Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.367
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38954264

RESUMO

Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.

2.
Angew Chem Int Ed Engl ; : e202405904, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960870

RESUMO

Transformation of lignin to syngas can turn waste into treasure yet remains a tremendous challenge because of its naturally evolved stubborn structure. In this work, light-driven reforming of natural lignin in water for green syngas production is explored using Pt-decorated InGaN nanowires. Syngas is  yielded from the continuous evolution of •CH3 and •OH from photocatalytic reforming of lignin in water. Together with the superior optoelectronic attributes of Pt-decorated InGaN nanowires, the evolution rate of syngas approaches to 43.4 mol·g-1·h-1 with tunable H2/CO ratios and a remarkable turnover number (TON) of 150, 543mol syngas per mol Pt. Notably, the architecture demonstrates a high light efficiency of 12.1% for syngas generation under focused light without any extra thermal input. Outdoor test ascertains the viability of producing syngas with the only inputs of natural lignin, water, and sunlight, thus presenting a low-carbon route for synthesizing transportation fuels and value-added chemicals.

3.
Heliyon ; 10(11): e32506, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961930

RESUMO

Purpose: To report the clinical, tomographic, histopathological and genetic findings of a patient with brittle cornea syndrome and a novel mutation in the ZNF469 gene likely implicated in the development of this disorder. Methods: A 64-year-old man presented with a two-year history of worsening vision in both eyes. The patient and his son were examined by imaging and genetic analysis. Results: The patient exhibited persistent ocular irritation, decreased vision, corneal epithelial defects and corneal stromal opacity. Confocal microscopy revealed that the anterior corneal stroma had a large amount of highly reflective and striated tissue. However, his son had no symptoms. Genetic analysis identified a heterozygous c.1781C > T:p.P594L variation in the ZNF469 gene. Conclusions: We reported a novel mutation in the ZNF469 gene (c.1781C > T:p.P594L) in a patient with brittle cornea syndrome from China, which enriched the spectrum of ZNF469 variants implicated in brittle cornea syndrome.

4.
Med Image Anal ; 97: 103253, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38968907

RESUMO

Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for mortality prediction, a strong airway-derived biomarker (Hazard ratio>1.5, p < 0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.

5.
PLoS One ; 19(7): e0304736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968248

RESUMO

High throughput screening of small molecules and natural products is costly, requiring significant amounts of time, reagents, and operating space. Although microarrays have proven effective in the miniaturization of screening for certain biochemical assays, such as nucleic acid hybridization or antibody binding, they are not widely used for drug discovery in cell culture due to the need for cells to internalize lipophilic drug candidates. Lipid droplet microarrays are a promising solution to this problem as they are capable of delivering lipophilic drugs to cells at dosages comparable to solution delivery. However, the scalablility of the array fabrication, assay validation, and screening steps has limited the utility of this approach. Here we take several new steps to scale up the process for lipid droplet array fabrication, assay validation in cell culture, and drug screening. A nanointaglio printing process has been adapted for use with a printing press. The arrays are stabilized for immersion into aqueous solution using a vapor coating process. In addition to delivery of lipophilic compounds, we found that we are also able to encapsulate and deliver a water-soluble compound in this way. The arrays can be functionalized by extracellular matrix proteins such as collagen prior to cell culture as the mechanism for uptake is based on direct contact with the lipid delivery vehicles rather than diffusion of the drug out of the microarray spots. We demonstrate this method for delivery to 3 different cell types and the screening of 92 natural product extracts on a microarray covering an area of less than 0.1 cm2. The arrays are suitable for miniaturized screening, for instance in high biosafety level facilities where space is limited and for applications where cell numbers are limited, such as in functional precision medicine.


Assuntos
Gotículas Lipídicas , Humanos , Gotículas Lipídicas/metabolismo , Análise em Microsséries/métodos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos
6.
IEEE Trans Med Imaging ; PP2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990752

RESUMO

Surgical instrument segmentation is fundamentally important for facilitating cognitive intelligence in robot-assisted surgery. Although existing methods have achieved accurate instrument segmentation results, they simultaneously generate segmentation masks of all instruments, which lack the capability to specify a target object and allow an interactive experience. This paper focuses on a novel and essential task in robotic surgery, i.e., Referring Surgical Video Instrument Segmentation (RSVIS), which aims to automatically identify and segment the target surgical instruments from each video frame, referred by a given language expression. This interactive feature offers enhanced user engagement and customized experiences, greatly benefiting the development of the next generation of surgical education systems. To achieve this, this paper constructs two surgery video datasets to promote the RSVIS research. Then, we devise a novel Video-Instrument Synergistic Network (VIS-Net) to learn both video-level and instrument-level knowledge to boost performance, while previous work only utilized video-level information. Meanwhile, we design a Graph-based Relation-aware Module (GRM) to model the correlation between multi-modal information (i.e., textual description and video frame) to facilitate the extraction of instrument-level information. Extensive experimental results on two RSVIS datasets exhibit that the VIS-Net can significantly outperform existing state-of-the-art referring segmentation methods. We will release our code and dataset for future research (Git).

7.
Science ; 385(6705): 201-204, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991055

RESUMO

The decay of methyl chloroform, a banned ozone-depleting substance, has provided a clear observational metric of mean tropospheric hydroxyl radical (OH) abundance. Almost all current global chemistry models calculate about 15% too much OH and thus too rapid methane loss. Methane is a short-lived climate forcer, critical to achieving global warming targets, and this error affects our model projections of climate change. New observations of water vapor absorption in the ultraviolet region (290 to 350 nanometers) imply reductions in sunlight with key photolysis rates decreasing by 8 to 12% in the near-surface tropical atmosphere. Incorporation of this new mechanism in a chemistry-transport model reduces OH and methane loss by only 4%, but combined with other proposed mechanisms, such as tropospheric halogen chemistry (7%), we may be able to resolve this conundrum.

8.
Health Place ; 89: 103310, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991484

RESUMO

While the restorative benefits of residential environments are known, the influence of residents' physical activity on their perceptions of restorativeness in different settlements is unclear. This study aimed to investigate the mediating and moderating roles of residents' physical activities and seasons on restorative perceptions using survey data from three settlements in Harbin, China, involving a baseline survey conducted in June 2023 and questionnaires administered at 30-day intervals from July to December 2023 (534 interviews). Residents' restorative perceptions and physical activity levels were highest in autumn, with settlement quality having a seasonal moderating effect and physical activity having a mediating effect.

9.
J Hazard Mater ; 476: 135151, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39002484

RESUMO

The increasing use and abuse of antibiotics in agriculture and aquaculture necessitates a more thorough risk assessment. We first advocate a precise assessment that subdivides the assessment scope from interspecies to intraspecific levels. Differences in ENR residues and degradation within the intraspecific category were simultaneously explored. This study chose red and GIFT tilapia, both belonging to the intra-specific category of tilapia, for an enrofloxacin (ENR) exposure experiment. Red tilapia had a lower area under the curve (AUC) representing drug accumulation, indicating a notably shorter withdrawal period (7 days) compared to GIFT tilapia (31.4 days) in the edible parts. While four potential transformation pathways were proposed for ENR in tilapia, red tilapia had fewer detected degradation products (6 items) than GIFT tilapia (10 items), indicating a simpler transformation pathway in red tilapia. Predictive assessments using the Toxtree model revealed that of the four extra degradation products in GIFT tilapia, two may possess carcinogenic and mutagenic properties. Overall, differences were observed in ENR residues and degradation within the intraspecific category, with red tilapia presenting lower risks than GIFT tilapia. This work suggests a new strategy to perfect the methodology for antibiotic risk assessment and facilitate systematic antibiotic administration management in the future.

10.
Am J Reprod Immunol ; 92(1): e13901, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39042523

RESUMO

PROBLEM: Adenomyosis (AM) is associated with immune response and inflammation. However, the role of T cell subsets in AM development has not been thoroughly understood. METHOD OF STUDY: Patients with focal or diffuse AM were recruited. Serum cytokines were quantified by enzyme-linked immunosorbent assay (ELISA). Different T cell subsets in the blood and ectopic endometrium were determined by flow cytometry. RESULTS: Serum interleukin-6 (IL-6) and macrophage-colony-stimulating factor (GM-CSF) were increased in patients with focal or diffuse AM before focused ultrasound ablation surgery (FUAS), but not after FUAS. Compared with the healthy control, the frequencies of CD8+ interferon-gamma (IFN-γ)-expressing cytotoxic T lymphocytes (CTLs), interleukin-17A (IL-17A)-expressing Tc17 cells, CD4+ T helper 1 (Th1) cells, and GM-CSF-expressing T helper (ThGM) cells were up-regulated in the blood of patients with AM, especially those with diffuse AM. However, these changes were eradicated after FUAS. Meanwhile, the frequencies of these T cell subsets were positively correlated with the CA-125 level. Furthermore, these T cell subsets were also increased in ectopic endometrium. CONCLUSIONS: Our study delineates for the first time the presence of CTLs, Tc17 cells, Th1, and ThGM cells in the blood and ectopic endometrium in AM. The results imply that T cell response might impact AM development.


Assuntos
Adenomiose , Endométrio , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Células Th1 , Humanos , Feminino , Endométrio/imunologia , Endométrio/patologia , Adulto , Adenomiose/imunologia , Adenomiose/sangue , Adenomiose/patologia , Células Th1/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/sangue , Linfócitos T Citotóxicos/imunologia , Pessoa de Meia-Idade , Interleucina-17/metabolismo , Interleucina-17/sangue , Interleucina-6/sangue , Interleucina-6/metabolismo , Células Th17/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
11.
ACR Open Rheumatol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973625

RESUMO

OBJECTIVE: Anti-histidyl-transfer RNA synthetase (Jo-1) antibodies are associated with myositis as well as different extramuscular organ complications comprising the anti-synthetase syndrome. This study aimed to clarify the relationship between anti-Jo-1 epitope recognition patterns and specific clinical features of this syndrome. METHODS: B cell epitope mapping was performed via enzyme-linked immunosorbent assay in 180 patients who were anti-Jo-1 antibody-positive using overlapping peptides/protein fragments spanning the amino-terminal 151 amino acids of Jo-1 as substrate antigens. Statistical associations with clinical features were assessed through rank-sum, correlation, and cluster analyses. RESULTS: The level of reactivity against subfragments spanning amino acids 1-151 of Jo-1 paralleled that of full-length Jo-1, confirming the immunodominance of this amino-terminal region. The corresponding frequencies of reactivity to peptides 1 (amino acids [aa] 1-21), 3 (aa 27-47), 4 (aa 40-60), 10 (aa 118-138), and 11 (aa 131-151) were 6.1%, 42.5%, 6.8%, 6.7%, and 20.3%. While anti-full-length Jo-1 antibodies were significantly associated with Raynaud phenomenon, anti-fragment A2 (aa 1-60) and A3 (aa 1-90) antibodies were associated with proximal muscle weakness, Raynaud phenomenon, arthritis, and sicca syndrome. Anti-fragment A4 (aa 1-120) and A5 (aa 1-151) antibodies were also associated with sicca syndrome. Peptide 1 (aa 1-21) antibodies were associated with Raynaud phenomenon and dysphagia. Whereas anti-peptide 3 (aa 27-47) antibodies were also linked to Raynaud phenomenon, anti-peptide 9 (aa 105-125) antibodies were associated with mechanic's hands. CONCLUSION: Autoantibodies targeting different amino-terminal subfragments and/or peptides of Jo-1 were associated with specific clinical features of the anti-synthetase syndrome, demonstrating the biomarker potential of B cell epitope profiling in this disorder.

12.
Cell Mol Biol Lett ; 29(1): 100, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977961

RESUMO

OBJECTIVE: Osteoporosis is a global health issue characterized by decreased bone mass and microstructural degradation, leading to an increased risk of fractures. This study aims to explore the molecular mechanism by which P2X7 receptors influence osteoclast formation and bone resorption through the PI3K-Akt-GSK3ß signaling pathway. METHODS: An osteoporosis mouse model was generated through ovariectomy (OVX) in normal C57BL/6 and P2X7f/f; LysM-cre mice. Osteoclasts were isolated for transcriptomic analysis, and differentially expressed genes were selected for functional enrichment analysis. Metabolite analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and multivariate statistical analysis and pattern recognition were used to identify differential lipid metabolism markers and their distribution. Bioinformatics analyses were conducted using the Encyclopedia of Genes and Genomes database and the MetaboAnalyst database to assess potential biomarkers and create a metabolic pathway map. Osteoclast precursor cells were used for in vitro cell experiments, evaluating cell viability and proliferation using the Cell Counting Kit 8 (CCK-8) assay. Osteoclast precursor cells were induced to differentiate into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-beta ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) staining was performed to compare differentiation morphology, size, and quantity between different groups. Western blot analysis was used to assess the expression of differentiation markers, fusion gene markers, and bone resorption ability markers in osteoclasts. Immunofluorescence staining was employed to examine the spatial distribution and quantity of osteoclast cell skeletons, P2X7 protein, and cell nuclei, while pit assay was used to evaluate osteoclast bone resorption ability. Finally, in vivo animal experiments, including micro computed tomography (micro-CT), hematoxylin and eosin (HE) staining, TRAP staining, and immunohistochemistry, were conducted to observe bone tissue morphology, osteoclast differentiation, and the phosphorylation level of the PI3K-Akt-GSK3ß signaling pathway. RESULTS: Transcriptomic and metabolomic data collectively reveal that the P2X7 receptor can impact the pathogenesis of osteoporosis through the PI3K-Akt-GSK3ß signaling pathway. Subsequent in vitro experiments showed that cells in the Sh-P2X7 + Recilisib group exhibited increased proliferative activity (1.15 versus 0.59), higher absorbance levels (0.68 versus 0.34), and a significant increase in resorption pit area (13.94 versus 3.50). Expression levels of osteoclast differentiation-related proteins MMP-9, CK, and NFATc1 were markedly elevated (MMP-9: 1.72 versus 0.96; CK: 2.54 versus 0.95; NFATc1: 3.05 versus 0.95), along with increased fluorescent intensity of F-actin rings. In contrast, the OE-P2X7 + LY294002 group showed decreased proliferative activity (0.64 versus 1.29), reduced absorbance (0.34 versus 0.82), and a significant decrease in resorption pit area (5.01 versus 14.96), accompanied by weakened expression of MMP-9, CK, and NFATc1 (MMP-9: 1.14 versus 1.79; CK: 1.26 versus 2.75; NFATc1: 1.17 versus 2.90) and decreased F-actin fluorescent intensity. Furthermore, in vivo animal experiments demonstrated that compared with the wild type (WT) + Sham group, mice in the WT + OVX group exhibited significantly increased levels of CTX and NTX in serum (CTX: 587.17 versus 129.33; NTX: 386.00 versus 98.83), a notable decrease in calcium deposition (19.67 versus 53.83), significant reduction in bone density, increased trabecular separation, and lowered bone mineral density (BMD). When compared with the KO + OVX group, mice in the KO + OVX + recilisib group showed a substantial increase in CTX and NTX levels in serum (CTX: 503.50 versus 209.83; NTX: 339.83 versus 127.00), further reduction in calcium deposition (29.67 versus 45.33), as well as decreased bone density, increased trabecular separation, and reduced BMD. CONCLUSION: P2X7 receptors positively regulate osteoclast formation and bone resorption by activating the PI3K-Akt-GSK3ß signaling pathway.


Assuntos
Reabsorção Óssea , Diferenciação Celular , Glicogênio Sintase Quinase 3 beta , Camundongos Endogâmicos C57BL , Osteoclastos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Purinérgicos P2X7 , Transdução de Sinais , Animais , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Diferenciação Celular/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Feminino , Osteoporose/metabolismo , Osteoporose/genética , Osteoporose/patologia , Ligante RANK/metabolismo , Ligante RANK/genética
13.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000154

RESUMO

Putatively, tooth agenesis was attributed to the initiation failure of tooth germs, though little is known about the histological and molecular alterations. To address if constitutively active FGF signaling is associated with tooth agenesis, we activated Fgf8 in dental mesenchyme with Osr-cre knock-in allele in mice (Osr2-creKI; Rosa26R-Fgf8) and found incisor agenesis and molar microdontia. The cell survival assay showed tremendous apoptosis in both the Osr2-creKI; Rosa26R-Fgf8 incisor epithelium and mesenchyme, which initiated incisor regression from cap stage. In situ hybridization displayed vanished Shh transcription, and immunostaining exhibited reduced Runx2 expression and enlarged mesenchymal Lef1 domain in Osr2-creKI; Rosa26R-Fgf8 incisors, both of which were suggested to enhance apoptosis. In contrast, Osr2-creKI; Rosa26R-Fgf8 molar germs displayed mildly suppressed Shh transcription, and the increased expression of Ectodin, Runx2 and Lef1. Although mildly smaller than WT controls prenatally, the Osr2-creKI; Rosa26R-Fgf8 molar germs produced a miniature tooth with impaired mineralization after a 6-week sub-renal culture. Intriguingly, the implanted Osr2-creKI; Rosa26R-Fgf8 molar germs exhibited delayed odontoblast differentiation and accelerated ameloblast maturation. Collectively, the ectopically activated Fgf8 in dental mesenchyme caused incisor agenesis by triggering incisor regression and postnatal molar microdontia. Our findings reported tooth agenesis resulting from the regression from the early bell stage and implicated a correlation between tooth agenesis and microdontia.


Assuntos
Fator 8 de Crescimento de Fibroblasto , Incisivo , Mesoderma , Dente Molar , Animais , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Camundongos , Incisivo/anormalidades , Incisivo/metabolismo , Mesoderma/metabolismo , Mesoderma/patologia , Dente Molar/anormalidades , Dente Molar/metabolismo , Anodontia/genética , Anodontia/metabolismo , Anodontia/patologia , Apoptose , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento , Odontogênese/genética , Camundongos Transgênicos
14.
Int J Biol Macromol ; 276(Pt 1): 133606, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972658

RESUMO

The Rab GTPase constitutes the largest family of small GTPases that regulate intracellular trafficking. Different eukaryotes possess varying numbers of Rab paralogs. However, limited knowledge exists regarding the evolutionary pattern of Rab family in most major eukaryotic supergroups. This study cloned 24 Rab genes from transcriptome data of Procambarus clarkii haemocytes. The multiple sequence alignment and phylogenetic tree analysis revealed a relatively high degree of conservation for PcRab. Furthermore, PcRab exhibited similarities in motif composition with all members showing presence of G, PM, RabF, and RabSF motifs. The tertiary structure indicated that PcRab proteins mainly consisted of α-helices and ß-strands, and most PcRab proteins shared similar tertiary structures, and it was indicated that they have similar protein characteristics. Protein-protein interaction prediction identified a total of 20 interacting proteins involved in vesicle trafficking, phagocytosis, and signal transduction with 193 interactions. Expression analysis showed wide expression patterns for PcRab in P. clarkii organs. Upon infection by white spot syndrome virus and Aeromonas veronii, significant induction was observed for PcRab gene expression levels, indicating their involvement in pathogen response mechanisms. The present study represents the pioneering effort in comprehensively identifying and cloning the Rab family genes in crustacean, followed by a systematic investigation into their evolutionary patterns and immune response upon pathogen infection. The results provided valuable insights for further investigation into the molecular mechanism underlying the response of P. clarkii to pathogen infection.

16.
PLoS One ; 19(7): e0298102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954731

RESUMO

Brain tumors pose a significant threat to health, and their early detection and classification are crucial. Currently, the diagnosis heavily relies on pathologists conducting time-consuming morphological examinations of brain images, leading to subjective outcomes and potential misdiagnoses. In response to these challenges, this study proposes an improved Vision Transformer-based algorithm for human brain tumor classification. To overcome the limitations of small existing datasets, Homomorphic Filtering, Channels Contrast Limited Adaptive Histogram Equalization, and Unsharp Masking techniques are applied to enrich dataset images, enhancing information and improving model generalization. Addressing the limitation of the Vision Transformer's self-attention structure in capturing input token sequences, a novel relative position encoding method is employed to enhance the overall predictive capabilities of the model. Furthermore, the introduction of residual structures in the Multi-Layer Perceptron tackles convergence degradation during training, leading to faster convergence and enhanced algorithm accuracy. Finally, this study comprehensively analyzes the network model's performance on validation sets in terms of accuracy, precision, and recall. Experimental results demonstrate that the proposed model achieves a classification accuracy of 91.36% on an augmented open-source brain tumor dataset, surpassing the original VIT-B/16 accuracy by 5.54%. This validates the effectiveness of the proposed approach in brain tumor classification, offering potential reference for clinical diagnoses by medical practitioners.


Assuntos
Algoritmos , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico por imagem , Redes Neurais de Computação
17.
Nat Struct Mol Biol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890550

RESUMO

Molecular chaperone heat shock protein 90 (Hsp90) is a ubiquitous regulator that fine-tunes and remodels diverse client proteins, exerting profound effects on normal biology and diseases. Unraveling the mechanistic details of Hsp90's function requires atomic-level insights into its client interactions throughout the adenosine triphosphate-coupled functional cycle. However, the structural details of the initial encounter complex in the chaperone cycle, wherein Hsp90 adopts an open conformation while engaging with the client, remain elusive. Here, using nuclear magnetic resonance spectroscopy, we determined the solution structure of Hsp90 in its open state, bound to a disordered client. Our findings reveal that Hsp90 uses two distinct binding sites, collaborating synergistically to capture discrete hydrophobic segments within client proteins. This bipartite interaction generates a versatile complex that facilitates rapid conformational sampling. Moreover, our investigations spanning various clients and Hsp90 orthologs demonstrate a pervasive mechanism used by Hsp90 orthologs to accommodate the vast array of client proteins. Collectively, our work contributes to establish a unified conceptual and mechanistic framework, elucidating the intricate interplay between Hsp90 and its clients.

18.
Foods ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38890857

RESUMO

As a prominent topic in food computing, cross-modal recipe retrieval has garnered substantial attention. However, the semantic alignment across food images and recipes cannot be further enhanced due to the lack of intra-modal alignment in existing solutions. Additionally, a critical issue named food image ambiguity is overlooked, which disrupts the convergence of models. To these ends, we propose a novel Multi-Modal Alignment Method for Cross-Modal Recipe Retrieval (MMACMR). To consider inter-modal and intra-modal alignment together, this method measures the ambiguous food image similarity under the guidance of their corresponding recipes. Additionally, we enhance recipe semantic representation learning by involving a cross-attention module between ingredients and instructions, which is effective in supporting food image similarity measurement. We conduct experiments on the challenging public dataset Recipe1M; as a result, our method outperforms several state-of-the-art methods in commonly used evaluation criteria.

19.
Foods ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38890932

RESUMO

To thoroughly understand the profile of phenolic phytochemicals in kidney bean seeds cultivated in a cold region, the extractions, contents, antioxidant activities, compositions of free and bound phenols in the seed coat and cotyledon, and also relevant color attributes, were investigated. The results indicated that ultrasound-assisted extraction was an efficient method for free phenols. The bound phenols in seed coat and cotyledon were released more efficiently by alkali-acid and acid-alkali sequential hydrolysis, respectively. Under the optimized extractions, total phenols (TPC), flavonoids (TFC), and anthocyanins (TAC) ranged in 7.81-32.89 mg GAE/g dw, 3.23-15.65 mg RE/g dw, and 0-0.21 mg CE/g dw in the whole seeds of the five common kidney beans. There was a big difference in phenolic distribution between red and white seeds. From whole seed, the phenols in the four red cultivars mainly existed in free state (78.84%) and seed coat (71.56%), while the phenols in the white 'Sark' divided equally between free (51.18%) and bound (48.82%) states and consisted chiefly in cotyledon (81.58%). The correlation analyses showed that the antioxidant activities were significantly and positively correlated with TPC and TFC. The phenolic attributes were closely associated with the color of the seed coat. Red seeds had higher total contents of phenols than white seeds. TAC had a positively significant correlation with redness. Brightness and yellowness showed a negatively significant correlation with TPC, TFC, and antioxidant capacities, which were necessarily linked with redness degree and spot in red seeds. The spotted red 'Yikeshu' with the most outstanding performance on phenolic attributes was selected to analyze phenolic compounds with UHPLC-QE-MS. Among the 85 identified phenolics, 2 phenolic acids and 10 flavonoids were dominant. The characteristic phenolics in free and bound states were screened in both seed coat and cotyledon, respectively. The available information on the phenolic profile may expand the utilization of kidney beans as a nutritional ingredient in the food industry.

20.
Artif Intell Med ; 154: 102919, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38941908

RESUMO

Pancreatic cancer does not show specific symptoms, which makes the diagnosis of early stages difficult with established image-based screening methods and therefore has the worst prognosis among all cancers. Although endoscopic ultrasonography (EUS) has a key role in diagnostic algorithms for pancreatic diseases, B-mode imaging of the pancreas can be affected by confounders such as chronic pancreatitis, which can make both pancreatic lesion segmentation and classification laborious and highly specialized. To address these challenges, this work proposes a semi-supervised multi-task network (SSM-Net) to leverage unlabeled and labeled EUS images for joint pancreatic lesion classification and segmentation. Specifically, we first devise a saliency-aware representation learning module (SRLM) on a large number of unlabeled images to train a feature extraction encoder network for labeled images by computing a contrastive loss with a semantic saliency map, which is obtained by our spectral residual module (SRM). Moreover, for labeled EUS images, we devise channel attention blocks (CABs) to refine the features extracted from the pre-trained encoder on unlabeled images for segmenting lesions, and then devise a merged global attention module (MGAM) and a feature similarity loss (FSL) for obtaining a lesion classification result. We collect a large-scale EUS-based pancreas image dataset (LS-EUSPI) consisting of 9,555 pathologically proven labeled EUS images (499 patients from four categories) and 15,500 unlabeled EUS images. Experimental results on the LS-EUSPI dataset and a public thyroid gland lesion dataset show that our SSM-Net clearly outperforms state-of-the-art methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA