Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
1.
Exp Mol Pathol ; 112: 104328, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678237

RESUMO

Isoflurane is a commonly used inhalational anesthetic that can induce neurotoxicity, while Dexmedetomidine (Dex) has significant neuroprotective effects. In our study, we explored the effects of Dex on isoflurane-induced neurotoxicity through the TLR2/NF-κB signaling pathway. Seven-day old neonatal Sprague-Dawley rats pretreated with 25, 50, 75 µg/kg Dex were exposed to 0.75% isoflurane for 6 h. Spatial learning and memory abilities were detected by Morris water maze test. Ultrastructure of hippocampal neurons, neuronal apoptosis, and the levels of TLR2/NF-κB signaling pathway-related factors were determined. Besides, TLR2 agonist Pam3CSK4 or NF-κB inhibitor BAY11-7082 was injected to further validate the involvement of TLR2/NF-κB signaling following Dex treatment. Consequently, we found isoflurane inhalation resulted in increased cell apoptosis, inflammation and TLR2/NF-κB signaling pathway activation, and decreased PSD95 expression and spatial learning and memory abilities. Dex led to decreased inflammation, improved neuronal structure and viability in rats as well as enhanced spatial learning and memory abilities of rats, and it inactivated the TLR2/NF-κB signaling pathway. Additionally, Pam3CSK4 injection reversed the protective effects of Dex on isoflurane-induced neurotoxicity. In conclusion, this study provided evidence that Dex could alleviate isoflurane-induced neurotoxicity through inhibition of the TLR2/NF-κB signaling pathway. The findings may offer novel insights for the clinical usage of anesthetics.

2.
ACS Sens ; 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31773952

RESUMO

The Maritime Silk Road was the major trade route between eastern and western civilizations in the Mid-dle Ages. However, hardly any silk products have been found along the transoceanic trade route. Thus, the ultrasensitive detection of ancient silk traces has great significance in research regarding the Mari-time Silk Road. In this study, an electrochemical immunosensor based on a tailored monoclonal anti-body and gold nanoparticles (AuNPs) using the layer-by-layer self-assembly method was proposed. The fabricated immunosensor exhibited preeminent sensitivity and selectivity in the detection of silk fibroin, with a linear detection range of 0.01 - 100 ng mL-1 and a detection limit of 3.8 pg mL-1. In particular, the performance of the immunosensor was excellent in the analysis of ancient silk samples, especially in the qualitative and quantitative detection of soil samples extracted from Nanhai No. 1 shipwreck archeolog-ical sites. The proposed electrochemical immunosensor proves the existence of silk products on the Mari-time Silk Road and demonstrates enormous potential for studying the formation and development of the ancient transoceanic trading route.

3.
4.
BMC Genomics ; 20(1): 888, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752687

RESUMO

BACKGROUND: DNA methylation has been shown to be involved in many biological processes, including X chromosome inactivation in females, paternal genomic imprinting, and others. RESULTS: Based on the correlation patterns of methylation levels of neighboring CpG sites among 28 sperm whole genome bisulfite sequencing (WGBS) data (486 × coverage), we obtained 31,272 methylation haplotype blocks (MHBs). Among them, we defined conserved methylated regions (CMRs), variably methylated regions (VMRs) and highly variably methylated regions (HVMRs) among individuals, and showed that HVMRs might play roles in transcriptional regulation and function in complex traits variation and adaptive evolution by integrating evidence from traditional and molecular quantitative trait loci (QTL), and selection signatures. Using a weighted correlation network analysis (WGCNA), we also detected a co-regulated module of HVMRs that was significantly associated with reproduction traits, and enriched for glycosyltransferase genes, which play critical roles in spermatogenesis and fertilization. Additionally, we identified 46 VMRs significantly associated with reproduction traits, nine of which were regulated by cis-SNPs, implying the possible intrinsic relationships among genomic variations, DNA methylation, and phenotypes. These significant VMRs were co-localized (± 10 kb) with genes related to sperm motility and reproduction, including ZFP36L1, CRISP2 and HGF. We provided further evidence that rs109326022 within a predominant QTL on BTA18 might influence the reproduction traits through regulating the methylation level of nearby genes JOSD2 and ASPDH in sperm. CONCLUSION: In summary, our results demonstrated associations of sperm DNA methylation with reproduction traits, highlighting the potential of epigenomic information in genomic improvement programs for cattle.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31746183

RESUMO

Mercury ions can cause a series of hazards to humans and the environment, even in trace amounts. Here, we designed a novel adsorbent (Cys-UiO-66) by functionalizing NH2-UiO-66 with L-cysteine for selective removal of Hg(II) from solution. The Cys-UiO-66 was characterized by different instruments. The adsorption property of Cys-UiO-66 was evaluated by batch methods. The maximum adsorption capacity was 350.14 mg/g at pH 5.0. Furthermore, the adsorption isotherm and kinetics models were in accord with the Langmuir and Pseudo-second-order models respectively, evidencing that the adsorption behavior was dominated by monolayer chemisorption. The Cys-UiO-66 had better affinity for Hg(II) than other coexisting ions in wastewater and could be regenerated at least five cycles. The results prove that Cys-UiO-66 is a talented and efficient sorbent for mercury ions.

6.
J Synchrotron Radiat ; 26(Pt 6): 2075-2080, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721753

RESUMO

The upgrade of the laser pump time-resolved X-ray probes, namely time-resolved X-ray absorption spectroscopy (TR-XAS) and X-ray diffraction (TR-XRD), implemented at the Beijing Synchrotron Radiation Facility, is described. The improvements include a superbunch fill, a high-efficiency fluorescence collection, an efficient spatial overlap protocol and a new data-acquisition scheme. After upgrade, the adequate TR-XAS signal is now obtained in a 0.3 mM solution, compared with a 6 mM solution in our previous report. Furthermore, to extend application in photophysics, the TR-XAS probe is applied on SrCoO2.5 thin film. And for the first time, TR-XAS is combined with TR-XRD to simultaneously detect the kinetic trace of structural changes in thin film.

7.
Biosens Bioelectron ; 149: 111830, 2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710919

RESUMO

As promising alternatives to natural receptors, artificial molecularly imprinted polymers (MIPs) have received great attention in biotechnology. Nevertheless, some bottlenecks limit their further development, including low adsorption capacity, poor recognition efficiency, slow response, and insipid aqueous compatibility. Ionic liquids (ILs) show the features of tailored structures and properties, high conductivity, good solubility, and excellent stability. Because of these advantages, they have found intensive use in MIPs by remedying the latter's shortcomings. In this review, we summarize the integration of ILs and MIPs for biorecognition and biosensing. The versatile roles of ILs in improving the performance of MIPs are firstly summarized, including serving as solvents, porogens, functional monomers, organic surface modifiers, dummy templates, and cross-linkers. Then, specific applications of IL-based MIPs in peptide recognition, protein sensing, and food safety analysis are discussed. Finally, future trends and challenges for the design and development of IL-based MIPs and their applications in the biorecognition and biosensing are proposed.

8.
Arch Biochem Biophys ; 678: 108191, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31733216

RESUMO

Regular exercise is regarded as a nonpharmacological therapy for controlling hypertension by improving the function of vascular smooth muscle cells (VSMCs). The underlying mechanism is unclear. L-type-voltage-dependent Ca2+ channel (CaV1.2) on the plasma membrane and PKCα of VSMCs are pivotal modulators of vascular tone. PKCα is hyperactivated and concentrated at the surface membrane during hypertension. This study investigated the effects of aerobic exercise on the PKCα and CaV1.2 in mesenteric arterial smooth muscle cells from spontaneously hypertensive rats (SHRs). SHRs and Wistar-Kyoto (WKY) rats were randomly assigned into sedentary groups (SHR-SED and WKY-SED) and exercise training groups (SHR-EX and WKY-EX). Exercise groups were performed a 12-week moderate-intensity (18-20 m/min) treadmill training. Mesenteric arterial mechanical and functional properties were evaluated. Exercise reduced body weight and systolic blood pressure in both SHR-EX and WKY-EX. PDBu (PKC activator) and BayK 8644 (CaV1.2 agonist) elicited vasoconstriction, while Gö6976 (PKCα inhibitor) and nifedipine (CaV1.2 blocker) induced vasodilation of the vessel rings. In SHRs, exercise normalized the increased vascular sensitivity to these activators and inhibitors. Nifedipine greatly suppressed PDBu-induced vasoconstriction. Upon incubation with Gö6976, the effects of both PDBu and nifedipine were markedly suppressed. In patch-clamp studies, PDBu increased and Gö6976 decreased the CaV1.2 current density. Exercise ameliorated the responses of both PDBu and Gö6976 in SHRs. Immunofluorescence staining suggested that exercise training alleviated the hypertension-induced increase of colocalization rate of PKCα and CaV1.2 α1C subunit in VSMCs. These data indicate that hypertension enhanced PKCα/CaV1.2 pathway-induced constriction of mesenteric arteries, and this pathological enhancement is inhibited by aerobic exercise training.

9.
J Agric Food Chem ; 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31765135

RESUMO

A series of N-aryl-pyridine-4-ones derivatives were designed and synthesized by using maltol and antidesmone as lead compounds, and then their fungicidal/bactericidal activities and possible mechanism of action against Colletotrichum musae were explored. Most of these compounds exhibited significant fungicidal activity in vitro. Especially, compound 23 has more than 90% inhibitory activity against 9 plant pathogenic fungi at 50 µg mL-1, which is superior to azoxystrobin. Moreover, in vivo bioassay also demonstrated that compound 23 exhibited high-efficiency broad-spectrum antifungal activity and can effectively control postharvest diseases of mango. In addition, it was found that compounds 22 and 23 can also effectively control rice bacterial leaf blight in pot experiments, which was even more effective than zhongshengmycin. Preliminary mechanism studies revealed that compound 23 maybe cause cell membrane and mitochondria destruction. These findings indicate that compound 23 can be used to develop potential agrochemical fungicides and bactericides.

10.
Sci Total Environ ; 702: 135040, 2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31726339

RESUMO

Living in greener places may protect against obesity, but epidemiological evidence is inconsistent and mainly comes from developed nations. We aimed to investigate the association between greenness and obesity in Chinese adults and to assess air pollution and physical activity as mediators of the association. We recruited 24,845 adults from the 33 Communities Chinese Health Study in 2009. Central and peripheral obesity were defined by waist circumference (WC) and body mass index (BMI), respectively, based on international obesity standards. The Normalized Difference Vegetation Index (NDVI) was used to quantify community greenness. Two-level logistic and generalized linear mixed regression models were used to evaluate the association between NDVI and obesity, and a conditional mediation analysis was used also performed. In the adjusted models, an interquartile range increase in NDVI500-m was significantly associated with lower odds of peripheral 0.80 (95% confidence interval [CI]: 0.74-0.87) and central obesity 0.88 (95% CI: 0.83-0.93). Higher NDVI values were also significantly associated with lower BMI. Age, gender, and household income significantly modified associations between greenness and obesity, with stronger associations among women, older participants, and participants with lower household incomes. Air pollution mediated 2.1-20.8% of the greenness-obesity associations, but no mediating effects were observed for physical activity. In summary, higher community greenness level was associated with lower odds of central and peripheral obesity, especially among women, older participants, and those with lower household incomes. These associations were partially mediated by air pollutants. Future well-designed longitudinal studies are needed to confirm our findings.

11.
Artigo em Inglês | MEDLINE | ID: mdl-31760621

RESUMO

Heterogeneous catalysis is promising for water treatment. Solid catalysts play governing roles. Herein, the surface-disordered WO3, D-WO3, engineered with surface and sub-surface defective sites from NaBH4 reduction was proven to be an effective catalyst for H2O2 activation. The defective degree and defects amount on WO3 were regulated by NaBH4. More than 95% of two typical azo dyes, RhB and MG, were selectively degraded in D-WO3/H2O2 system during 3.0 h, while no significant activity was observed for MO as well as bisphenol A, roxarsone, phenol, 4-chlorophenol, p-nitrophenol, o-aminophenol, urea, and 2,4-dichlorophenol in comparison under the identical conditions (mainly less than 20%). Both ESR and radical scavenging tests indicated the minor role of ·OH from H2O2 activation on D-WO3. The superior activity of D-WO3 could be mainly attributed to the surface and sub-surface defects with finely tailored local atomic configurations and electronic structures of central metal sites. Surface and sub-surface defective sites could serve as the reactive sites of interfacial adsorption, dissociative activation, and catalytic decomposition for both oxidant and pollutants, with high adsorption energy, strong structural activation, and superior catalytic activity. Our findings provided a new chance for non-selective radical catalysis based on transition metal oxides and a promising catalyst with high performance, low cost, and no toxicity for pollutant degradation with weak matrix effects in wastewater and surface water.

12.
Stem Cell Reports ; 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31761677

RESUMO

The generation of brain region-specific progenitors from human embryonic stem cells (hESCs) is critical for their application. However, transcriptional regulation of neural regionalization in humans is poorly understood. Here, we applied a rostrocaudal patterning system from hESCs to dissect global transcriptional networks controlling early neural regionalization. We found that SOX21 is required for rostral forebrain fate specification. SOX21 knockout led to activation of Wnt signaling, resulting in caudalization of regional identity of rostral forebrain neural progenitor cells. Moreover, we identified WNT8B as a SOX21 direct target. Deletion of WNT8B or inhibition of Wnt signaling in SOX21 knockout neural progenitor cells restored rostral forebrain identity. Furthermore, SOX21 interacted with ß-catenin, interfering with the binding of TCF4/ß-catenin complex to the WNT8B enhancer. Collectively, these results unveil the unknown role of SOX21 and shed light on how a transcriptional factor modulates early neural regionalization through crosstalk with a key component of Wnt signaling.

13.
Aging (Albany NY) ; 11(21): 9794-9810, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31724536

RESUMO

The transcript factor LHX2 is dysregulated in many cancers but its role in osteosarcoma (OS) remains unclear. In this study, we confirm that LHX2 is up-regulated in osteosarcoma, and that its silencing inhibits OS malignancy and induces autophagy via mTOR signaling. We further demonstrate that miR-129-5p negatively regulates LHX2 and suppresses the malignant phenotypes of OS. LHX2 overexpression could restore the malignant phenotypes. In conclusion, LHX2 regulates tumorigenesis and autophagy via mTOR in OS and is negatively regulated by miR-129-5p. Targeting the miR-129-5p/LHX2/mTOR axis therefore represents a novel therapeutic strategy for OS treatment.

14.
Aging (Albany NY) ; 11(21): 9932-9946, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31727866

RESUMO

PiRNAs are a small class of non-coding small RNAs newly discovered in recent years. Millions of piRNAs have been discovered to date, and more than 20,000 piRNA genes have been found in the human genome. Due to the relatively small number of studies related to piRNA, our understanding of piRNAs is very limited. Currently, the clear biological function of piRNAs is transposon mobilization inhibition by promoting transcript degradation and regulating chromatin formation. In addition, piRNAs can form piRNA-PIWI protein complexes with some members of the PIWI branch of the Argonaute protein. Based on these biological functions, piRNAs and PIWI proteins are important in maintaining the genomic integrity of germline cells. Because of this, the popularity of piRNAs research has been focused on its role in germline cells for a long time after the discovery of piRNAs. As the field of research expands, there is growing evidence that piRNAs and PIWI proteins are abnormally expressed in various types of cancers, which may be potential cancer biomarkers and cancer therapeutic targets. In this review, we will focus on the relationship between piRNAs and PIWI proteins and cancers based on previous research, as well as their significance in cancer detection, grading and treatment.

15.
Artigo em Inglês | MEDLINE | ID: mdl-31709795

RESUMO

The development of effective antibacterial surfaces to prevent the attachment of pathogenic bacteria and subsequent bacterial colonization and biofilm formation is critically important for medical devices and public hygiene products. In the work reported herein, a smart antibacterial hybrid film based on tannic acid/Fe3+ ion (TA/Fe) complex and poly(N-isopropylacrylamide) (PNIPAAm) is deposited on diverse substrates. This surface is shown to have bacteria-killing and bacteria-releasing properties based on, respectively, near-infrared photothermal activation and subsequent cooling. The TA/Fe complex has three roles in this system: (i) as a universal adhesive "anchor" for surface modification, (ii) as a high-efficiency photothermal agent for ablation of attached bacteria (including multidrug resistant bacteria), and (iii) as a robust linker for immobilization of NH2-terminated PNIPAAm via either Michael addition or Schiff base formation. Moreover, because of the thermoresponsive properties of the immobilized PNIPAAm, almost all of the killed bacteria and other debris can be removed from the surface simply by lowering the temperature. It is shown that this hybrid film can maintain good antibacterial performance after being used for multiple "kill-and-release" cycles and can be applied to various substrates regardless of surface chemistry or topography, thus providing a broadly applicable, simple, and reliable solution to the problems associated with surface-attached bacteria in various healthcare applications.

16.
Mol Med ; 25(1): 47, 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31706267

RESUMO

BACKGROUND: The hunt for the molecular markers with specificity and sensitivity has been a hot area for the tumor treatment. Due to the poor diagnosis and prognosis of pancreatic cancer (PC), the excision rate is often low, which makes it more urgent to find the ideal tumor markers. METHODS: Robust Rank Aggreg (RRA) methods was firstly applied to identify the differentially expressed genes (DEGs) between PC tissues and normal tissues from GSE28735, GSE15471, GSE16515, and GSE101448. Among these DEGs, the highly correlated genes were clustered using WGCNA analysis. The co-expression networks and molecular complex detection (MCODE) Cytoscape app were then performed to find the sub-clusters and confirm 35 candidate genes. For these genes, least absolute shrinkage and selection operator (lasso) regression model was applied and validated to build a diagnostic risk score model. Cox proportional hazard regression analysis was used and validated to build a prognostic model. RESULTS: Based on integrated transcriptomic analysis, we identified a 19 gene module (SYCN, PNLIPRP1, CAP2, GNMT, MAT1A, ABAT, GPT2, ADHFE1, PHGDH, PSAT1, ERP27, PDIA2, MT1H, COMP, COL5A2, FN1, COL1A2, FAP and POSTN) as a specific predictive signature for the diagnosis of PC. Based on the two consideration, accuracy and feasibility, we simplified the diagnostic risk model as a four-gene model: 0.3034*log2(MAT1A)-0.1526*log2(MT1H) + 0.4645*log2(FN1) -0.2244*log2(FAP), log2(gene count). Besides, a four-hub gene module was also identified as prognostic model = - 1.400*log2(CEL) + 1.321*log2(CPA1) + 0.454*log2(POSTN) + 1.011*log2(PM20D1), log2(gene count). CONCLUSION: Integrated transcriptomic analysis identifies two four-hub gene modules as specific predictive signatures for the diagnosis and prognosis of PC, which may bring new sight for the clinical practice of PC.

18.
Biosens Bioelectron ; 146: 111751, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31605988

RESUMO

Detection of nitrite is important for environmental safety and human health, and the development of high-performance sensors for accurate detection of nitrite is highly desirable. Herein, a highly sensitive graphene electrochemical transistor (GECT) nitrite sensor was designed and fabricated for the first time. A single layer of graphene was placed between the source and drain electrodes by the wetting transfer method to act as channel for the transistor. Au nanoparticles modified reduced graphene oxide nanocomposites (AuNPs/RGO) were electrodeposited at the transistor gate to improve its catalytic oxidation performance of nitrite with optimized electrodeposition conditions. The sensing principle was attributed to changes in effective gate voltage applied to GECT induced by electrooxidation of nitrite at gate electrodes. Due to the high carrier mobility of graphene in the channel and the excellent electrocatalytical activity of AuNPs/RGO on the gate, the obtained sensor device exhibited an exceedingly low detection limit (0.1 nM nitrite) and ultra-wide linear range from 0.1 nM to 7 µM and from 7 to 1000 µM, which are comparable or superior to the performance of large-scale instruments (e.g. chromatography, spectrophotometry, and spectrofluorimetry etc.). The GECT device also showed good anti-interference performance toward common interfering ions and stable performances. Nitrite in natural lake water has been proven to be monitored by our devices. Therefore, the present novel GECT sensor could act as a desirable practical platform for highly sensitive detection of nitrite in the food and environmental fields.

19.
BMC Genomics ; 20(1): 770, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31646963

RESUMO

BACKGROUND: Host genotype plays a crucial role in microbial composition of laying hens, which may lead to dissimilar odor gas production. The objective of this study was to investigate the relationship among layer breed, microbial structure and odor production. RESULTS: Thirty Hy-Line Gray and thirty Lohmann Pink laying hens were used in this study to determine the impact of cecal microbial structure on odor production of laying hens. The hens were managed under the same husbandry and dietary regimes. Results of in vivo experiments showed a lower hydrogen sulfide (H2S) production from Hy-Line hens and a lower concentration of soluble sulfide (S2-) but a higher concentration of butyrate in the cecal content of the Hy-Line hens compared to Lohmann Pink hens (P < 0.05), which was consistent with the in vitro experiments (P < 0.05). However, ammonia (NH3) production was not different between genotypes (P > 0.05). Significant microbial structural differences existed between the two breed groups. The relative abundance of some butyrate producers (including Butyricicoccus, Butyricimonas and Roseburia) and sulfate-reducing bacteria (including Mailhella and Lawsonia) were found to be significantly correlated with odor production and were shown to be different in the 16S rRNA and PCR data between two breed groups. Furthermore, some bacterial metabolism pathways associated with energy extraction and carbohydrate utilization (oxidative phosphorylation, pyruvate metabolism, energy metabolism, two component system and secretion system) were overrepresented in the Hy-Line hens, while several amino acid metabolism-associated pathways (amino acid related enzymes, arginine and proline metabolism, and alanine-aspartate and glutamate metabolism) were more prevalent in the Lohmann hens. CONCLUSION: The results of this study suggest that genotype of laying hens influence cecal microbiota, which in turn modulates their odor production. Our study provides references for breeding and enteric manipulation for defined microbiota to reduce odor gas emission.


Assuntos
Bactérias/classificação , Ceco/microbiologia , Galinhas/microbiologia , Microbioma Gastrointestinal , Sulfeto de Hidrogênio/metabolismo , Animais , Bactérias/metabolismo , Butiratos , Feminino , Odorantes , RNA Ribossômico 16S/genética
20.
Mikrochim Acta ; 186(11): 722, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655901

RESUMO

A nanocomposite was prepared from gold and graphene oxide via one-step electrodeposition and used to modify the surface of a gold electrode (Au-Gr/GE) that was then applied to non-enzymatic determination of glucose. The effects of deposition time and supporting substrate on the morphology, structure, and electrochemical properties of the nanocomposite were optimized. The morphologies and crystal structures were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results indicate that gold nanoparticles grew on the surface of two-dimensional graphene oxide. The electrocatalytic activity of the modified electrode towards glucose oxidation was evaluated by cyclic voltammetry and amperometric methods at pH 7.4. The Au-Gr/GE, typically operated at a potential of 0.00 V (vs. Ag/AgCl), has a linear response in the 0.05-14 mM and 14-42 mM glucose concentration range, high sensitivity (604 and 267 µA cm-2 mM-1) and a low detection limit (12 µM). The modified GE was applied to quantify glucose in sweat where it exhibited excellent sensitivity and accuracy. Graphical abstract The gold electrode modified with a gold-graphene (Au-Gr/GE) is prepared via a direct electrodeposition. The Au-Gr/GE is used for glucose detection in the neutral solution and it can achieve the effect of non-intrusive detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA