

20.
Chem Rev ; 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33049142

RESUMO

Metal-organic frameworks (MOFs), constructed from organic linkers and inorganic building blocks, are well-known for their high crystallinity, high surface areas, and high component tunability. The stability of MOFs is a key prerequisite for their potential practical applications in areas including storage, separation, catalysis, and biomedicine since it is essential to guarantee the framework integrity during utilization. However, MOFs are prone to destruction under external stimuli, considerably hampering their commercialization. In this Review, we provide an overview of the situations where MOFs undergo destruction due to external stimuli such as chemical, thermal, photolytic, radiolytic, electronic, and mechanical factors and offer guidelines to avoid unwanted degradation happened to the framework. Furthermore, we discuss possible destruction mechanisms and their varying derived products. In particular, we highlight cases that utilize MOF instability to fabricate varying materials including hierarchically porous MOFs, monolayer MOF nanosheets, amorphous MOF liquids and glasses, polymers, metal nanoparticles, metal carbide nanoparticles, and carbon materials. Finally, we provide a perspective on the utilization of MOF destruction to develop advanced materials with a superior hierarchy for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA