Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.533
Filtrar
1.
Microbiol Spectr ; : e0042521, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35019688

RESUMO

Prior study has demonstrated that gut microbiota at the genus level is significantly altered in patients with growth hormone (GH)-secreting pituitary adenoma (GHPA). Yet, no studies exist describing the state of gut microbiota at species level in GHPA. We performed a study using 16S rRNA amplicon sequencing in a cohort of patients with GH-secreting pituitary adenoma (GHPA, n = 28) and healthy controls (n = 67). Among them, 9 patients and 10 healthy controls were randomly chosen and enrolled in metagenomics shotgun sequencing, generating 280,426,512 reads after aligning to NCBI GenBank DataBase to acquire taxa information at the species level. Weighted UniFrac analysis revealed that microbial diversity was notably decreased in patients with GHPA, consistent with a previous study. With 16S rRNA sequencing, after correction for false-discovery rate (FDR), rank-sum test at the genus level revealed that the relative abundance of Oscillibacter and Enterobacter was remarkably increased in patients and Blautia and Romboutsia genera predominated in the controls, augmented by additional LEfSe (linear discriminant analysis effect size) analysis. As for further comparison at the species level with metagenomics sequencing, rank-sum test together with LEfSe analysis confirmed the enrichment of Alistipes shahii and Odoribacter splanchnicus in the patient group. Notably, LEfSe analysis with metagenomics also demonstrated that Enterobacter sp. DC1 and Enterobacter sp. 940 PEND, derived from Enterobacter, were both significantly enriched in patients. Functional analysis showed that amino acid metabolism pathway was remarkably enriched in GHPA, while carbohydrate metabolism pathway was notably enriched in controls. Further, significant positive correlations were observed between Enterobacter and baseline insulin-like growth factor 1 (IGF-1), indicating that Enterobacter may be strongly associated with GH/IGF-1 axis in GHPA. Our data extend our insight into the GHPA microbiome, which may shed further light on GHPA pathogenesis and facilitate the exploration of novel therapeutic targets based on microbiota manipulation. IMPORTANCE Dysbiosis of gut microbiota is associated not only with intestinal disorders but also with numerous extraintestinal diseases. Growth hormone-secreting pituitary adenoma (GHPA) is an insidious disease with persistent hypersecretion of GH and IGF-1, causing increased morbidity and mortality. Researches have reported that the GH/IGF-1 axis exerts its own influence on the intestinal microflora. Here, the results showed that compared with healthy controls, GHPA patients not only decreased the alpha diversity of the intestinal flora but also significantly changed their beta diversity. Further, metagenomics shotgun sequencing in the present study exhibited that Enterobacter sp. DC1 and Enterobacter sp. 940 PEND were enriched in patients. Also, we were pleasantly surprised to find that the Enterobacter genus was strongly positively correlated with baseline IGF-1 levels. Collectively, our work provides the first glimpse of the dysbiosis of the gut microbiota at species level, providing a better understanding of the pathophysiological process of GHPA.

2.
Food Res Int ; 151: 110841, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34980380

RESUMO

Inflammatory bowel disease afflicted individuals and most medications have adverse effects. The objection of this study is to investigate whether the major yolk protein (MYP) could aid in the remission of colitis. The function of MYP on acute colitis was assessed through a dextran sulfate sodium -induced colitis mice model. Compared to the model group, the anti-inflammatory cytokines increased significantly in the MYP group, whereas the pro-inflammatory cytokines were not significantly different between the model and treatment group. The results also showed that supplementation of MYP improved the shift in microbial community composition of mice with colitis induced by DSS. In addition, MYP supplementation enriched the contents of fecal short-chain fatty acids. The alleviation of MYP on the colitis was probably related to repair the dysbiosis state of colonic microbiota, which thus induced an increase in short-chain fatty acids level and secrete anti-inflammatory cytokines (IL-4 and IL-10). In sum, oral MYP may be a potential candidate for the attenuating of acute colitis.

3.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039868

RESUMO

Camellia oil extracted from Camellia seeds is rich in unsaturated fatty acids (UFAs) and secondary metabolites beneficial to human health. However, no oil-tea tree genome has yet been published, which is a major obstacle to investigating the heredity improvement of oil-tea trees. Here, using both Illumina and PicBio sequencing technologies, we present the first chromosome-level genome sequence of the oil-tea tree species Camellia chekiangoleosa Hu. (CCH). The assembled genome consists of 15 pseudochromosomes with a genome size of 2.73 Gb and a scaffold N50 of 185.30 Mb. At least 2.16 Gb of the genome assembly consists of repetitive sequences, and the rest involves a high-confidence set of 64 608 protein-coding gene models. Comparative genomic analysis revealed that the CCH genome underwent a whole-genome duplication (WGD) event shared across the Camellia genus at ~57.48 MYA and a γ-WGT event shared across all core eudicot plants at ~120 MYA. Gene family clustering revealed that the genes involved in terpenoid biosynthesis have undergone rapid expansion. Furthermore, we determined the expression patterns of oleic acid accumulation- and terpenoid biosynthesis-associated genes in six tissues. We found that these genes tend to be highly expressed in leaves, pericarp tissues, roots, and seeds. The first chromosome-level genome of oil-tea trees will provide valuable resources for determining Camellia evolution and utilizing the germplasm of this taxon.

4.
Inflammopharmacology ; 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039992

RESUMO

Inflammatory infiltration has been implicated in the pathogenesis of cardiovascular diseases (CVDs). The NLRP3 inflammasome is involved in the development of several types of CVDs, including myocardial infarction, myocardial ischemia-reperfusion damage, heart failure, atrial fibrillation, and hypertension. Inhibiting the activity of NLRP3 inflammasome can inhibit the progress of CVDs. However, there is no NLRP3 inflammasome inhibitor in clinic, and it is very important to find a safe and effective NLRP3 inhibitor. Phenols and terpenoids are naturally natural products that have many anti-inflammatory effects in CVDs by modulating the NLRP3 inflammatory pathway. Thus, 20 natural products from phenols and terpenoids for the treatment of cardiovascular disease based on the inhibition of NLRP3 inflammasome were summarized and screened. Docking results showed salvianolic acid B and ellagic acid in phenols, and oridonin and triptolide in terpenoids had a better binding activity with NLRP3, which can provide theoretical support for finding novel NLRP3 inflammasome inhibitors or lead compounds in the future.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35043530

RESUMO

Herein, we report a series of CuPd catalysts for electrochemical hydrogenation (ECH) of furfural to 2-methylfuran (MF or FurCH 3 where Fur = furyl) in aqueous 0.1 M acetic acid (pH 2.9). The highest faradaic efficiency (FE) for MF reached 75 % at -0.58 V vs . reversible hydrogen electrode with an average partial current density of 4.5 mA cm -2 . In situ surface-enhanced Raman spectroscopic and kinetic isotopic experiments suggested that electrogenerated adsorbed hydrogen (H ads ) was involved in the reaction and incorporation of Pd enhanced the surface coverage of H ads and optimized the adsorption pattern of furfural, leading to a higher FE for MF. Density functional theory calculations revealed that Pd incorporation reduced the energy barrier for the hydrogenation of FurCH 2 * to FurCH 3 * . Our study demonstrates that catalyst surface structure/composition plays a crucial role in determining the selectivity in ECH and provides a new strategy for designing advanced catalysts for ECH of bio-derived oxygenates.

6.
J Hazard Mater ; 428: 128202, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35032959

RESUMO

In order to accelerate the photo-Fenton reaction process of Fe(III) under visible light irradiation, BiOI was introduced into the Fe(III)/peroxydisulfate (PDS) system. The catalytic oxidation performance of vis-light/BiOI/Fe(III)/PDS system was evaluated using bisphenol AF (BPAF) as a representative organic contaminant. Within 30 min, nearly 100% of BPAF was degraded, proving that the system had an excellent ability to degrade organic pollutants in water. Free radical quenching experiments, electron spin resonance (ESR), and molecular probing experiments determined that the main reactive species in the system were hydroxyl radicals (•OH) and sulfate radicals (SO4•-). The comparative experiments showed that the degradation rates were closely related to the PDS consumption, while the Fe(II) absorbed on the surface of BiOI was responsible for the PDS consumption. The production pathway of Fe(II) was analyzed by XRD, FTIR and XPS characterization, the Fe(III) on the surface of BiOI was reduced by photogenerated electrons to generate Fe(II). The result confirmed that the reduction of Fe(III) by photogenerated electrons could effectively inhibit the recombination of electron-hole pairs, and accelerate the reduction progress of Fe(III)/Fe(II) cycle that was the rate-limiting step in PDS activation. Afterwards, a reliable mechanism for degradation of BPAF in visible light/BiOI/Fe(III)/PDS system was proposed. Finally, the influence of reactant dosages, visible light intensity, initial pH, humic acid (HA) and anions in the solution on the degradation of BPAF were discussed.

7.
Adv Sci (Weinh) ; : e2104439, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35038247

RESUMO

The fundamental Boltzmann limitation dictates the ultimate limit of subthreshold swing (SS) to be 60 mV dec-1 , which prevents the continued scaling of supply voltage. With atomically thin body, 2D semiconductors provide new possibilities for advanced low-power electronics. Herein, ultra-steep-slope MoS2 resistive-gate field-effect transistors (RG-FETs) by integrating atomic-scale-resistive filamentary with conventional MoS2 transistors, demonstrating an ultra-low SS below 1 mV dec-1 at room temperature are reported. The abrupt resistance transition of the nanoscale-resistive filamentary ensures dramatic change in gate potential, and switches the device on and off, leading to ultra-steep SS. Simultaneously, RG-FETs demonstrate a high on/off ratio of 2.76 × 107 with superior reproducibility and reliability. With the ultra-steep SS, the RG-FETs can be readily employed to construct logic inverter with an ultra-high gain ≈2000, indicating exciting potential for future low-power electronics and monolithic integration.

8.
Emotion ; 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35007119

RESUMO

It is well established that adults can interpret emotional speech prosody independent of word meaning comprehension, even for emotional speech prosody in an unfamiliar language. However, the acquisition of this ability remains unclear. This study examined the decoding of four emotions (happy, sad, surprise, angry) conveyed with speech prosody in four languages (English, Chinese, French, Spanish) by American and Chinese children at 3 to 5 years of age-an age range when the ability to decode emotional prosody in one's native language emerges but remains fragile. Chinese and American children could decode the emotional meaning of speech prosody in both familiar and unfamiliar languages as young as 3 years old. Performance did not differ across the four languages used-a finding observed in both American and Chinese children. Thus, the in-group advantage of emotional prosody decoding reported for adults may not be evident by 5 years of age. Furthermore, emotional prosody decoding skills improved with age. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

9.
Nat Commun ; 13(1): 56, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013171

RESUMO

With the rapid development of artificial intelligence, parallel image processing is becoming an increasingly important ability of computing hardware. To meet the requirements of various image processing tasks, the basic pixel processing unit contains multiple functional logic gates and a multiplexer, which leads to notable circuit redundancy. The pixel processing unit retains a large optimizing space to solve the area redundancy issues in parallel computing. Here, we demonstrate a pixel processing unit based on a single WSe2 transistor that has multiple logic functions (AND and XNOR) that are electrically switchable. We further integrate these pixel processing units into a low transistor-consumption image processing array, where both image intersection and image comparison tasks can be performed. Owing to the same image processing power, the consumption of transistors in our image processing unit is less than 16% of traditional circuits.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35013954

RESUMO

This study explored how a thermophilic microbial agent altered nitrogen transformation, nitrogen functional genes, and bacterial communities during bean dregs composting with (T) and without (CK) a thermophilic microbial agent for 15 days. The results showed that the maximum temperature in T reached 73 °C and remained above 70 °C for 8 days, while that in CK was only 65 °C. The pH in T had essentially stabilized on day 7, while that in CK was still increasing. On day 15, the seed germination index (GI) of T (95%) reached maturity (defined by GI ≥ 85%), while the GI of CK was only 36%. The concentrations of total nitrogen, water-soluble nitrogen, ammonia nitrogen, and nitrate nitrogen in T (2.5%, 18.9 g/kg, 8.75 g/kg, and 1.69 g/kg) were all lower than those in CK (3.6%, 28.9 g/kg, 12.75 g/kg, and 6.82 g/kg). During composting, Bacillus played a major role in nitrogen reduction, nitrogen mineralization, denitrification, and the conversion between nitrite and nitrate. Weissella played a major role in nitrogen assimilation. Komagataeibacter and Bacillus played a major role in nitrogen fixation in CK and T, respectively. Nitrification was not observed during composting. The nosZ gene, which converts nitrous oxide to nitrogen, was found only in T. Network analysis suggested that the average number of neighbours in T was 3.30% higher than that in CK and the characteristic path length in T was 14.15% higher than that in CK. Therefore, the thermophilic microbial agents could cause nitrogen loss but promote the maturity of bean dregs, which have great potential application.

11.
J Hazard Mater ; 425: 128045, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986573

RESUMO

Recently, the enhancing role of hydrogen peroxide (H2O2), a self-decay product of ferrate (Fe(VI)), on Fe(VI) reactivity has received increasing attention. In this study, we found that calcium peroxide (CaO2) as a slow-releasing reagent of H2O2 could also enhance the Fe(VI) performance for removing sulfamethoxazole (SMX). Compared with sole Fe(VI), sole CaO2 and Fe(VI)-H2O2 systems, the Fe(VI)-CaO2 system showed higher reactivity to remove SMX. The radical scavenger and chemical probe test results indicated that the better oxidation performance of Fe(VI)-CaO2 system than Fe(VI) alone was ascribed to the generation of Fe(Ⅳ) and Fe(Ⅴ) rather than •OH. In addition, the performance of Fe(VI)-CaO2 system for degradation of contaminants was also superior to Fe(VI)-Na2SO3, Fe(VI)-NaHSO3 and Fe(VI)-Na2S2O3 systems under the same experimental conditions. Moreover, the effects of critical operating parameters, inorganic anions, inorganic cations, and humic acid on the degradation of SMX by Fe(VI)-CaO2 system were revealed. The Fe(VI)-CaO2 system exhibited good applicability in authentic water. Finally, the underlying degradation intermediates of SMX by Fe(VI)-CaO2 system and their toxicity were confirmed. In conclusion, this study provides a new strategy for enhancing the oxidation capacity of Fe(VI) and comprehensively reveals the oxidation mechanism.

12.
Mol Cell Biochem ; 2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35034257

RESUMO

Autoimmune diseases are caused by the immune response of the body to its antigens, resulting in tissue damage. The pathogenesis of these diseases has not yet been elucidated. Most autoimmune diseases cannot be cured by effective drugs. The treatment strategy is to relieve the symptoms of the disease and balance the body's autoimmune function. The abnormal expression of ATP-binding cassette (ABC) transporters is directly related to the pathogenesis of autoimmune diseases and drug therapy resistance, which poses a great challenge for the drug therapy of autoimmune diseases. Therefore, this paper reviews the interplay between ABC transporters and the pathogenesis of autoimmune diseases to provide research progress and new ideas for the development of drugs in autoimmune diseases.

13.
Br J Radiol ; : 20211048, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995082

RESUMO

OBJECTIVES: To develop a radiomic model based on low-dose CT (LDCT) to distinguish invasive adenocarcinomas (IAs) from adenocarcinoma in situ/minimally invasive adenocarcinomas (AIS/MIAs) manifesting as pure ground-glass nodules (pGGNs) and compare its performance with conventional quantitative and semantic features of LDCT, radiomic model of standard-dose CT, and intraoperative frozen section (FS). METHODS: A total of 147 consecutive pathologically confirmed pGGNs were divided into primary cohort (43 IAs and 60 AIS/MIAs) and validation cohort (19 IAs and 25 AIS/MIAs). Logistic regression models were built using conventional quantitative and semantic features, selected radiomic features of LDCT and standard-dose CT, and intraoperative FS diagnosis, respectively. The diagnostic performance was assessed by area under curve (AUC) of receiver operating characteristic curve, sensitivity, and specificity. RESULTS: The AUCs of quantitative-semantic model, radiomic model of LDCT, radiomic model of standard-dose CT, and FS model were 0.879 (95% CI, 0.801-0.935), 0.929 (95% CI, 0.862-0.971), 0.941 (95% CI, 0.876-0.978), and 0.884 (95% CI, 0.805-0.938) in the primary cohort and 0.897 (95% CI, 0.768-0.968), 0.933 (95% CI, 0.815-0.986), 0.901 (95% CI, 0.773-0.970), and 0.828 (95% CI, 0.685-0.925) in the validation cohort. No significant difference of the AUCs was found among these models in both the primary and validation cohorts (all p > 0.05). CONCLUSIONS: The LDCT-based quantitative-semantic score and radiomic signature, with good predictive performance, can be preoperative and non-invasive biomarkers for assessing the invasive risk of pGGNs in lung cancer screening. ADVANCES IN KNOWLEDGE: The LDCT-based quantitative-semantic score and radiomic signature, with the equivalent performance to the radiomic model of standard-dose CT, can be preoperative predictors for assessing the invasiveness of pGGNs in lung cancer screening and reducing excess examination and treatment.

14.
Light Sci Appl ; 11(1): 6, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974520

RESUMO

With the increasing demand for multispectral information acquisition, infrared multispectral imaging technology that is inexpensive and can be miniaturized and integrated into other devices has received extensive attention. However, the widespread usage of such photodetectors is still limited by the high cost of epitaxial semiconductors and complex cryogenic cooling systems. Here, we demonstrate a noncooled two-color infrared photodetector that can provide temporal-spatial coexisting spectral blackbody detection at both near-infrared and mid-infrared wavelengths. This photodetector consists of vertically stacked back-to-back diode structures. The two-color signals can be effectively separated to achieve ultralow crosstalk of ~0.05% by controlling the built-in electric field depending on the intermediate layer, which acts as an electron-collecting layer and hole-blocking barrier. The impressive performance of the two-color photodetector is verified by the specific detectivity (D*) of 6.4 × 109 cm Hz1/2 W-1 at 3.5 µm and room temperature, as well as the promising NIR/MWIR two-color infrared imaging and absolute temperature detection.

15.
Nano Lett ; 22(1): 81-89, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962129

RESUMO

With the development and application of artificial intelligence, there is an appeal to the exploitation of various sensors and memories. As the most important perception of human beings, vision occupies more than 80% of all the received information. Inspired by biological eyes, an artificial retina based on 2D Janus MoSSe was fabricated, which could simulate functions of visual perception with electronic/ion and optical comodulation. Furthermore, inspired by human brain, sensing, memory, and neuromorphic computing functions were integrated on one device for multifunctional intelligent electronics, which was beneficial for scalability and high efficiency. Through the formation of faradic electric double layer (EDL) at the metal-oxide/electrolyte interfaces could realize synaptic weight changes. On the basis of the optoelectronic performances, light adaptation of biological eyes, preprocessing, and recognition of handwritten digits were implemented successfully. This work may provide a strategy for the future integrated sensing-memory-processing device for optoelectronic artificial retina perception application.

16.
Food Chem ; 367: 130658, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343808

RESUMO

Camel milk is rich in nutrients and its impact on human medicine and nutrition cannot be ignored. We conducted an in-depth analysis of milk proteins obtained from two camel breed (Camelus bactrianus, CB and Camelus dromedarius, CD). Label-free proteomic technology was performed to analysis the MFGM and whey proteomes of CB and CD milk. In total, 1133 MFGM proteins and 627 whey proteins were identified from camel milk. Results revealed that 216 MFGM proteins and 109 whey proteins were significantly different between them. In addition, the cellular process, cell and binding were the predominately GO annotations of milk proteins. KEGG analysis shown that most proteins were involved in metabolic pathways. Furthermore, many proteins were found to be involved in PI3K/AKT signaling pathway, which could be the possible reason for hypoglycemic effect of camel milk. These results could provide a further understanding for unique biological characteristics of camel milk proteins.


Assuntos
Camelus , Proteoma , Animais , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Proteínas do Leite , Fosfatidilinositol 3-Quinases , Proteômica , Soro do Leite , Proteínas do Soro do Leite
17.
J Hazard Mater ; 423(Pt A): 127054, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34481389

RESUMO

Currently, many catalysts are inconvenient to separate from water, and the solvents used in the preparation process are not environmentally friendly, resulting in low recovery efficiency and secondary pollution. In this study, the magnetic and porous regenerated cellulose/carbon nanotubes/Fe3O4 nanoparticles (RC/CNTs/Fe3O4 NPs) composites were synthesized for activation of peroxydisulfate (PDS) in a green alkaline-urea system. The RC/CNTs/Fe3O4 NPs-PDS system achieved 100% removal of bisphenol A compared with CNTs (~64.6%), RC (~0%) or Fe3O4 NPs (~0%), which was closely related to the introduction of defects and functional groups, nitrogen doping and conductive networks. Interestingly, the strong interaction between CNTs and the sheath-like protective layer formed by urea on the cellulose surface promotes the introduction of nitrogen into the composites at the preparation temperature of 70 °C. Moreover, the mechanism of the system was found to be a typical non-radical pathway. Fortunately, there is no leaching of iron ions in the system, and the effects of the actual waterbody, initial pH, and different anions are negligible. The recycling and separation experiments revealed the practicality and superiority of the composite. This work provides a feasible and sustainable strategy for the application of natural cellulose-supported catalysts.


Assuntos
Nanotubos de Carbono , Compostos Benzidrílicos , Celulose , Fenóis
18.
Chem Commun (Camb) ; 58(5): 629-632, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34913450

RESUMO

A rhodium-catalyzed one-pot trifunctionalization of o-carboranes with three different substituents via a carboxy group directed sequential B(5)-alkenylation, B(4)-alkyne annulation and B(3)-acyloxylation has been developed for the first time, leading to the synthesis of a new class of B(3,4,5)-trisubstituted o-carborane derivatives. Treatment of 1-COOH-2-CH3-o-C2B10H10 with ArCCAr in the presence of a [Cp*RhCl2]2 catalyst and a Cu(OPiv)2 oxidant gave 1,4-[COOC(Ar)C(Ar)]-2-Me-3-OPiv-5-[C(Ar)CH(Ar)-o-C2B10H7 in good to high yields. This protocol represents a new strategy for the catalytic selective polyfunctionalization of carboranes with different substituents.

19.
J Atheroscler Thromb ; 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853213

RESUMO

AIMS: We previously associated acute ST-elevation myocardial infarction (STEMI) with decreased plasma LL-37 levels. Therefore, this study investigated whether plasma LL-37 levels could predict ischemic cardiovascular events in patients after STEMI. METHODS: We prospectively collected peripheral plasma samples and clinical and laboratory data from consecutive patients who presented with STEMI and underwent primary percutaneous coronary intervention at Fuwai Hospital between April and November 2017. Enzyme-linked immunosorbent assay measured plasma LL-37 levels, and we followed the patients for 3 years. Major adverse cardiovascular events (MACEs) were a composite of all-cause mortality, reinfarction, unscheduled revascularization, or ischemic stroke. RESULTS: The study included 302 patients divided into high (≥ median) and low LL-37 level (<median) groups. The cumulative incidence of MACE (29.1% vs. 12.6%, p=0.0003), all-cause death (12.6% vs. 3.3%, p=0.003), reinfarction (7.1% vs. 2.0%, p=0.04), and unscheduled revascularization (13.0% vs. 5.4%, p=0.04) were higher in the low than those in the high LL-37 level group. Multivariable Cox regression analysis showed that higher LL-37 level independently predicted lower risks of MACE (hazard ratio [HR] 0.390; 95% confidence interval [CI] 0.227-0.669; p<0.001), all-cause death (HR 0.324; 95%CI 0.119-0.879; p=0.027), and unscheduled revascularization (HR 0.391; 95%CI 0.171-0.907; p=0.027). CONCLUSIONS: High basal plasma level of human LL-37 may predict lower 3-year risks of ischemic cardiovascular events in patients after STEMI.

20.
G3 (Bethesda) ; 11(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849810

RESUMO

Accessible chromatin and unmethylated DNA are associated with many genes and cis-regulatory elements. Attempts to understand natural variation for accessible chromatin regions (ACRs) and unmethylated regions (UMRs) often rely upon alignments to a single reference genome. This limits the ability to assess regions that are absent in the reference genome assembly and monitor how nearby structural variants influence variation in chromatin state. In this study, de novo genome assemblies for four maize inbreds (B73, Mo17, Oh43, and W22) are utilized to assess chromatin accessibility and DNA methylation patterns in a pan-genome context. A more complete set of UMRs and ACRs can be identified when chromatin data are aligned to the matched genome rather than a single reference genome. While there are UMRs and ACRs present within genomic regions that are not shared between genotypes, these features are 6- to 12-fold enriched within regions between genomes. Characterization of UMRs present within shared genomic regions reveals that most UMRs maintain the unmethylated state in other genotypes with only ∼5% being polymorphic between genotypes. However, the majority (71%) of UMRs that are shared between genotypes only exhibit partial overlaps suggesting that the boundaries between methylated and unmethylated DNA are dynamic. This instability is not solely due to sequence variation as these partially overlapping UMRs are frequently found within genomic regions that lack sequence variation. The ability to compare chromatin properties among individuals with structural variation enables pan-epigenome analyses to study the sources of variation for accessible chromatin and unmethylated DNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...