Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Cancer Res Commun ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630886

RESUMO

Homologous recombination (HR) related gene alterations are present in a significant subset of prostate, breast, ovarian, pancreatic, lung and colon cancers rendering these tumors as potential responders to specific DNA damaging agents. A small molecule acylfulvene prodrug, LP-184, metabolizes to an active compound by the oxidoreductase activity of enzyme Prostaglandin Reductase 1 (PTGR1), which is frequently elevated in multiple solid tumor types. Prior work demonstrated that cancer cell lines deficient in a spectrum of (DNA damage repair) DDR pathway genes show increased susceptibility to LP-184. Here, we investigated the potential of LP-184 in targeting multiple tumors with impaired HR function and its mechanism of action as a DNA damaging agent. LP-184 induced elevated DNA double-strand breaks (DSB) in HR deficient (HRD) cancer cells. Depletion of key HR components BRCA2 or ATM in cancer cells conferred up to 12-fold increased sensitivity to the LP-184. LP-184 showed nanomolar potency in a diverse range of HRD cancer models, including prostate cancer organoids, leiomyosarcoma cell lines and patient-derived tumor graft models of lung, pancreatic, and prostate cancers. LP-184 demonstrated complete, durable tumor regression in 10 PDX models of HRD triple-negative breast cancer (TNBC) including those resistant to Poly-ADP ribose polymerase inhibitors (PARPi). LP-184 further displayed strong synergy with PARPi in ovarian and prostate cancer cell lines as well as in TNBC PDX models. These preclinical findings illustrate the potential of LP-184 as a pan-HRD cancer therapeutic. Taken together, our results support continued clinical evaluation of LP-184 in a large subset of HRD solid tumors.

2.
Curr Res Food Sci ; 8: 100730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623272

RESUMO

During the fruit wine production, phenolic acid decarboxylase (PAD) converts free hydroxycinnamic acid into 4-vinyl derivatives that can then react spontaneously with anthocyanins, generating more stable pyranoanthocyanins that are responsible for the color stability of fruit wine. Nevertheless, the low PAD activity in yeast under the winemaking conditions has largely limited the generation of 4-vinyl derivatives. To bridge this gap, we expressed PAD from Bacillus amyloliquefaciens in Pichia pastoris and surface-displayed it on Saccharomyces cerevisiae. As a result, S. cerevisiae surface-displayed PAD (SDPAD) exhibited an enhanced thermal stability and tolerance to acidic conditions. Fermentation experiments showed that SDPAD can significantly increase the content of vinylphenolic pyranoanthocyanins and thus maintain the color stability of blueberry wine. Our study demonstrated the feasibility of surface display technology for color stability enhancement during the production of blueberry wine, providing a new and effective solution to increase the content of vinylphenolic pyranoanthocyanins in the fruit-based wines.

3.
Heliyon ; 10(7): e29123, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601639

RESUMO

Overuse of sulfonamides in aquaculture and agriculture leads to residual drugs that cause serious pollution of the environment. However, the residues of sulfonamides in the environment are not unique, and the existing microbial degradation technology has a relatively low degradation rate of sulfonamides. Therefore, in this study, a Pseudomonas stutzeri strain (DLY-21) with the ability to degrade four common SAs was screened and isolated from aerobic compost. Under optimal conditions, the DLY-21 strain degraded four sulfonamides simultaneously within 48 h, and the degradation rates were all over 90%, with the average degradation rates of SAs being sulfoxide (SDM) ≈ sulfachloropyridazine (SCP) > sulfa quinoxaline (SQ) > sulfadiazine (SQ). In addition, the main compounds of the strain DLY-21-degrading SAs were identified by LC-MS analysis. On this basis, four detailed reaction pathways for SA degradation were deduced. This is the first report of the use of a P. stutzeri strain to degrade four sulfonamide antibiotics (SQ, SDM, SCP, and SM1), which can improve the removal efficiency of sulfonamide antibiotic pollutants and thus ameliorate environmental pollution. The results showed that DLY-21 had a good degradation effect on four SAs (SQ, SDM, SCP, and SM1).

4.
Front Med (Lausanne) ; 11: 1370762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463493

RESUMO

Primary pancreatic lymphoma (PPL) is a rare malignancy, which is defined as a mass centered in pancreas with involvement of contiguous lymph nodes and distant spread may exist. Accurate diagnosis of PPL prior to pathological confirmation remains challenging, underscoring the critical significance of preoperative imaging assessments. This case report collected two instances of PPL that underwent initial evaluation via 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) between August 2021 and July 2022. Correspondingly, pertinent literature encompassing 18F-FDG PET/CT data related to PPL was meticulously reviewed. Including our aforementioned pair of cases, a cumulative total of 25 instances of PPL were assembled. The distinctive profile of 18F-FDG PET/CT images of PPL predominantly manifests as hypermetabolic lesions with diminished density. Primarily characterized by singular lesions and comparatively substantial volumetric dimensions, a total of eleven cases revealed contiguous lymph node engagement, with five instances displaying distant dissemination encompassing lymph nodes in multiple locations. Amongst these, ten patients underwent sequential 18F-FDG PET/CT follow-up post-intervention. In comparison to pancreatic carcinoma, PPL lesions exhibited heightened hypermetabolism, augmented volumetric proportions, and distinct patterns of distant metastasis. This study indicates that the pivotal role of 18F-FDG PET/CT in the diagnosis and assessment of therapeutic efficacy in PPL is unequivocal. Combined with the clinical attributes of patients, the integration of 18F-FDG PET/CT augments the differential diagnostic capacity differentiating PPL from pancreatic carcinoma.

5.
Chemosphere ; 346: 140538, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303397

RESUMO

To enhance the polarization distribution of electron cloud density on the catalyst surface, we have introduced a novel bimetallic-substituted dual-reaction center (DRC) catalyst (FeCo-γ-Al2O3) comprising iron (Fe) and cobalt (Co) for the decomplexation and mineralization of heavy metal complex Ni-EDTA in this study. Compared to the catalysts doped solely with Fe or Co, the bimetal-doped catalyst offered several advantages, including enhanced electron cloud polarization distribution, additional electron transfer pathway, and improved capacity of free radical generation. Through DFT calculations and EPR tests, we have elucidated the influences of the catalyst's adsorption toward Ni-EDTA and its decomplexation products on the electron transfer between the pollutant and the catalyst. The competition between the pollutants and H2O2 affects the generation of free radicals in both electron-rich Fe and Co centers as well as electron-deficient Al center. Building on these findings, we have proposed a plausible removal mechanism of Ni-EDTA using the heterogeneous Fenton-like catalyst FeCo-γ-Al2O3. This study sheds light on the potential of FeCo-γ-Al2O3 as a DRC catalyst and emphasizes the significance of pollutant characteristics in determining the catalyst's performance.


Assuntos
Elétrons , Poluentes Ambientais , Ácido Edético , Peróxido de Hidrogênio , Ferro , Catálise , Cobalto
6.
Biol Trace Elem Res ; 202(3): 824-834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37273075

RESUMO

Increasing evidence has found metals to be strongly associated with muscle strength, but the correlations between serum copper (Cu), selenium (Se), and zinc (Zn) with grip strength in adult populations have not yet been established. We examined the linear and non-linear associations between these three metals and grip strength via multiple linear regression and restricted cubic spline (RCS) regression using data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. A higher concentration of serum Cu was monotonically linked with lower grip strength [ß = - 0.004 m2 (95% CI: - 0.005, - 0.002)], and serum Zn was positively associated with grip strength [ß = 0.004 m2 (95% CI: 0.002, 0.006)]. We observed a positive association between serum Se and grip strength in the unadjusted model but not in covariate-adjusted models. Interestingly, the results of RCS regression showed that serum Cu had an L-shaped non-linear association with grip strength in all participants and subgroups. We further found a linear-increased trend between serum Zn and the grip strength in all participants. There were also non-linear associations that varied across different subgroups. Taken together, serum Cu and Zn were significantly associated with grip strength, while Se was not. This study offers new evidence to help formulate a reference concentration range for serum Cu and Zn.


Assuntos
Selênio , Adulto , Humanos , Cobre , Zinco , Inquéritos Nutricionais , Força da Mão
7.
Food Chem ; 438: 137956, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37989022

RESUMO

The development of blueberry wine provides an alternative method for maintaining the nutritional value and extending the shelf life of blueberries. However, anthocyanin loss and off-flavor compound generation during fermentation impair blueberry wine color and quality. Hydroxycinnamate decarboxylase from yeast can catalyze the conversion of hydroxycinnamic acids to vinylphenols, which later may condense with anthocyanins to form more stable vinylphenolic pyranoanthocyanins. In this study, 10 non-Saccharomyces yeasts from Daqu that showed hydroxycinnamate decarboxylase activity were screened. Among the 10 strains, Wickerhamomyces anomalus Y5 showed the highest consumption (34.59%) of the total tested phenolic acids and almost no H2S production. Furthermore, Y5 seemed to produce four vinylphenol pyranoanthocyanins (cyanidin-3-O-galactoside/glucoside-4-vinylcatechol, cyanidin-3-O-galactoside/glucoside-4-vinylsyringol, malvidin-4-vinylguaiacol, and malvidin-4-vinylcatechol) during blueberry wine fermentation, which may improve the color stability of blueberry wine. These findings provide new insights for improving the quality of blueberry wine using non-Saccharomyces yeasts.


Assuntos
Mirtilos Azuis (Planta) , Carboxiliases , Vinho , Vinho/análise , Antocianinas/análise , Leveduras , Glucosídeos , Galactosídeos
8.
Sci Total Environ ; 912: 169010, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040348

RESUMO

Airborne microorganisms are important parts of the Moutai-flavor Baijiu brewing microbial community, which directly affects the quality of Baijiu. However, environmental factors usually shape airborne microbiomes in different distilleries, even in the different production areas of the same distillery. Unfortunately, current understanding of environmental factors shaping airborne microbiomes in distilleries is very limited. To bridge this gap, we compared airborne microbiomes in the Moutai-flavor Baijiu core production areas of different distilleries in the Chishui River Basin and systematically investigated the key environmental factors that shape the airborne microbiomes. The top abundant bacterial communities are mainly affiliated to the phyla Actinobacteriota, Firmicutes, and Proteobacteri, whereas Ascomycota and Basidiomycota are the predominant fungal communities. The Random Forest analysis indicated that the biomarkers in three distilleries are Saccharomonospora and Bacillus, Thermoactinomyces, Oceanobacillus, and Methylobacterium, which are the core functional flora contributing to the production of Daqu. The correlation and network analyses showed that the distillery age and environmental temperature have a strong regulatory effect on airborne microbiomes, suggesting that the fermentation environment has a domesticating effect on air microbiomes. Our findings will greatly help us understand the relationship between airborne microbiomes and environmental factors in distilleries and support the production of the high-quality Moutai-flavor Baijiu.


Assuntos
Bacillaceae , Bacillus , Methylobacterium , Fermentação , Firmicutes
9.
Front Nutr ; 10: 1280215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107745

RESUMO

Aims: The relationship between caffeine and metabolic syndrome (MetS) has only been evaluated from the perspective of caffeine consumption. The association between urinary caffeine and MetS is still unclear. This study examined the associations between urinary caffeine and its metabolites and MetS and its components among adults. Methods: Data from the United States (US) National Health and Nutrition Examination Survey (NHANES) 2011-2014 was analyzed. NHANES is a stratified, multi-stage survey of all non-institutionalized persons in the US. A total of 2,394 subjects aged ≥ 18 years without missing data were selected in this study. Urinary caffeine and caffeine metabolite levels were quantified using high-performance liquid chromatography-electrospray ionization-tandem quadrupole mass spectrometry (HPLC-ESI-MS/MS) with stable isotope-labeled internal standards. We performed principal components analysis (PCA) to investigate the underlying correlation structure of 15 features of urinary caffeine and its metabolites and then used these principal components (PCs) as independent variables to conduct logistic regression analysis with or without restricted cubic spline (RCS) terms to explore the associations between caffeine metabolites and MetS. Results: Two main PCs that were derived from the PCA explained 90.67% of the total variance of caffeine and its metabolites. The first PC (PC1, strongly correlated with 1-MU, 1,3-DMU, 1,7-DMU, 1,3,7-TMU, 1-MX, 1,3-DMX, 1,7-DMX, 1,3,7-TMX, and AAMU) was positively correlated with risk of MetS (OR = 1.27, p < 0.001) and all its components (all ORs > 1, all p-values < 0.001) in the unadjusted models, while in the adjusted models, it was positively correlated with MetS (OR = 1.16, p = 0.042) and central obesity (OR = 1.22, p < 0.001). In the unadjusted model, there were significant associations between the second PC (PC2, correlated with 3-MU, 7-MU, 3,7-DMU, 3-MX, 7-MX, and 3,7-DMX) and MetS (OR = 1.11, P = 0.030) and central obesity (OR = 1.16, P < 0.001), while in the adjusted models (adjustment variables include gender, age, race/ethnicity, education level and income-poverty ratio, smoking status, drinking, and physical activity), PC2 was positively associated with MetS (OR = 1.15, p = 0.035) and central obesity (OR = 1.15, p = 0.005) and negatively associated with raised triglycerides (TG) (OR = 0.84, p = 0.008). Moreover, we observed U-shaped associations between PC1 and the risk of raised TG both in unadjusted (Pnon-linear = 0.017) and adjusted (Pnon-linear = 0.014) models. Conclusion: Urinary caffeine metabolites were positively associated with the risk of MetS and its components through different linear or non-linear patterns.

10.
Front Cell Infect Microbiol ; 13: 1202007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533931

RESUMO

Objective: Split-dose polyethylene glycol (PEG) is routinely used for bowel preparation before colonoscopy. This study aimed to investigate the composition of gut microbiota and its functions in pediatric patients undergoing split-dose PEG bowel preparation for colonoscopy to understand the stability and resilience of gut microbiota. Material and methods: From September to December 2021, 19 pediatric patients were enrolled at Shenzhen Children's Hospital and 76 samples (4 time points) were analyzed using metagenomics. Time points included Time_1 (one day before bowel preparation), Time_2 (one day after colonoscopy), Time_3 (two weeks after bowel preparation), and Time_4 (four weeks after bowel preparation). Result: Alpha diversity comparison at both the species and gene levels showed a decrease in community richness after colonoscopy, with little statistical significance. However, the Shannon diversity index significantly decreased (P<0.05) and gradually returned to pre-preparation levels at two weeks after bowel preparation. The genus level analysis showed six genera (Eubacterium, Escherichia, Intertinibacter, Veillonella, Ruminococcaceae unclassified, and Coprobacillus) significantly different across the four time periods. Additionally, at the species level, the abundance of Escherichia coli, Bacteroides fragilis, and Veillonella parvula significantly increased at one day after colonoscopy before gradually decreasing at two weeks after bowel preparation. In contrast, the abundance of Intertinibacter bartlettii decreased at one day after colonoscopy but then recovered at two weeks after bowel preparation, reaching the preoperative level at four weeks after bowel preparation. Furthermore, five functional pathways (base excision repair, biosynthesis of ansamycins, biosynthesis of siderophore group nonribosomal peptide, flavonoid biosynthesis, and biosynthesis of type II polyketide products) were significantly different across the four time periods, with recovery at two weeks after bowel preparation and reaching preoperative levels at four weeks after bowel preparation. Conclusions: Gut microbiota at the genus level, species level, and functional pathways are impacted in pediatric patients undergoing split-dose PEG bowel preparation and colonoscopy, with recovery two weeks following bowel preparation. However, the phylum level was not impacted. Modifications in gut microbiota composition and function may be investigated in future studies of bowel preparation. This study highlights the stability and resilience of gut microbiota among pediatric patients during bowel preparation.


Assuntos
Catárticos , Microbioma Gastrointestinal , Humanos , Criança , Catárticos/efeitos adversos , Metagenômica , Polietilenoglicóis , Colonoscopia/efeitos adversos
11.
Nanoscale ; 15(27): 11714-11726, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37394964

RESUMO

Graphene-like two-dimensional (2D) silicon carbide or siligraphene has attracted remarkable attention, owing to its fascinating physical properties. Nevertheless, the first high-quality siligraphene, i.e. monolayer Si9C15, was synthesised very recently, which exhibits an excellent semiconducting behaviour. In this work, we investigate the mechanical properties of Si9C15 siligraphene by using atomistic simulations including density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Both methods confirm the existence of intrinsic negative Poisson's ratios in Si9C15 siligraphene, which, as illustrated by MD simulations, is attributed to the tension-induced de-wrinkling behaviours of its intrinsic rippled configuration. Different de-wrinkling behaviours are observed in different directions of Si9C15 siligraphene, which result in the anisotropy of its auxetic properties. The fracture properties of Si9C15 siligraphene are similarly anisotropic, but relatively large fracture strains are observed in different orientations, indicating the stretchability of Si9C15 siligraphene. The stretchability together with the strain-sensitive bandgap of Si9C15 siligraphene observed in DFT calculations indicates the effectiveness of strain engineering in modulating its electronic properties. The combination of unique auxetic properties, excellent mechanical properties and tunable electronic properties may make Si9C15 siligraphene a novel 2D material with multifunctional applications.

13.
Clin Cancer Res ; 29(20): 4209-4218, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37494541

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common brain malignancy with median survival <2 years. Standard-of-care temozolomide has marginal efficacy in approximately 70% of patients due to MGMT expression. LP-184 is an acylfulvene-derived prodrug activated by the oxidoreductase PTGR1 that alkylates at N3-adenine, not reported to be repaired by MGMT. This article examines LP-184 efficacy against preclinical GBM models and identifies molecular predictors of LP-184 efficacy in clinical GBM. EXPERIMENTAL DESIGN: LP-184 effects on GBM cell viability and DNA damage were determined using cell lines, primary PDX-derived cells and patient-derived neurospheres. GBM cell sensitivities to LP-184 relative to temozolomide and MGMT expression were examined. Pharmacokinetics and CNS bioavailability were evaluated in mice with GBM xenografts. LP-184 effects on GBM xenograft growth and animal survival were determined. Machine learning, bioinformatic tools, and clinical databases identified molecular predictors of GBM cells and tumors to LP-184 responsiveness. RESULTS: LP-184 inhibited viability of multiple GBM cell isolates including temozolomide-resistant and MGMT-expressing cells at IC50 = approximately 22-310 nmol/L. Pharmacokinetics showed favorable AUCbrain/plasma and AUCtumor/plasma ratios of 0.11 (brain Cmax = 839 nmol/L) and 0.2 (tumor Cmax = 2,530 nmol/L), respectively. LP-184 induced regression of GBM xenografts and prolonged survival of mice bearing orthotopic xenografts. Bioinformatic analyses identified PTGR1 elevation in clinical GBM subtypes and associated LP-184 sensitivity with EGFR signaling, low nucleotide excision repair (NER), and low ERCC3 expression. Spironolactone, which induces ERCC3 degradation, decreased LP-184 IC50 3 to 6 fold and enhanced GBM xenograft antitumor responses. CONCLUSIONS: These results establish LP-184 as a promising chemotherapeutic for GBM with enhanced efficacy in intrinsic or spironolactone-induced TC-NER-deficient tumors.

14.
Talanta ; 265: 124845, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37385190

RESUMO

Carbendazim (CBZ) is a widely used pesticides, and its excessive intake is serious damage to humans and animals. Herein, a stable and sensitive colorimetric aptasensor for rapid detection of CBZ residue has been established based on the enhancement of CBZ-specific aptamer (CZ-13) on oxidase-mimicking activity of octahedral Ag2O nanoparticles (NPs). The CZ-13 aptamer can significantly increase the catalytic activity by promoting the production of superoxide anion (·O2-) on the surface of Ag2O NPs and enhancing the affinity of octahedral Ag2O NPs to 3,3',5,5'-tetramethylbenzidine (TMB) molecules. In the presence of CBZ, the quantity of CZ-13 aptamer will be exhausted due to the specific binding to CBZ pesticide. Thus, the rest CZ-13 aptamer no longer enhanced the catalytic activity of octahedral Ag2O NPs, which leads to the change in color of sensing solution. The color change of sensing solution can be easily converted to the corresponding RGB value by a smartphone for quantitative and rapid detection of CBZ. The designed aptasensor has excellent sensitivity and specificity, and the limit of detection was determined as low as 7.35 µg L-1 for CBZ assay. Besides, the aptasensor exhibited good recoveries in the spiked cabbage, apple and cucumber, showing that it may have broad application prospects for detecting CBZ residues in agriculture products.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanopartículas , Praguicidas , Animais , Humanos , Oxirredutases , Ouro/química , Colorimetria , Smartphone , Nanopartículas/química , Agricultura , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Limite de Detecção
15.
Oncotarget ; 14: 597-611, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37306526

RESUMO

Despite advances in therapies treating non-Hodgkin's lymphoma (NHL), 20~40% of patients experience relapsed or refractory disease. While solid tumors with homologous recombination deficiencies have been successfully targeted with synthetic lethal agents such as poly-ADP ribose polymerase (PARP) inhibitors, such synthetic lethality strategy has not yet been approved to treat patients with NHL. Here we investigated the mechanism of action (MoA) and therapeutic potential of a new-generation acylfulvene compound, LP-284, in both in vitro and in vivo NHL models. One of LP-284's MoA includes inducing the repair of double-strand DNA break (DSB). We found that LP-284 exerts nanomolar potency in a panel of hematological cancer cell lines including fifteen NHL cell lines. In vivo, LP-284 treatment prolongs the survival of mantle cell lymphoma (MCL) cell line JeKo-1 derived xenograft mice by two-fold and shows increased efficacy over bortezomib and ibrutinib. In addition, LP-284 is capable of inhibiting tumor growth of JeKo-1 xenografts that are refractory to bortezomib or ibrutinib. We further showed that LP-284 is particularly lethal in cells with deficient DNA damage response and repair, a targetable vulnerability in NHL.


Assuntos
Linfoma não Hodgkin , Humanos , Animais , Camundongos , Bortezomib , Reparo do DNA , Quebras de DNA de Cadeia Dupla
16.
Front Immunol ; 14: 1095267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153612

RESUMO

Inflammatory bowel disease (IBD) mainly includes Crohn's disease and ulcerative colitis. These diseases have a progressive course of chronic relapse and remission and affect a large number of children and adults worldwide. The burden of IBD is rising worldwide, with levels and trends varying greatly in countries and regions. Like most chronic diseases, the costs associated with IBD are high, including hospitalizations, outpatient and emergency visits, surgeries, and pharmacotherapies. However, there is no radical cure for it yet, and its therapeutic targets still need further study. Currently, the pathogenesis of IBD remains unclear. It is generally assumed that the occurrence and development of IBD are related to the environmental factors, gut microbiota, immune imbalance, and genetic susceptibility. Alternative splicing contributes to a various diseases, such as spinal muscular atrophy, liver diseases, and cancers. In the past, it has been reported that alternative splicing events, splicing factors, and splicing mutations were associated with IBD, but there were no reports on the practical application for clinical diagnosis and treatment of IBD using splicing-related methods. Therefore, this article reviews research progress on alternative splicing events, splicing factors, and splicing mutations associated with IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Adulto , Criança , Humanos , Processamento Alternativo , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/terapia , Doença de Crohn/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico
17.
Talanta ; 262: 124712, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244242

RESUMO

Clothianidin pesticide not only pollutes the ecological environment, but also poses a potential threat to human health. Thus, it is of great importance to develop efficient and accurate methods to recognize and detect clothianidin residues in agricultural products. Aptamer has the advantages of easy modification, high affinity and good stability, which is particularly suitable as a recognition biomolecule for pesticide detection. However, the aptamer against clothianidin has not been reported. Herein, the aptamer (named CLO-1) had good selectivity and strong affinity (Kd = 40.66 ± 3.47 nM) to clothianidin pesticide, which was screened for the first time by Capture-SELEX strategy. The binding effect of CLO-1 aptamer to clothianidin was further studied by circular dichroism (CD) spectroscopy and molecular docking technique. Finally, the CLO-1 aptamer was used as the recognition molecule to construct a label-free fluorescent aptasensor using GeneGreen dye as sensing signal for the highly sensitive detection of clothianidin pesticide. The constructed fluorescent aptasensor had the limit of detection (LOD) as low as 5.527 µg L-1 for clothianidin, and displayed good selectivity against other competitive pesticides. The aptasensor was applied to detect the clothianidin spiked in tomatoes, pears and cabbages, and the recovery rate was good in the range of 81.99%-106.64%. This study provides a good application prospect for the recognition and detection of clothianidin.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Praguicidas , Humanos , Aptâmeros de Nucleotídeos/química , Simulação de Acoplamento Molecular , Tiazóis , Corantes , Praguicidas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Técnica de Seleção de Aptâmeros
18.
Phys Chem Chem Phys ; 25(12): 8651-8663, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36891945

RESUMO

The mechanical and thermal properties of a hybrid nanotube consisting of a coaxial carbon nanotube (CNT) inside a graphyne nanotube (GNT), i.e., CNT@GNT, are investigated in this paper by using molecular dynamics simulations. The results show that the mechanical properties of CNT@GNT under uniaxial tension depend on the nanotube chirality of its components. Specifically, the Young's modulus of the CNT@GNT structure with an inner zigzag CNT is larger than that of its counterpart with an armchair CNT, while CNT@GNT with an armchair CNT and a zigzag GNT is found to possess the largest tensile strength and fracture strain. In addition, a unique fracture behavior of the successive rupture of its two components is observed in CNT@GNT. The thermal conductivity of CNT@GNT is found to be almost independent of the nanotube chirality of its components but increases as the length and diameter of the CNT@GNT increase. Moreover, strain engineering is shown as an effective avenue to modulate the thermal conductivity of CNT@GNT, which can be enhanced by tension but reduced by compression. The analysis of the phonon spectrum and spectral energy density demonstrates that this strain effect originates from changes of the phonon group velocity and phonon scattering in the strained CNT@GNT.

19.
J Agric Food Chem ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780449

RESUMO

Ginsenoside compound K (CK) is an emerging functional food or pharmaceutical product. To date, there are still challenges to exploring effective catalytic enzymes for enzyme-catalyzed manufacturing processes and establishing enzyme-catalyzed processes. Herein, we identified three ginsenoside hydrolases BG07 (glucoamylase), BG19 (ß-glucosidase), and BG23 (ß-glucosidase) from Aspergillus tubingensis JE0609 by transcriptome analysis and peptide mass fingerprinting. Among them, BG23 was expressed in Komagataella phaffii with a high volumetric activity of 235.73 U mL-1 (pNPG). Enzymatic property studies have shown that BG23 is an acidic (pH adaptation range of 4.5-7.0) and mesophilic (thermostable < 50 °C) enzyme. Moreover, a one-pot combinatorial enzyme-catalyzed strategy based on BG23 and BGA35 (ß-galactosidase from Aspergillus oryzae) was established, with a high CK yield of 396.7 mg L-1 h-1. This study explored the ginsenoside hydrolases derived from A. tubingensis at the molecular level and provided a reference for the efficient production of CK.

20.
Foods ; 12(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766025

RESUMO

Deep eutectic solvents (DES), as a green alternative to traditional organic solvents in biocatalysis, not only activate proteins but even increase the efficiency of enzymatic reactions. Here, DES were used in a combinatorial enzyme-catalyzed system containing ß-glucosidase BGLAt and ß-galactosidase BGALAo to produce deglycosylated ginsenosides (De-g) from ginseng extracts (GE). The results showed that DES prepared with betaine and ethylene glycol (molar ratio, 1:2) could significantly stimulate the activity of the combinatorial enzymes as well as improve the acid resistance and temperature stability. The DES-based combinatorial enzyme-catalyzed system could convert 5 g of GE into 1.24 g of De-g (F1, F2, 20 (S)-PPT, and CK) at 24 h, which was 1.1 times that of the buffer sample. As confirmed by the spectral data, the changes in the conformations of the combinatorial enzymes were more favorable for the binding reaction with the substrates. Moreover, the constructed DES-based aqueous two-phase system enabled the recovery of substantial amounts of DES and De-g from the top phase. These results demonstrated that DES shows great application as a reaction solvent for the scale-up production of De-g and provide insights for the green extraction of natural products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...