RESUMO
Lead-free organic metal halide scintillators with low-dimensional electronic structures have demonstrated great potential in X-ray detection and imaging due to their excellent optoelectronic properties. Herein, the zero-dimensional organic copper halide (18-crown-6)2Na2(H2O)3Cu4I6 (CNCI) which exhibits negligible self-absorption and near-unity green-light emission was successfully deployed into X-ray imaging scintillators with outstanding X-ray sensitivity and imaging resolution. In particular, we fabricated a CNCI/polymer composite scintillator with an ultrahigh light yield of â¼109,000 photons/MeV, representing one of the highest values reported so far for scintillation materials. In addition, an ultralow detection limit of 59.4 nGy/s was achieved, which is approximately 92 times lower than the dosage for a standard medical examination. Moreover, the spatial imaging resolution of the CNCI scintillator was further improved by using a silicon template due to the wave-guiding of light through CNCI-filled pores. The pixelated CNCI-silicon array scintillation screen displays an impressive spatial resolution of 24.8 line pairs per millimeter (lp/mm) compared to the resolution of 16.3 lp/mm for CNCI-polymer film screens, representing the highest resolutions reported so far for organometallic-based X-ray imaging screens. This design represents a new approach to fabricating high-performance X-ray imaging scintillators based on organic metal halides for applications in medical radiography and security screening.
RESUMO
Ni(OH)2 nanosheet, acting as a potential active material for supercapacitors, commonly suffers from sluggish reaction kinetics and low intrinsic conductivity, which results in suboptimal energy density and long cycle life. Herein, a convenient electrochemical halogen functionalization strategy is applied for the preparation of mono/bihalogen engineered Ni(OH)2 electrode materials. The theoretical calculations and experimental results found that thanks to the extraordinarily high electronegativity, optimal reversibility, electronic conductivity, and reaction kinetics could be achieved through F functionalization . However, benefiting from the largest ionic radius, INi(OH)2 contributes the best specific capacity and morphology transformation, which is a new finding that distinguishes it from previous reports in the literature. The exploration of the interaction effect of halogens (F, INi(OH)2 , F, BrNi(OH)2 , and Cl, INi(OH)2 ) manifests that F, INi(OH)2 delivers a higher specific capacity of 200.6 mAh g-1 and an excellent rate capability of 58.2% due to the weaker electrostatic repulsion, abundant defect structure, and large layer spacing. Moreover, the F, INi(OH)2 //FeOOH@NrGO device achieves a high energy density of 97.4 Wh kg-1 and an extremely high power density of 32426.7 W kg-1 , as well as good cycling stability. This work develops a pioneering tactic for designing energy storage materials to meet various demands.
RESUMO
The gut microbiota is closely related to the development of sepsis. The aim of this study was to explore changes in the gut microbiota and gut metabolism, as well as potential relationships between the gut microbiota and environmental factors in the early stages of sepsis. Fecal samples were collected from 10 septic patients on the first and third days following diagnosis in this study. The results showed that in the early stages of sepsis, the gut microbiota is dominated by microorganisms that are tightly associated with inflammation, such as Escherichia-Shigella, Enterococcus, Enterobacteriaceae, and Streptococcus. On sepsis day 3 compared to day 1, there was a significant decrease in Lactobacillus and Bacteroides and a significant increase in Enterobacteriaceae, Streptococcus, and Parabacteroides. Culturomica_massiliensis, Prevotella_7 spp., Prevotellaceae, and Pediococcus showed significant differences in abundance on sepsis day 1, but not on sepsis day 3. Additionally, 2-keto-isovaleric acid 1 and 4-hydroxy-6-methyl-2-pyrone metabolites significantly increased on sepsis day 3 compared to day 1. Prevotella_7 spp. was positively correlated with phosphate and negatively correlated with 2-keto-isovaleric acid 1 and 3-hydroxypropionic acid 1, while Prevotella_9 spp. was positively correlated with sequential organ failure assessment score, procalcitonin and intensive care unit stay time. In conclusion, the gut microbiota and metabolites are altered during sepsis, with some beneficial microorganisms decreasing and some pathogenic microorganisms increasing. Furthermore, Prevotellaceae members may play different roles in the intestinal tract, with Prevotella_7 spp. potentially possessing beneficial health properties and Prevotella_9 spp. potentially playing a promoting role in sepsis.
RESUMO
Activated Cdc42-associated kinase 1 (ACK1) alterations have been considered to mediate bypass acquired resistance to the third-generation EGFR inhibitors (ASK120067 and osimertinib) in NSCLC. Despite many efforts to develop ACK1 small molecule inhibitors, no selective inhibitors have entered clinical trials. We used structure-based drug design to obtain a series of (R)-8-((tetrahydrofuran-2-yl)methyl)pyrido [2,3-d]pyrimidin-7-ones as novel selective ACK1 inhibitors. One of the representative compounds, 10zi, potently inhibited ACK1 kinase with an IC50 of 2.1 nM, while sparing SRC kinase (IC50 = 218.7 nM). Further, 10zi displayed good kinome selectivity in a profiling of 468 kinases. In the ASK120067-resistant lung cancer cell line (67R), 10zi dose-dependently inhibited the phosphorylation of ACK1 and downstream AKT pathway and showed a strong synergistic anti-tumor effect in combination with ASK120067 in vitro. Additionally, 10zi also exhibited reasonable PK profiles with an oral bioavailability of 19.8% at the dose of 10 mg/kg, which provided a promising lead for further development of new anticancer drugs.
RESUMO
Neural activity in the lateral intraparietal cortex (LIP) correlates with both sensory evaluation and motor planning underlying visuomotor decisions. We previously showed that LIP plays a causal role in visually-based perceptual and categorical decisions, and preferentially contributes to evaluating sensory stimuli over motor planning. In that study, however, monkeys reported their decisions with a saccade to a colored target associated with the correct motion category or direction. Since LIP is known to play a role in saccade planning, it remains unclear whether LIP's causal role in such decisions extend to decision making tasks which do not involve saccades. Here, we employed reversible pharmacological inactivation of LIP neural activity while two male monkeys performed delayed match to category (DMC) and delayed match to sample (DMS) tasks. In both tasks, monkeys needed to maintain gaze fixation throughout the trial and report whether a test stimulus was a categorical match or nonmatch to the previous sample stimulus by releasing a touch bar. LIP inactivation impaired monkeys' behavioral performance in both tasks, with deficits in both accuracy and reaction time (RT). Furthermore, we recorded LIP neural activity in the DMC task targeting the same cortical locations as in the inactivation experiments. We found significant neural encoding of the sample category, which was correlated with monkeys' categorical decisions in the DMC task. Taken together, our results demonstrate that LIP plays a generalized role in visual categorical decisions independent of the task-structure and motor response modality.Significance Statement:Neural activity in the lateral intraparietal cortex (LIP) correlates with perceptual and categorical decisions, in addition to its role in mediating saccadic eye movements. Past work found that LIP is causally involved in visual decisions that are rapidly reported by saccades in a reaction time based decision making task. Here we use reversible inactivation of LIP to test whether LIP is also causally involved in visual decisions when reported by hand movements during delayed matching tasks. Here we show that LIP inactivation impaired monkeys' task performance during both memory-based discrimination and categorization tasks. These results demonstrate that LIP plays a generalized role in visual categorical decisions independent of the task-structure and motor response modality.
RESUMO
Melanocortin receptors (MCRs) are a family of G protein-coupled receptors that regulate important physiological functions. Yet, drug development targeting MCRs is hindered by potential side effects due to a lack of receptor subtype-selective ligands with bioavailability. Here, we report novel synthetic pathways to introduce Ψ and χ angle constraints at the C-terminus Trp position of the nonselective prototype tetrapeptide agonist Ac-His-d-Phe-Arg-Trp-NH2. With these conformational constraints, peptide 1 (Ac-His-d-Phe-Arg-Aia) shows improved selectivity at hMC1R, with an EC50 of 11.2 nM for hMC1R and at least 15-fold selectivity compared to other MCR subtypes. Peptide 3 (Ac-His-pCF3-d-Phe-Arg-Aia) is a potent and selective hMC4R agonist with an EC50 of 4.1 nM at hMC4R and at least ninefold selectivity. Molecular docking studies reveal that the Ψ and χ angle constraints force the C-terminal Aia residue to flip and interact with TM6 and TM7, a feature that we hypothesize leads to the receptor subtype selectivity.
RESUMO
PURPOSE: This study aimed to explore the association of preoperative magnetic resonance imaging (MRI) tumor morphological classification with early recurrence (ER) and overall survival (OS) after radical surgery of hepatocellular carcinoma (HCC). PATIENTS AND METHODS: A retrospective analysis of 296 patients with HCC who underwent radical resection was performed. On the basis of LI-RADS, tumor imaging morphology was classified into three types. The clinical imaging features, ER, and survival rates of three types were compared. Univariate and multivariate Cox regression analyses were conducted to identify prognostic factors associated with OS and ER after hepatectomy for HCC. RESULTS: There were 167 tumors of type 1, 95 of type 2, and 34 of type 3. In patients with type 3 HCC, postoperative mortality and ER were significantly higher than in patients with type 1 and type 2 (55.9% versus 32.6% versus 27.5% and 52.9% versus 33.7% versus 28.7%). In multivariate analysis, the LI-RADS morphological type was a stronger risk factor for predicting poor OS [hazard ratio (HR) 2.77, 95% confidence interval (CI) 1.59-4.85, P < 0.001] and ER (HR 2.14, 95% CI 1.24-3.70, P = 0.007). A subgroup analysis revealed that type 3 was associated with poor OS and ER in > 5 cm cases but not in < 5 cm cases. CONCLUSIONS: ER and OS of patients with HCC undergoing radical surgery can be predicted using the preoperative tumor LI-RADS morphological type, which could help to select personalized treatment plans for patients with HCC in the future.
RESUMO
Plant oil adjuvants are widely used to improve the utilization rate of pesticides. In this study, the uptake, translocation, and terminal residue of chlorantraniliprole and difenoconazole spraying with plant oil adjuvant in rice (Oryza sativa L.) were evaluated. After being mixed with the tank-mixed plant oil adjuvant, the cuticular wax of rice leaf was destroyed, which decreased the hydrophobicity of the rice leaf and facilitated the wetting, spreading, and penetration of pesticides onto the rice leaf. Additionally, the adjuvant promoted the translocation of difenoconazole from leaves to stems, but had little effect on the translocation of difenoconazole from leaves to roots, while inhibiting chlorantraniliprole translocation. Although adjuvant increased the initial deposition of chlorantraniliprole and difenoconazole on rice, the terminal residue was not significantly affected. The findings can promote the safe use of chlorantraniliprole and difenoconazole in rice production, especially when used with plant oil adjuvants. In the future, studies on more rice cultivars will be necessary to determine the generality of the conclusions.
Assuntos
Oryza , Praguicidas , Oryza/química , Adjuvantes Imunológicos , Praguicidas/análise , Óleos de Plantas/análise , Folhas de Planta/químicaRESUMO
Liquid crystal polymers are a type of representative material combining the order-disorder transition of liquid crystals and the superior properties of polymers. The phase transition from the liquid crystal phase to the isotropic state of mesogens causes large, controllable, and reversible deformation of polymers; thus, liquid crystal polymers have emerged as one of the most valuable candidates for shape morphing materials. Much research effort is dedicated to liquid crystal polymers for shape morphing that are designed to develop more novel applications. Therefore, this review aims to summarize the recent development of shape morphing materials based on liquid crystal polymers.
RESUMO
Birefringent crystals could modulate the polarization of light and are widely used as polarizers, waveplates, optical isolators, etc. To date, commercial birefringent crystals have been exclusively limited to purely inorganic compounds such as α-BaB2O4 with birefringence of about 0.12. Herein, we report a new hydrogen bonded supramolecular framework, namely, Cd(H2C6N7O3)2·8H2O, which exhibits exceptionally large birefringence up to about 0.60. To the best of our knowledge, the birefringence of Cd(H2C6N7O3)2·8H2O is significantly larger than those of all commercial birefringent crystals and is the largest among hydrogen bonded supramolecular framework crystals. First-principles calculations and structural analyses reveal that the exceptional birefringence is mainly ascribed to strong covalent interactions within (H2C6N7O3)- organic ligands and the perfect coplanarity between them. Given the rich structural diversity and tunability, hydrogen bonded supramolecular frameworks would offer unprecedented opportunities beyond the traditional purely inorganic oxides for birefringent crystals.
RESUMO
Nuclei instance segmentation on histopathology images is of great clinical value for disease analysis. Generally, fully-supervised algorithms for this task require pixel-wise manual annotations, which is especially time-consuming and laborious for the high nuclei density. To alleviate the annotation burden, we seek to solve the problem through image-level weakly supervised learning, which is underexplored for nuclei instance segmentation. Compared with most existing methods using other weak annotations (scribble, point, etc.) for nuclei instance segmentation, our method is more labor-saving. The obstacle to using image-level annotations in nuclei instance segmentation is the lack of adequate location information, leading to severe nuclei omission or overlaps. In this paper, we propose a novel image-level weakly supervised method, called cyclic learning, to solve this problem. Cyclic learning comprises a front-end classification task and a back-end semi-supervised instance segmentation task to benefit from multi-task learning (MTL). We utilize a deep learning classifier with interpretability as the front-end to convert image-level labels to sets of high-confidence pseudo masks and establish a semi-supervised architecture as the back-end to conduct nuclei instance segmentation under the supervision of these pseudo masks. Most importantly, cyclic learning is designed to circularly share knowledge between the front-end classifier and the back-end semi-supervised part, which allows the whole system to fully extract the underlying information from image-level labels and converge to a better optimum. Experiments on three datasets demonstrate the good generality of our method, which outperforms other image-level weakly supervised methods for nuclei instance segmentation, and achieves comparable performance to fully-supervised methods.
RESUMO
Gallbladder neuroendocrine carcinoma (GB-NEC) is a rare, aggressive neuroendocrine carcinoma that arises from the gallbladder. Patients with GB-NEC usually have a poor prognosis. The present study described two cases diagnosed with GB-NEC and reviewed the literature to improve knowledge of GB-NEC. The present study reported on two cases of GB-NEC in male patients aged 65 and 66 years, respectively. Both patients underwent surgical resection. Postoperative pathology confirmed that one case had mixed adeno-neuroendocrine carcinoma and the other had large cell neuroendocrine carcinoma. In addition, both patients had uneventful recoveries following surgery and received cisplatin-etoposide combination chemotherapy. The present study summarized the two cases and reviewed the literature to improve understanding of GB-NEC. The results revealed that radiological findings of GB-NEC are non-specific. The present study demonstrated that surgical resection was still the most effective therapy and that postoperative adjuvant chemotherapy could markedly improve the prognosis of patients with GB-NEC.
RESUMO
With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods. For example, many existing treatment processes rely on activated sludge-based treatments that only target readily available carbon using conventional microbes, with limited capacity for nitrogen and other nutrient removal. Therefore, an additional set-up is often required in the treatment chain to address residual nitrogen, but even after treatment, refractory organics persist in the effluents due to their low biodegradability. With the advancements in nanotechnology and biotechnology, novel processes such as adsorption and biodegradation have been developed, and one promising approach is integration of adsorption and biodegradation over porous substrates (bio-carriers). Regardless of recent focus in a few applied researches, the process assessment and critical analysis of this approach is still missing, and it highlights the urgency and importance of this review. This review paper discussed the development of the simultaneous adsorption and catalytic biodegradation (SACB) over a bio-carrier for the sustainable treatment of refractory organics. It provides insights into the physico-chemical characteristics of the bio-carrier, the development mechanism of SACB, stabilization techniques, and process optimization strategies. Furthermore, the most efficient treatment chain is proposed, and its technical aspects are critically analysed based on updated research. It is anticipated that this review will contribute to the knowledge of academia and industrialist for sustainable upgradation of existing industrial wastewater treatment plants.
RESUMO
Immune checkpoint inhibitors, a type of immunotherapy, have demonstrated optimal treatment efficacy in inducing durable antitumor responses in various cancers. Cytokine-release syndrome is a rare immune-related adverse event induced by immune checkpoint inhibitors. In our case, a patient with hypopharyngeal squamous cell carcinoma received toripalimab combined with chemotherapy. On the fourth day post treatment, the patient developed fever and hypotension. Laboratory examination indicated myelosuppression, acute kidney injury and disseminated intravascular coagulation. Meanwhile, serum cytokine levels of IL-6, IL-8, IL-10, IL-1ß, IFN-γ and the level of hypersensitive C-reactive protein were markedly elevated. The patient was diagnosed with cytokine release syndrome, which progressed rapidly and led to the patient's demise on the fifth day post treatment.
Immune checkpoint inhibitors (ICIs) have shown revolutionary efficacy in the treatment of multiple cancers. Cytokine-release syndrome (CRS) is a common and lethally adverse event of chimeric antigen receptor T-cell therapy; however, this adverse effect is rare in ICI therapy. Presently, while ICI-associated CRS is reported almost exclusively in case reports, fatal outcomes are rarely observed. A patient with hypopharyngeal squamous cell carcinoma received toripalimab combined with chemotherapy. On the fourth day post treatment, the patient developed CRS, which progressed rapidly, and the patient died on the fifth day post treatment.
Assuntos
Síndrome da Liberação de Citocina , Inibidores de Checkpoint Imunológico , Humanos , Síndrome da Liberação de Citocina/diagnóstico , Síndrome da Liberação de Citocina/etiologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Citocinas/metabolismoRESUMO
3-Phenylpropionic acid (3PPA) and its derivative 3-phenylpropyl acetate (3PPAAc) are important aromatic compounds with broad applications in the cosmetics and food industries. In this study, we constructed a plasmid-free 3PPA-producing Escherichia coli strain and designed a novel 3PPAAc biosynthetic pathway. A module containing tyrosine ammonia lyase and enoate reductase, evaluated under the control of different promoters, was combined with phenylalanine-overproducing strain E. coli ATCC31884, enabling the plasmid-free de novo production of 218.16 ± 43.62 mg L-1 3PPA. The feasibility of the pathway was proved by screening four heterologous alcohol acetyltransferases, which catalyzed the transformation of 3-phenylpropyl alcohol into 3PPAAc. Afterward, 94.59 ± 16.25 mg L-1 3PPAAc was achieved in the engineered E. coli strain. Overall, we have not only demonstrated the potential of de novo synthesis of 3PPAAc in microbes for the first time but also provided a platform for the future of biosynthesis of other aromatic compounds.
Assuntos
Escherichia coli , Fenilpropionatos , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Fenilpropionatos/metabolismoRESUMO
Thermal runaway, a complex chemical/electrochemical heat breakout process caused by complex abuse conditions, remains a big issue to significantly hinder further practical application of lithium batteries. Here we design and fabricate a smart thermoregulatory and self-healing gel electrolyte (TRSHGE) by cross-linking phase-transition chains to polymer networks through reversibly dynamic interactions while maintaining the desirable electrochemical performance. Impressively, on the one hand, the phase-transition chains with endothermic effects can efficiently accommodate the heat accumulation, enabling lithium batteries to work safely and normally even up to 80 °C. On the other hand, the dynamic covalent boronic eater bonds and hydrogen bonds endow the TRSHGE damage repairability upon mechanical shock even at the nail penetration test. Such smart electrolyte with thermoresistance and damage repairability indicates significant technological advancement toward the safe commercial application of lithium batteries, even great potential to develop other functional batteries beyond the lithium-based systems discussed herein.
RESUMO
BACKGROUND: Chronic postsurgical pain (CPSP) has become a common complication during the perioperative period. The efficacy of one of the most potent strategies, ketamine, remains unclear. OBJECTIVES: The aim of this meta-analysis was to evaluate the effect of ketamine on CPSP in patients undergoing common surgeries.. STUDY DESIGN: Systematic review and meta-analysis. METHODS: English-language randomized controlled trials (RCTs) published in MEDLINE, Cochrane Library, and EMBASE from 1990 through 2022 were screened. RCTs with a placebo control group that evaluated the effect of intravenous ketamine on CPSP in patients undergoing common surgeries were included. The primary outcome was the proportion of patients who experienced CPSP 3 - 6 months postsurgery. The secondary outcomes included adverse events, emotional evaluation, and 48 hour postoperative opioid consumption. We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Pooled effect sizes were measured using the common-effects model or random-effects model, and several subgroup analyses were conducted. RESULTS: Twenty RCTs were included with 1,561 patients. Our pooled meta-analysis showed a significant difference between ketamine and placebo in the treatment of CPSP (Relative Risk [RR] = 0.86; 95% CI, 0.77 - 0.95; P = 0.02; I2 = 44%). In the subgroup analyses, our results indicated that compared with placebo, intravenous ketamine might decrease the prevalence of CPSP 3 - 6 months postsurgery (RR = 0.82; 95% CI, 0.72 - 0.94; P = 0.03; I2 = 45%). For adverse events, we observed that intravenous ketamine might lead to hallucinations (RR = 1.61; 95% CI, 1.09 - 2.39; P = 0.27; I2 = 20%) but did not increase the incidence of postoperative nausea and vomiting (RR = 0.98; 95% CI, 0.86 - 1.12; P = 0.66; I2 = 0%). LIMITATIONS: Inconsistent assessment tools and follow-up for chronic pain may contribute to the high heterogeneity and limitation of this analysis. CONCLUSIONS: We discovered that intravenous ketamine may reduce the incidence of CPSP in patients undergoing surgery, especially 3 - 6 months postsurgery. Because of the small sample size and high heterogeneity of the included studies, the effect of ketamine in the treatment of CPSP still needs to be explored in future large-sample, standardized-assessment studies.
Assuntos
Dor Crônica , Ketamina , Humanos , Ketamina/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/epidemiologia , Dor Crônica/tratamento farmacológico , Dor Crônica/epidemiologia , Analgésicos Opioides/uso terapêutico , Náusea e Vômito Pós-OperatóriosRESUMO
PURPOSE: To evaluate the image quality and diagnostic performance for pancreatic lesion between true non-contrast (TNC) and virtual non-contrast (VNC) images obtained from the dual-energy computed tomography (DECT). METHODS: One hundred six patients with pancreatic mass underwent contrast-enhanced DECT examinations were retrospectively included in this study. VNC images of the abdomen were generated from late arterial (aVNC) and portal (pVNC) phases. For quantitative analysis, the attenuation differences and reproducibility of abdominal organs were compared between TNC and aVNC/pVNC measurements. Qualitatively image quality was assessed by two radiologists using a five-point scale, and they independently compared the detection accuracy of pancreatic lesions between TNC and aVNC/pVNC images. The volume CT dose index (CTDIvol) and size-specific dose estimates (SSDE) were recorded to evaluate the potential dose reduction when using VNC reconstruction to replace the unenhanced phase. RESULTS: A total of 78.38% (765/976) of the attenuation measurement pairs were reproducible between TNC and aVNC images, and 71.0% (693/976) between TNC and pVNC images. In triphasic examinations, a total of 108 pancreatic lesions were found in 106 patients, and no significant difference in detection accuracy was found between TNC and VNC images (p = 0.587-0.957). Qualitatively, image quality was rated diagnostic (score ≥ 3) in all the VNC images. Calculated CTDIvol and SSDE reduction of about 34% could be achieved by omitting the non-contrast phase. CONCLUSION: VNC images of DECT provide diagnostic image quality and accurate pancreatic lesions detection, which are a promising alternative to unenhanced phase with a substantial reduction of radiation exposure in clinical routine.
RESUMO
Stress is acknowledged as one of the major factors responsible for autophagy induction, a tightly regulated process that acts as a pro-death or pro-survival mechanism within cells. Cadmium (Cd), a toxic heavy metal, induces apoptosis and autophagy in cells after exposure to low concentrations. This is due to Cd's ability to induce oxidative stress in cells and tissues by overproducing reactive oxygen species (ROS). Several proteins have been found to mediate the process of autophagy but aspects of their specific roles and targets remain undefined. Though LC3-II and p62 have traditionally been used as biomarkers that define autophagy, recent findings have revealed some limitations to LC3-II since it can be accumulated in cells in an autophagy-independent manner, whereas p62 remains a good determinant of the process. In addition to LC3-II and p62, recent studies have suggested that a new member of the autophagy protein family, the vacuole membrane protein 1 (VMP1), is essential in driving autophagy and could be an important biomarker for detecting the initiation and progression of autophagy. This review therefore focuses on current trends in autophagy biomarkers, the effect of Cd on the expression of LC3-II, p62, VMP1, and Beclin-1 and their relation and inter-regulatory roles in autophagy and apoptosis, pharmacological importance and the mechanisms involved.
RESUMO
The precision of the weak equivalence principle (WEP) test using atom interferometers (AIs) is expected to be extremely high in microgravity environment. The microgravity scientific laboratory cabinet (MSLC) in the China Space Station (CSS) can provide a higher-level microgravity than the CSS itself, which provides a good experimental environment for scientific experiments that require high microgravity. We designed and realized a payload of a dual-species cold rubidium atom interferometer. The payload is highly integrated and has a size of 460 mm × 330 mm × 260 mm. It will be installed in the MSLC to carry out high-precision WEP test experiment. In this article, we introduce the constraints and guidelines of the payload design, the compositions and functions of the scientific payload, the expected test precision in space, and some results of the ground test experiments.