Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.336
Filtrar
1.
Front Comput Neurosci ; 18: 1327986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784679

RESUMO

Objective: Nav1.8 expression is restricted to sensory neurons; it was hypothesized that aberrant expression and function of this channel at the site of injury contributed to pathological pain. However, the specific contributions of Nav1.8 to neuropathic pain are not as clear as its role in inflammatory pain. The aim of this study is to understand how Nav1.8 present in peripheral sensory neurons regulate neuronal excitability and induce various electrophysiological features on neuropathic pain. Methods: To study the effect of changes in sodium channel Nav1.8 kinetics, Hodgkin-Huxley type conductance-based models of spiking neurons were constructed using the NEURON v8.2 simulation software. We constructed a single-compartment model of neuronal soma that contained Nav1.8 channels with the ionic mechanisms adapted from some existing small DRG neuron models. We then validated and compared the model with our experimental data from in vivo recordings on soma of small dorsal root ganglion (DRG) sensory neurons in animal models of neuropathic pain (NEP). Results: We show that Nav1.8 is an important parameter for the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability. The typical increased excitability seen is dominated by a left shift in the steady state of activation of this channel and is further modulated by this channel's maximum conductance and steady state of inactivation. Therefore, modified action potential shape, decreased threshold, and increased repetitive firing of sensory neurons in our neuropathic animal models may be orchestrated by these modulations on Nav1.8. Conclusion: Computational modeling is a novel strategy to understand the generation of chronic pain. In this study, we highlight that changes to the channel functions of Nav1.8 within the small DRG neuron may contribute to neuropathic pain.

2.
Foot Ankle Surg ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38789379

RESUMO

BACKGROUND: This study aimed to assess the radiological and clinical outcomes of treatment using the ankle dislocation method for posterior malleolar malunion. METHOD: Thirty-one patients with posterior malleolar malunion who underwent treatment using the ankle dislocation method from May 2015 to October 2021 were retrospectively analyzed. Key outcome measures were radiographic parameters (articular step-off, tibiofibular clear space, fibular length, tibial lateral surface angle, and ankle osteoarthritis), clinical scores (American Orthopaedic Foot and Ankle Society ankle-hindfoot scale and Visual Analogue Scale), and patient satisfaction rate. RESULT: Preoperative computed tomography revealed that Bartoní cek types 3 and 4 accounted for 64.5 % (n = 20) of total cases. Most posterior malleolar malunions were accompanied by depressed intercalary fragments (61.2 % [n = 19]). At the final follow-up, radiographic parameters and clinical scores showed significant improvements postoperatively (P < 0.05), with a high patient satisfaction rate of 77.4 %. Subgroup analysis revealed that the posterior malleolar fracture morphology significantly affected postoperative pain, particularly in more complex fractures (P < 0.001). CONCLUSION: The ankle dislocation method effectively exposes the distal tibial articular surface and facilitates the anatomical restoration of joint congruity under direct vision. This approach substantially improves the clinical and imaging outcomes in patients with complex posterior malleolar malunion. LEVELS OF EVIDENCE: Level IV, retrospective case series.

3.
Proc Natl Acad Sci U S A ; 121(20): e2322625121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709915

RESUMO

Soft robots often draw inspiration from nature to navigate different environments. Although the inching motion and crawling motion of caterpillars have been widely studied in the design of soft robots, the steering motion with local bending control remains challenging. To address this challenge, we explore modular origami units which constitute building blocks for mimicking the segmented caterpillar body. Based on this concept, we report a modular soft Kresling origami crawling robot enabled by electrothermal actuation. A compact and lightweight Kresling structure is designed, fabricated, and characterized with integrated thermal bimorph actuators consisting of liquid crystal elastomer and polyimide layers. With the modular design and reprogrammable actuation, a multiunit caterpillar-inspired soft robot composed of both active units and passive units is developed for bidirectional locomotion and steering locomotion with precise curvature control. We demonstrate the modular design of the Kresling origami robot with an active robotic module picking up cargo and assembling with another robotic module to achieve a steering function. The concept of modular soft robots can provide insight into future soft robots that can grow, repair, and enhance functionality.

4.
Environ Int ; 187: 108680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723455

RESUMO

The global health crisis posed by increasing antimicrobial resistance (AMR) implicitly requires solutions based a One Health approach, yet multisectoral, multidisciplinary research on AMR is rare and huge knowledge gaps exist to guide integrated action. This is partly because a comprehensive survey of past research activity has never performed due to the massive scale and diversity of published information. Here we compiled 254,738 articles on AMR using Artificial Intelligence (AI; i.e., Natural Language Processing, NLP) methods to create a database and information retrieval system for knowledge extraction on research perfomed over the last 20 years. Global maps were created that describe regional, methodological, and sectoral AMR research activities that confirm limited intersectoral research has been performed, which is key to guiding science-informed policy solutions to AMR, especially in low-income countries (LICs). Further, we show greater harmonisation in research methods across sectors and regions is urgently needed. For example, differences in analytical methods used among sectors in AMR research, such as employing culture-based versus genomic methods, results in poor communication between sectors and partially explains why One Health-based solutions are not ensuing. Therefore, our analysis suggest that performing culture-based and genomic AMR analysis in tandem in all sectors is crucial for data integration and holistic One Health solutions. Finally, increased investment in capacity development in LICs should be prioritised as they are places where the AMR burden is often greatest. Our open-access database and AI methodology can be used to further develop, disseminate, and create new tools and practices for AMR knowledge and information sharing.


Assuntos
Inteligência Artificial , Saúde Global , Saúde Única , Humanos , Farmacorresistência Bacteriana , Resistência Microbiana a Medicamentos , Antibacterianos
5.
Environ Sci Technol ; 58(21): 9017-9030, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753980

RESUMO

A myriad of nonantibiotic compounds is released into the environment, some of which may contribute to the dissemination of antimicrobial resistance by stimulating conjugation. Here, we analyzed a collection of studies to (i) identify patterns of transfer stimulation across groups and concentrations of chemicals, (ii) evaluate the strength of evidence for the proposed mechanisms behind conjugal stimulation, and (iii) examine the plausibility of alternative mechanisms. We show that stimulatory nonantibiotic compounds act at concentrations from 1/1000 to 1/10 of the minimal inhibitory concentration for the donor strain but that stimulation is always modest (less than 8-fold). The main proposed mechanisms for stimulation via the reactive oxygen species/SOS cascade and/or an increase in cell membrane permeability are not unequivocally supported by the literature. However, we identify the reactive oxygen species/SOS cascade as the most likely mechanism. This remains to be confirmed by firm molecular evidence. Such evidence and more standardized and high-throughput conjugation assays are needed to create technologies and solutions to limit the stimulation of conjugal gene transfer and contribute to mitigating global antibiotic resistance.


Assuntos
Conjugação Genética , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Transferência Genética Horizontal
6.
Environ Pollut ; 355: 124197, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782163

RESUMO

The presence and accumulation of both, plastics and antibiotics in soils may lead to the colonization, selection, and propagation of soil bacteria with certain metabolic traits, e.g., antibiotic resistance, in the plastisphere. However, the impact of plastic-antibiotic tandem on the soil ecosystem functioning, particularly on microbial function and metabolism remains currently unexplored. Herein, we investigated the competence of soil bacteria to colonize plastics and degrade 13C-labeled sulfamethoxazole (SMX). Using single-cell imaging, isotope tracers, soil respiration and SMX mineralization bulk measurements we show that microbial colonization of polyethylene (PE) and polystyrene (PS) surfaces takes place within the first 30 days of incubation. Morphologically diverse microorganisms were colonizing both plastic types, with a slight preference for PE substrate. CARD-FISH bacterial cell counts on PE and PS surfaces formed under SMX amendment ranged from 5.36 × 103 to 2.06 × 104, and 2.06 × 103 to 3.43 × 103 hybridized cells mm-2, respectively. Nano-scale Secondary Ion Mass Spectrometry measurements show that 13C enrichment was highest at 130 days with values up to 1.29 atom%, similar to those of the 13CO2 pool (up to 1.26 atom%, or 22.55 ‰). Independent Mann-Whitney U test showed a significant difference between the control plastisphere samples incubated without SMX and those in 13C-SMX incubations (P < 0.001). Our results provide direct evidence demonstrating, at single-cell level, the capacity of bacterial colonizers of plastics to assimilate 13C-SMX from contaminated soils. These findings expand our knowledge on the role of soil-seeded plastisphere microbiota in the ecological functioning of soils impacted by anthropogenic stressors.

7.
J Vis Exp ; (207)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801268

RESUMO

Non-small cell lung cancer (NSCLC) is a highly lethal disease with a complex and heterogeneous tumor microenvironment. Currently, common animal models based on subcutaneous inoculation of cancer cell suspensions do not recapitulate the tumor microenvironment in NSCLC. Herein we describe a murine orthotopic lung cancer xenograft model that employs the intrapulmonary inoculation of three-dimensional multicellular spheroids (MCS). Specifically, fluorescent human NSCLC cells (A549-iRFP) were cultured in low-attachment 96-well microplates with collagen for 3 weeks to form MCS, which were then inoculated intercostally into the left lung of athymic nude mice to establish the orthotopic lung cancer model. Compared with the original A549 cell line, MCS of the A549-iRFP cell line responded similarly to anticancer drugs. The long-wavelength fluorescent signal of the A549-iRFP cells correlated strongly with common markers of cancer cell growth, including spheroid volume, cell viability, and cellular protein level, thus allowing dynamic monitoring of the cancer growth in vivo by fluorescent imaging. After inoculation into mice, the A549-iRFP MCS xenograft reliably progressed through phases closely resembling the clinical stages of NSCLC, including the expansion of the primary tumor, the emergence of neighboring secondary tumors, and the metastases of cancer cells to the contralateral right lung and remote organs. Moreover, the model responded to the benchmark antilung cancer drug, cisplatin with the anticipated toxicity and slower cancer progression. Therefore, this murine orthotopic xenograft model of NSCLC would serve as a platform to recapitulate the disease's progression and facilitate the development of potential anticancer drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos Nus , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Progressão da Doença , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Modelos Animais de Doenças , Células A549 , Transplante de Neoplasias
8.
Biomol Biomed ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38761408

RESUMO

A platinum-based concurrent chemoradiotherapy (CCRT) is the standard treatment for refractory cervical cancer (CC). However, the recurrence of disease and the occurrence of metastasis remain prevalent. We observed the long-term efficacy and safety of bevacizumab combined with neoadjuvant chemotherapy (NACT) and CCRT in refractory CC. A total of 62 patients with refractory CC were enrolled in this study from January 2016 to December 2019. The NACT regimen included bevacizumab (7.5 mg/kg), docetaxel (75 mg/m2), and cisplatin (75 mg/m2), administered tri-weekly for 2 cycles. The CCRT regimen included bevacizumab (7.5 mg/kg) and cisplatin (75 mg/m2), administered tri-weekly for 2 cycles. A dose of 45-50 Gy was prescribed for external beam radiotherapy (EBRT), while 30-35 Gy in 4-5 fractions was prescribed for brachytherapy (BT). Among the patients, 21 patients (33.9%) were at stages IIB-IIIB, 8 patients (12.9%) were at stage IIIC1, 19 patients (30.6%) were at stage IIIC2, and 14 patients (22.6%) were at stage IVB. Pelvic, para-aortic, supraclavicular, and inguinal lymph node metastases were discovered in 41 patients (66.1%). The median follow-up was 49.8 months (12.3-82.7 months). The median tumor volumes pre-treatment, after NACT, and before BT were 84.64 ± 53.15 cm3, 1.64 ± 13.15 cm3, and 0 ± 1.5 cm3, respectively. Complete clinical response (cCR) rates after NACT and EBRT were 35.5% and 66.1%, respectively. Four years after the diagnosis, the overall survival (OS) rate was 78.6%, the local region-free survival (LRFS) rate was 91.3%, the disease-free survival (DFS) rate was 70.6%, and the distant metastasis-free survival (DMFS) rate was 81.4%. A total of 29 patients (46.8%) experienced grade 3/4 hematological toxicity, 3 patients (4.8%) experienced grade 3 gastrointestinal toxicities, and none experienced grade 5 adverse events. Bevacizumab combined with NACT and CCRT significantly improved cCR and OS in refractory CC with acceptable toxicity.

9.
Arch Gerontol Geriatr ; 125: 105486, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38761527

RESUMO

BACKGROUND: Osteoporosis and sarcopenia are common age-related conditions characterized by the progressive loss of bone density and muscle mass, respectively. Their co-occurrence, often referred to as osteosarcopenia, presents significant challenges in elderly care due to increased fragility and functional impairment. Existing studies have identified shared pathological mechanisms between these conditions, including inflammation, hormonal imbalances, and metabolic dysregulation, but a comprehensive understanding of their molecular interplay remains incomplete. OBJECTIVE: This study aims to deepen our understanding of the molecular interactions between sarcopenia and osteoporosis through an integrated omics approach, revealing potential therapeutic targets and biomarkers. METHODS: Employing a combination of proteomics and transcriptomics analyses, this study analyzed bone and muscle tissue samples from patients diagnosed with osteoporosis and osteosarcopenia. Techniques included high-throughput sequencing and label-free proteomics, supported by advanced bioinformatics tools for data analysis and functional annotation of genes and proteins. RESULTS: The study found marked differences in gene and protein expressions between osteoporosis and osteosarcopenia tissues. Specifically, genes like PDIA5, TUBB1, and CYFIP2 in bone, along with MYH7 and NCAM1 in muscle, exhibited differential expression at both mRNA and protein levels. Pathway analyses revealed the significance of oxidative-reduction balance, cellular metabolism, and immune response in the progression of these conditions. Importantly, the study pinpointed osteoclast differentiation and NF-kappa B signaling pathways as critical in the molecular dynamics of osteosarcopenia, suggesting potential targets for therapy. CONCLUSIONS: This study utilized transcriptomics and proteomics to identify key genes and proteins impacting sarcopenia and osteoporosis, employing advanced network tools to delineate interaction networks and crucial signaling pathways. It highlighted genes like PDIA5 and TUBB1, consistently expressed in both analyses, involved in pathways such as osteoclast differentiation and cytokine interactions. These insights enhance understanding of the molecular interplay in bone and muscle degeneration with aging, suggesting directions for future research into therapeutic interventions and prevention strategies for age-related degenerative diseases.

10.
ACS Cent Sci ; 10(5): 1012-1021, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799657

RESUMO

Most viruses start their invasion by binding to glycoproteins' moieties on the cell surface (heparan sulfate proteoglycans [HSPG] or sialic acid [SA]). Antivirals mimicking these moieties multivalently are known as broad-spectrum multivalent entry inhibitors (MEI). Due to their reversible mechanism, efficacy is lost when concentrations fall below an inhibitory threshold. To overcome this limitation, we modify MEIs with hydrophobic arms rendering the inhibitory mechanism irreversible, i.e., preventing the efficacy loss upon dilution. However, all our HSPG-mimicking MEIs only showed reversible inhibition against HSPG-binding SARS-CoV-2. Here, we present a systematic investigation of a series of small molecules, all containing a core and multiple hydrophobic arms terminated with HSPG-mimicking moieties. We identify the ones that have irreversible inhibition against all viruses including SARS-CoV-2 and discuss their design principles. We show efficacy in vivo against SARS-CoV-2 in a Syrian hamster model through both intranasal instillation and aerosol inhalation in a therapeutic setting (12 h postinfection). We also show the utility of the presented design rules in producing SA-mimicking MEIs with irreversible inhibition against SA-binding influenza viruses.

11.
Nat Commun ; 15(1): 4085, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744837

RESUMO

Global riverine nitrous oxide (N2O) emissions have increased more than 4-fold in the last century. It has been estimated that the hyporheic zones in small streams alone may contribute approximately 85% of these N2O emissions. However, the mechanisms and pathways controlling hyporheic N2O production in stream ecosystems remain unknown. Here, we report that ammonia-derived pathways, rather than the nitrate-derived pathways, are the dominant hyporheic N2O sources (69.6 ± 2.1%) in agricultural streams around the world. The N2O fluxes are mainly in positive correlation with ammonia. The potential N2O metabolic pathways of metagenome-assembled genomes (MAGs) provides evidence that nitrifying bacteria contain greater abundances of N2O production-related genes than denitrifying bacteria. Taken together, this study highlights the importance of mitigating agriculturally derived ammonium in low-order agricultural streams in controlling N2O emissions. Global models of riverine ecosystems need to better represent ammonia-derived pathways for accurately estimating and predicting riverine N2O emissions.


Assuntos
Amônia , Compostos de Amônio , Bactérias , Ecossistema , Óxido Nitroso , Rios , Óxido Nitroso/metabolismo , Rios/microbiologia , Rios/química , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Amônia/metabolismo , Metagenoma , Agricultura , Nitratos/metabolismo , Desnitrificação , Nitrificação , Redes e Vias Metabólicas/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-38772315

RESUMO

Owing to population growth and environmental pollution, freshwater aquaculture has been rapidly shrinking in recent years. Aquaculture in saline-alkaline waters is a crucial strategy to meet the increasing demand for aquatic products. The Chinese mitten crab is an important economic food in China, but the molecular mechanism by which it tolerates carbonate alkalinity (CA) in water remains unclear. Here, we found that enzyme activities of the tricarboxylic acid (TCA) cycle in the gills, such as citrate synthase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and malate dehydrogenase, were markedly reduced under CA stress induced by 40 mM NaHCO3. Secondly, the TCA cycle in the gills is inhibited under acute CA stress, according to proteomic and metabolomic analyses. The expressions of six enzymes, namely aconitate hydratase, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase, dihydrolipoyl dehydrogenase, succinate-CoA ligase, and malate dehydrogenase, were downregulated, resulting in the accumulation of phosphoenolpyruvic acid, citric acid, cis-aconitate, and α-ketoglutaric acid. Finally, we testified that if the TCA cycle is disturbed by malonate, the survival rate increases in CA water. To our knowledge, this is the first study to show that the TCA cycle in the gills is inhibited under CA stress. Overall, the results provide new insights into the molecular mechanism of tolerance to saline-alkaline water in crabs, which helped us expand the area for freshwater aquaculture and comprehensively understand the physiological characteristics of crab migration.

13.
ISA Trans ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38782638

RESUMO

Parallel-connected digital valve arrays are commonly utilized in the pilot stage of the proportional directional valve to enhance dynamic performance and reliability. However, when the digital valve array is driven by a digital signal, it is difficult to optimally assign the signal pulses to each valve. If the assignment is not well executed, it can significantly reduce the switching uniformity of the digital valves or lead to performance degradation of the system. In this paper, a model-based sliding mode control strategy based on the intelligent distribution of control law is proposed and successfully applied to a proportional valve driven by digital valve arrays. The intelligent distribution strategy encompasses a logic distribution algorithm and a circular sliding distribution algorithm that automatically assigns control laws to different valves based on the rolling of the PWM signal cycle. Experimental results confirm that the proposed strategy not only simultaneously reduces the total number of valve switches and enhances the switching uniformity among the valves, but also adapts to the variation in the number of valves. The proposed strategy is not limited to the application of digital valve arrays, it is also applicable in other fields of multi-actuators driven by digital signals, and can simultaneously improve the control accuracy, lifetime, and maintenance friendliness.

14.
Radiat Oncol ; 19(1): 60, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773605

RESUMO

BACKGROUND: The brachytherapy is an indispensable treatment for gynecological tumors, but the quality and efficiency of brachytherapy training for residents is still unclear. METHODS: An anonymous questionnaire was designed to collect information on gynecological brachytherapy (GBT) training for radiation oncology residents from 28 training bases in China. The questionnaire content was designed based on the principle of competency based medical education (CBME). The Likert scale was employed to evaluate self-reported competence and comprehension regarding GBT. A total of 132 senior residents were included in the final analysis. RESULTS: 53.79% (71/132) of senior residents had experience in performing image-guided GBT, whereas 76.52% (101/132) had observed the procedure during their standardized residency training. The proportion of senior residents who reported having the self-reported competence to independently complete the GBT was 78.03% for intracavity GBT, 75.00% for vaginal stump GBT, and 50.03% for interstitial GBT, respectively. The number of successful completion of Interstitial, intracavity and vaginal GBT was correlated with the self- confidence of trainees after standardized training. In particular, the independent completion of interstitial GBT for more than 20 cases was an independent factor for the self-reported competence of senior residents. During the training period, 50.76% and 56.82% of the residents had not participated in the specialized examinations and professional GBT courses. CONCLUSIONS: The study revealed that the self-confidence of residents to independently complete brachytherapy was relatively high, and the specialized curriculum setting and training process assessment for brachytherapy training still need to be strengthened in the future.


Assuntos
Braquiterapia , Competência Clínica , Neoplasias dos Genitais Femininos , Internato e Residência , Radioterapia (Especialidade) , Humanos , Braquiterapia/métodos , Feminino , China , Inquéritos e Questionários , Neoplasias dos Genitais Femininos/radioterapia , Radioterapia (Especialidade)/educação , Adulto , Masculino
15.
Curr Med Sci ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748371

RESUMO

OBJECTIVE: Sepsis is considered a major cause of health loss in children and had high mortality and morbidity. Currently, there is no reliable model for predicting the prognosis of pediatric patients with sepsis. This study aimed to analyze the clinical characteristics of sepsis in children and assess the risk factors associated with poor prognosis in pediatric sepsis patients to identify timely interventions and improve their outcomes. METHODS: This study analyzed the clinical indicators and laboratory results of septic patients hospitalized in the Pediatric Intensive Care Unit of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, from January 1, 2019, to December 31, 2021. Risk factors for sepsis were identified by logistic regression analyses. RESULTS: A total of 355 children with sepsis were enrolled, with 333 children (93.8%) in the good prognosis group, and 22 children (6.2%) in the poor prognosis group. Among them, there were 255 patients (71.8%) in the sepsis group, and 100 patients (28.2%) in the severe sepsis group. The length of hospital stay in the poor prognosis group was longer than that in the good prognosis group (P<0.01). The levels of interleukin 1ß (IL-1ß) in the poor prognosis group were higher than those in the good prognosis group (P>0.05), and the platelet (PLT), albumin (ALB), and hemoglobin (Hb) levels were lower in the poor prognosis group (P<0.01). The IL-8 levels in the severe sepsis group were higher than those in the sepsis group (P<0.05). Multiple logistic regression analysis suggested that lower Hb levels, ALB levels, peak PLT counts, and higher IL-1ß levels were independent risk factors for poor prognosis in children with sepsis. CONCLUSION: Lower Hb, ALB, and PLT counts and elevated IL-1ß are independent risk factors for poor prognosis in children with sepsis.

16.
Bioorg Chem ; 148: 107427, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38728911

RESUMO

Histone acetyltransferase CREB-binding protein (CBP) and its homologous protein p300 are key transcriptional activators that can activate oncogene transcription, which present promising targets for cancer therapy. Here, we designed and synthesized a series of p300/CBP targeted low molecular weight PROTACs by assembling the covalent ligand of RNF126 E3 ubiquitin ligase and the bromodomain ligand of the p300/CBP. The optimal molecule A8 could effectively degrade p300 and CBP through the ubiquitin-proteasome system in time- and concentration-dependent manners, with half-maximal degradation (DC50) concentrations of 208.35/454.35 nM and 82.24/79.45 nM for p300/CBP in MV4-11 and Molm13 cell lines after 72 h of treatment. And the degradation of p300/CBP by A8 is dependent on the ubiquitin-proteasome pathway and its simultaneous interactions with the target proteins and RNF126. A8 exhibits good antiproliferative activity in a series of p300/CBP-dependent cancer cells. It could transcriptionally inhibit the expression of c-Myc, induce cell cycle arrest in the G0/G1 phase and apoptosis in MV4-11 cells. This study thus provided us a new chemotype for the development of drug-like PROTACs targeting p300/CBP, which is expected to be applied in cancer therapy.

17.
J Asthma ; : 1-10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38687911

RESUMO

BACKGROUND: This meta-analysis aimed to evaluate the effectiveness and adverse effects of specific immunotherapy (SIT) in the management of respiratory allergens, including allergic asthma, rhinitis, and related disorders, based on a review of current literature up to November 8, 2022. METHODS: We conducted a search of databases, including PubMed, Embase, Cochrane, and Web of Science, to identify relevant randomized controlled trials (RCTs) assessing respiratory allergy-specific immunotherapy. We employed the Consolidated Standards of Reporting Trials (CONSORT) Statement to select RCTs that adhered to rigorous reporting standards. Specifically, we focused on double-blind placebo-controlled (DBPC) trials and open studies involving both adults and children, considering factors such as dosage, inclusion criteria, allergens, and primary outcome measurements. RESULTS: A total of 25 meta-analyses were included in this study. Among them, 14 evaluated sublingual-specific allergen immunotherapy (SLIT), 4 assessed subcutaneous allergen immunotherapy (SCIT), 4 explored both sublingual and subcutaneous immunotherapy, and 3 investigated intralymphatic immunotherapy. The outcomes of these meta-analyses indicated a reduction in medication scores in 20 cases and a decrease in symptom scores in 23 cases. Additionally, six studies reported on changes in IgE levels, seven studies focused on IgG4, four studies examined FEV1 (forced expiratory volume in 1 s), and eight studies reported on symptom and medication scores. Furthermore, 11 studies reported on differences in adverse reactions. CONCLUSION: The results of our meta-analysis suggest that specific immunotherapy, while associated with some adverse effects, effectively reduces the symptoms of asthma and rhinitis. Therefore, we recommend its use in the treatment of respiratory allergies.

18.
Environ Int ; 187: 108688, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685158

RESUMO

The phyllosphere, particularly the leaf surface of plants, harbors a diverse range of microbiomes that play a vital role in the functioning of terrestrial ecosystems. However, our understanding of microbial successions and their impact on functional genes during plant community development is limited. In this study, considering core and satellite microbial taxa, we characterized the phyllosphere microbiome and functional genes in various microhabitats (i.e., leaf litter, moss and plant leaves) across the succession of a plant community in a low-altitude glacier foreland. Our findings indicate that phyllosphere microbiomes and associated ecosystem stability increase during the succession of the plant community. The abundance of core taxa increased with plant community succession and was primarily governed by deterministic processes. In contrast, satellite taxa abundance decreased during plant community succession and was mainly governed by stochastic processes. The abundance of microbial functional genes (such as C, N, and P hydrolysis and fixation) in plant leaves generally increased during the plant community succession. However, in leaf litter and moss leaves, only a subset of functional genes (e.g., C fixation and degradation, and P mineralization) showed a tendency to increase with plant community succession. Ultimately, the community of both core and satellite taxa collaboratively influenced the characteristics of phyllosphere nutrient-cycling genes, leading to the diverse profiles and fluctuating abundance of various functional genes during plant community succession. These findings offer valuable insights into the phyllosphere microbiome and plant-microbe interactions during plant community development, advancing our understanding of the succession and functional significance of the phyllosphere microbial community.


Assuntos
Microbiota , Folhas de Planta , Folhas de Planta/microbiologia , Ecossistema , Plantas/microbiologia , Desenvolvimento Vegetal
19.
J Steroid Biochem Mol Biol ; 241: 106521, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631601

RESUMO

Increased cortisol levels in the preovulatory follicular fluid suggests a role of glucocorticoid in human ovulation. However, the mechanisms through which cortisol regulates the ovulatory process remain poorly understood. In this study, we examined the upregulation of f5 mRNA by glucocorticoid and its receptor (Gr) in the preovulatory follicles of zebrafish. Our findings demonstrate a significant increase in 11ß-hydroxysteroid dehydrogenase type 2 (hsd11b2), a cortisol response gene, in preovulatory follicles. Additionally, hydrocortisone exerts a dose- and time-dependent upregulation of f5 mRNA in these follicles. Importantly, this stimulatory effect is Gr-dependent, as it was completely abolished in gr-/- mutants. Furthermore, site-directed mutagenesis identified a glucocorticoid response element (GRE) in the promoter of zebrafish f5. Interestingly, successive incubation of hydrocortisone and the native ovulation-inducing steroid, progestin (17α,20ß-dihydroxy-4-pregnen-3-one, DHP), further enhanced f5 expression in preovulatory follicles. Overall, our results indicate that the dramatic increase of f5 expression in preovulatory follicles is partially attributable to the regulation of glucocorticoid and Gr.

20.
BMC Genomics ; 25(1): 346, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580907

RESUMO

BACKGROUND: The yak (Bos grunniens) is a large ruminant species that lives in high-altitude regions and exhibits excellent adaptation to the plateau environments. To further understand the genetic characteristics and adaptive mechanisms of yak, we have developed a multi-omics database of yak including genome, transcriptome, proteome, and DNA methylation data. DESCRIPTION: The Yak Genome Database ( http://yakgenomics.com/ ) integrates the research results of genome, transcriptome, proteome, and DNA methylation, and provides an integrated platform for researchers to share and exchange omics data. The database contains 26,518 genes, 62 transcriptomes, 144,309 proteome spectra, and 22,478 methylation sites of yak. The genome module provides access to yak genome sequences, gene annotations and variant information. The transcriptome module offers transcriptome data from various tissues of yak and cattle strains at different developmental stages. The proteome module presents protein profiles from diverse yak organs. Additionally, the DNA methylation module shows the DNA methylation information at each base of the whole genome. Functions of data downloading and browsing, functional gene exploration, and experimental practice were available for the database. CONCLUSION: This comprehensive database provides a valuable resource for further investigations on development, molecular mechanisms underlying high-altitude adaptation, and molecular breeding of yak.


Assuntos
Multiômica , Proteoma , Animais , Bovinos/genética , Proteoma/genética , Genoma , Transcriptoma , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...