Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.107
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-36735518

RESUMO

BACKGROUND: Schwannoma, a benign peripheral nerve sheath tumor, is perhaps only secondary to degenerative pathology as the most common lesion at neural foramen. The surgical dilemma here is either risking nerve injury because of inadequate exposure or the need for internal fixation because of facet joint sacrifice. OBJECTIVE: To evaluate the feasibility and safety of management of foraminal schwannomas by percutaneous full-endoscopic technique. METHODS: A single-center retrospective review was conducted on patients who underwent full-endoscopic resection of neural foraminal schwannomas. Tumors were grouped into either medial type or lateral type based on relevant location to the neural foramen, and respective surgical approaches were adopted. Data including preoperative neurological status, tumor size, surgery time, the extension of resection, and clinical outcomes were collected. The learning curve was plotted as surgical time/tumor size against case number. RESULTS: A total of 25 patients were treated between May 2015 and March 2022. Gross total resection was achieved in 24 patients, and near-total resection in 1 case, with 1 patient experienced transient voiding difficulty. No tumor recurrence or spinal instability was detected in the short-term follow-up (median follow-up 22 months, range 3 months-6 years). Surgical efficiency improved with the number of cases operated on and remained stable after the initial 10 cases. CONCLUSION: Percutaneous full-endoscopic technique is a safe and minimally invasive technique for the resection of foraminal schwannomas.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36732297

RESUMO

Understanding evolution of antibiotic resistance is vital for containing its global spread. Yet our ability to in situ track highly heterogenous and dynamic evolution is very limited. Here, we present a new single-cell approach integrating D2O-labeled Raman spectroscopy, advanced multivariate analysis, and genotypic profiling to in situ track physiological evolution trajectory toward resistance. Physiological diversification of individual cells from isogenic population with cyclic ampicillin treatment is captured. Advanced multivariate analysis of spectral changes classifies all individual cells into four subsets of sensitive, intrinsic tolerant, evolved tolerant and resistant. Remarkably, their dynamic shifts with evolution are depicted and spectral markers of each state are identified. Genotypic analysis validates the phenotypic shift and provides insights into the underlying genetic basis. The new platform advances rapid phenotyping resistance evolution and guides evolution control.

3.
Zhongguo Zhong Yao Za Zhi ; 48(1): 22-29, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725254

RESUMO

Owing to the advancement in pharmaceutical technology, traditional Chinese medicine industry has seen rapid development. Preferring conventional manufacturing mode, pharmaceutical enterprises of traditional Chinese medicine have no effective process detection tools and process control methods. As a result, the quality of the final products mainly depends on testing and the quality is inconsistent in the same batch. Process analytical technology(PAT) for traditional Chinese medicine manufacturing, as one of the key advanced manufacturing techniques, can break through the bottleneck in quality control of medicine manufacturing, thus improving the production efficiency and product quality and reducing the material and energy consumption. It is applicable to the process control and real-time release of advanced manufacturing modes such as intelligent manufacturing and continuous manufacturing. This paper summarized the general idea of PAT for traditional Chinese medicine manufacturing. Through the analysis of the characteristics and status quo of the technology, we summed up the methodology for the continuous application and improvement of PAT during the whole life-cycle of traditional Chinese medicine. The five key procedures(process understanding, process detection, process modeling, process control, and continuous improvement) were summarized, and the application was reviewed. Finally, we proposed suggestions for the technical and regulatory challenges in implementing PAT in traditional Chinese medicine industry. This paper aims to provide a reference for development and application of PAT in advanced manufacturing, intelligent manufacturing, and continuous manufacturing of traditional Chinese medicine industry.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Tecnologia Farmacêutica , Indústria Farmacêutica , Controle de Qualidade
4.
mSystems ; : e0057622, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602317

RESUMO

Shopping malls offer various niches for microbial populations, potentially serving as sources and reservoirs for the spread of microorganisms of public health concern. However, knowledge about the microbiome and the distribution of human pathogens in malls is largely unknown. Here, we examine the microbial community dynamics and genotypes of potential pathogens from floor and escalator surfaces in shopping malls and adjacent road dusts and greenbelt soils. The distribution pattern of microbial communities is driven primarily by habitats and seasons. A significant enrichment of human-associated microbiota in the indoor environment indicates that human interactions with surfaces might be another strong driver for mall microbiomes. Neutral community models suggest that the microbial community assembly is strongly driven by stochastic processes. Distinct performances of microbial taxonomic signatures for environmental classifications indicate the consistent differences of microbial communities of different seasons/habitats and the strong anthropogenic effect on homogenizing microbial communities of shopping malls. Indoor environments harbored higher concentrations of human pathogens than outdoor samples, also carrying a high proportion of antimicrobial resistance-associated multidrug efflux genes and virulence genes. These findings enhanced the understanding of the microbiome in the built environment and the interactions between humans and the built environment, providing a basis for tracking biothreats and communicable diseases and developing sophisticated early warning systems. IMPORTANCE Shopping malls are distinct microbial environments which can facilitate a constant transmission of microorganisms of public health concern between humans and the built environment or between human and human. Despite extensive investigation of the natural environmental microbiome, no comprehensive profile of microbial ecology has been reported in malls. Characterizing microbial distribution, potential pathogens, and antimicrobial resistance will enhance our understanding of how these microbial communities are formed, maintained, and transferred and help establish a baseline for biosurveillance of potential public health threats in malls.

5.
Nanoscale ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661027

RESUMO

Screen printing is a promising route towards high throughput printed electronics. Currently, the preparation of nanomaterial based conductive inks involves complex formulations with often toxic surfactants in the ink's composition, making them unsuitable as an eco-friendly printing technology. This work reports the development of a silver nanowire (AgNW) ink with a relatively low conductive particle loading of 7 wt%. The AgNW ink involves simple formulation and comprises a biodegradable binder and a green solvent with no toxic surfactants in the ink formulation, making it an eco-friendly printing process. The formulated ink is suitable for printing on a diverse range of substrates such as polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polyimide (PI) tape, glass, and textiles. By tailoring the rheological behaviour of the ink and developing a one-step post-printing process, a minimum feature size of 50 µm and conductivity as high as 6.70 × 106 S m-1 was achieved. Use of a lower annealing temperature of 150 °C makes the process suitable for plastic substrates. A flexible textile heater and a wearable hydration sensor were fabricated using the reported AgNW ink to demonstrate its potential for wearable electronic applications.

6.
BMC Gastroenterol ; 23(1): 19, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658497

RESUMO

BACKGROUND: Organ failure (OF) and death are considered the most significant adverse outcomes in necrotizing pancreatitis (NP). However, there are few NP-related studies describing the clinical traits of OF and aggravated outcomes. PURPOSE: An improved insight into the details of OF and death will be helpful to the management of NP. Thus, in our research, we addressed the risk factors of OF and death in NP patients. METHODS: We performed a study of 432 NP patients from May 2017 to December 2021. All patients with NP were followed up for 36 months. The primary end-points were risk factors of OF and death in NP patients. The risk factors were evaluated by logistic regression analysis. RESULTS: NP patients with OF or death patients were generally older, had a higher APACHE II score, longer hospital stay, longer ICU stay, as well as a higher incidence of severe acute pancreatitis (SAP), shock and pancreatic necrosis. Independent risk factors related to OF included BMI, APACHE II score and SAP (P < 0.05). Age, shock and APACHE II score (P < 0.05) were the most significant factors correlated with the risk of death in NP patients. Notably, increased mortality was linked to the number of failed organs. CONCLUSIONS: NP is a potentially fatal disease with a long hospital or ICU stay. Our study indicated that the incidence of OF and death in NP patients was 69.9% and 10.2%, respectively. BMI, SAP, APACHE II score, age and shock are potential risk factors of OF and death in NP patients. Clinicians should focus on these factors for early diagnosis and appropriate therapy.


Assuntos
Pancreatite Necrosante Aguda , Humanos , Doença Aguda , APACHE , Prognóstico , Fatores de Risco , Estudos Retrospectivos
7.
Environ Int ; 172: 107761, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36682204

RESUMO

As zoonotic pathogens are threatening public health globally, the virulence factor genes (VFGs) they carry underlie latent risk in the environment. However, profiling VFGs in the environment is still in its infancy due to lack of efficient and reliable quantification tools. Here, we developed a novel high-throughput qPCR (HT-qPCR) chip, termed as VFG-Chip, to comprehensively quantify the abundances of targeted VFGs in the environment. A total of 96 VFGs from four bacterial pathogens including Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, and Salmonella enterica were targeted by 120 primer pairs, which were involved in encoding five types of virulence factors (VFs) like toxin, adherence, secretion system, immune evasion/invasion, and iron uptake. The specificity of VFG-Chip was both verified computationally and experimentally, with high identity of amplicon sequencing and melting curves analysis proving its robust capability. The VFG-Chip also displayed high sensitivity (by plasmid serial dilution test) and amplification efficiency averaging 97.7%. We successfully applied the VFG-Chip to profile the distribution of VFGs along a wastewater treatment system with 69 VFGs detected in total. Overall, the VFG-Chip provides a robust tool for comprehensively quantifying VFGs in the environment, and thus provides novel information in assessing the health risks of zoonotic pathogens in the environment.

8.
Nutrients ; 15(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678176

RESUMO

There has been no validated digital tool for measuring appetite with a visual analog scale (VAS) through a mobile app using participants' smart phones for data collection in virtual settings. To fill the gap, we developed a digital VAS and conducted a digital cross-over clinical trial by comparing appetite responses measured by this digital tool versus paper-based VAS in 102 participants in a free-living environment. Participants consumed either a 230 or 460 kcal breakfast in randomized order in two virtual sessions, and their appetite was measured over the next 4 h using both tools. The results revealed no significant difference in hunger, fullness, satiety, or desire to eat measured by digital and paper VAS. Paper VAS resulted in a higher prospective consumption score than digital VAS; the difference (1.1 out of 100 points) was statistically significant but not practically relevant. Bland and Altman analysis also indicated consistency in the results from the two methods. In conclusion, digital VAS on a smart phone is a validated tool for appetite measurement in the real world; it provides a new way for researchers to leverage participants' mobile devices for appetite data collection in digital trials.


Assuntos
Apetite , Aplicativos Móveis , Humanos , Apetite/fisiologia , Escala Visual Analógica , Estudos Prospectivos , Fome/fisiologia , Saciação/fisiologia , Estudos Cross-Over , Ingestão de Energia
10.
Nat Plants ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646829

RESUMO

Crops with broad-spectrum resistance loci are highly desirable in agricultural production because these loci often confer resistance to most races of a pathogen or multiple pathogen species. Here we discover a natural allele of proteasome maturation factor in rice, UMP1R2115, that confers broad-spectrum resistance to Magnaporthe oryzae, Rhizoctonia solani, Ustilaginoidea virens and Xanthomonas oryzae pv. oryzae. Mechanistically, this allele increases proteasome abundance and activity to promote the degradation of reactive oxygen species-scavenging enzymes including peroxidase and catalase upon pathogen infection, leading to elevation of H2O2 accumulation for defence. In contrast, inhibition of proteasome function or overexpression of peroxidase/catalase-encoding genes compromises UMP1R2115-mediated resistance. More importantly, introduction of UMP1R2115 into a disease-susceptible rice variety does not penalize grain yield while promoting disease resistance. Our work thus uncovers a broad-spectrum resistance pathway integrating de-repression of plant immunity and provides a valuable genetic resource for breeding high-yield rice with multi-disease resistance.

11.
Microbiol Spectr ; : e0437122, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625666

RESUMO

Wild rice has been demonstrated to possess enriched genetic diversity and multiple valuable traits involved in disease/pest resistance and abiotic stress tolerance, which provides a potential resource for sustainable agriculture. However, unlike the plant compartments such as rhizosphere, the structure and assembly of phyllosphere microbial communities of wild rice remain largely unexplored. Through amplicon sequencing, this study compared the phyllosphere bacterial and fungal communities of wild rice and its neighboring cultivated rice. The core phyllosphere microbial taxa of both wild and cultivated rice are dominated with Pantoea, Methylobacterium, Nigrospora, and Papiliotrema, which are potentially beneficial to rice growth and health. Compared to the cultivated rice, Methylobacterium, Sphingomonas, Phaeosphaeria, and Khuskia were significantly enriched in the wild rice phyllosphere. The potentially nitrogen-fixing Methylobacterium is the dominated wild-enriched microbe; Sphingomonas is the hub taxon of wild rice networks. In addition, the microbiota of wild rice was more governed by deterministic assembly with a more complicated and stable community network than the cultivated rice. Our study provides a list of the beneficial microbes in the wild rice phyllosphere and reveals the microbial divergence between wild rice and cultivated rice in the original habitats, which highlights the potential selective role of wild rice in recruiting specific microbiomes for enhancing crop performance and promoting sustainable food production. IMPORTANCE Plant microbiota are being considered a lever to increase the sustainability of food production under a changing climate. In particular, the microbiomes associated with ancestors of modern cultivars have the potential to support their domesticated cultivars. However, few efforts have been devoted to studying the biodiversity and functions of microbial communities in the native habitats of ancestors of modern crop species. This study provides a list of the beneficial microbes in the wild rice phyllosphere and explores the microbial interaction patterns and the functional profiles of wild rice. This information could be useful for the future utilization of the plant microbiome to enhance crop performance and sustainability, especially in the framework of sustainable agroecosystems.

12.
Environ Res ; 216(Pt 1): 114278, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115420

RESUMO

Bone waste could be utilized as a potential amendment for remediation of smelter-contaminated soils. Nevertheless, the influences of cow bone-derived biochar (CB) on soil microbial biomass and microbial community composition in multi-metal contaminated mining soils are still not clearly documented. Hence, the cow bone was used as feedstock material for biochar preparation and pyrolyzed at two temperatures such as 500 °C (CB500) and 800 °C (CB800), and added to a smelter soil at the dosage of 0 (unamended control), 2.5, 5, and 10% (w/w); then, the soil treatments were cultivated by maize. The CB effect on soil biochemical attributes and response of soil microbial biomass, bacterial communities, and diversity indices were examined after harvesting maize. Addition of CB enhanced total nutrient contents (i.e., total nitrogen up to 26% and total phosphorus P up to 27%) and the nutrients availability (i.e., NH4 up to 50%; NO3 up to 31%; Olsen P up to 48%; extractable K up to 18%; dissolved organic carbon up to 74%) in the treated soil, as compared to the control. The CB500 application revealed higher microbial biomass C (up to 66%), P (up to 41%), and bacterial gene abundance (up to 76%) than the control. However, comparatively a lower microbial biomass nitrogen and diversity indices were observed in the biochar (both with CB500 and CB800) treated soils than in the unamended soils. At the phylum level, the highest dose (10% of CB500 and CB800 resulted in contrasting effects on the Proteobacteria diversity. The CB50010 favored the Pseudomonas abundance (up to 793%), Saccharibacteria (583%), Parcubacteria (138%), Actinobacteria (65%), and Firmicutes (48%) microbial communities, while CB80010 favored the Saccharibacteria (386%), Proteobacteria (12%) and Acidobacteria (11%), as compared to the control. These results imply that CB500 and CB800 have a remarkable impact on microbial biomass and bacterial diversity in smelter contaminated soils. Particularly, CB500 was found to be suitable for enhancing microbial biomass, bacterial growth of specific phylum, and diversity, which can be useful for bioremediation of mining soils.


Assuntos
Microbiologia do Solo , Poluentes do Solo , Biomassa , Solo/química , Poluentes do Solo/análise , Nitrogênio/análise , Bactérias/genética
13.
Gen Comp Endocrinol ; 330: 114137, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191636

RESUMO

Development of a functional gonad includes migration of primordial germ cells (PGCs), differentiations of somatic and germ cells, formation of primary follicles or spermatogenic cysts with somatic gonadal cells, development and maturation of gametes, and subsequent releasing of mature germ cells. These processes require extensive cellular and tissue remodeling, as well as broad alterations of the surrounding extracellular matrix (ECM). Metalloproteases, including MMPs (matrix metalloproteases), ADAMs (a disintegrin and metalloproteinases), and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), are suggested to have critical roles in the remodeling of the ECM during gonad development. However, few research articles and reviews are available on the functions and mechanisms of metalloproteases in remodeling gonadal ECM, gonadal development, or gonadal differentiation. Moreover, most studies focused on the roles of transcription and growth factors in early gonad development and primary sex determination, leaving a significant knowledge gap on how differentially expressed metalloproteases exert effects on the ECM, cell migration, development, and survival of germ cells during the development and differentiation of ovaries or testes. We will review gonad development with focus on the evidence of metalloprotease involvements, and with an emphasis on zebrafish as a model for studying gonadal sex differentiation and metalloprotease functions.


Assuntos
Desintegrinas , Peixe-Zebra , Animais , Gônadas , Diferenciação Sexual , Células Germinativas , Metaloproteases
14.
ACS Appl Mater Interfaces ; 15(1): 1798-1807, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548931

RESUMO

Soft and stretchable strain sensors have been attracting significant attention. However, the trade-off between the sensitivity (gauge factor) and the sensing range has been a major challenge. In this work, we report a soft stretchable resistive strain sensor with an unusual combination of high sensitivity, large sensing range, and high robustness. The sensor is made of a silver nanowire network embedded below the surface of an elastomeric matrix (e.g., poly(dimethylsiloxane)). Periodic mechanical cuts are applied to the top surface of the sensor, changing the current flow from uniformly across the sensor to along the conducting path defined by the open cracks. Both experiment and finite element analysis are conducted to study the effect of the slit depth, slit length, and pitch between the slits. The stretchable strain sensor can be integrated into wearable systems for monitoring physiological functions and body motions associated with different levels of strain, such as blood pressure and lower back health. Finally, a soft three-dimensional (3D) touch sensor that tracks both normal and shear stresses is developed for human-machine interfaces and tactile sensing for robotics.

15.
Environ Int ; 171: 107723, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36584423

RESUMO

Protists are a trophically diverse and biogeochemically significant component of water environments and are widely reported as hosts of bacteria. However, the potential role of protists in wastewater treatment plants (WWTPs) as reservoirs for human pathogens does not appear to have received adequate attention. Here, a combination of fluorescence-activated cell sorting and Illumina sequencing was applied to characterize the dynamics of the internalized bacterial community of the enriched protists from the influents and effluents of five WWTPs. The results showed that Proteobacteria (mainly Betaproteobacteria) dominate the intracellular bacterial communities of protists in both influents and effluents of WWTPs, accounting for 72.6% of the total intracellular bacterial communities. The most frequently detected genus was Sulfuricurvum in the influent samples, Chryseobacterium and Pseudomonas were most prevalent in the effluent samples. Compared with the influents, a more diverse and abundant intracellular bacterial community was observed in the effluents. Moreover, the potential intracellular bacterial pathogens were 26 times higher in effluents than in influents, with Pseudomonas fluorescens and Pseudomonas putida significantly enriched in effluents. This work provides insights into the dynamics of bacterial communities and potential pathogens harbored by protists in the influents and effluents from WWTPs, contributing to the improved evaluation of biosafety in WWTPs.


Assuntos
Purificação da Água , Humanos , Bactérias/genética
16.
Environ Pollut ; 319: 120900, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36581242

RESUMO

Organic fertilization is a major contributor to the spread of antibiotic resistance genes (ARGs) in the agroecosystem, which substantially increases the risk of ARGs acquisition and their transmission into human food chains. Earthworms are among the most vital soil faunas involved in the link between belowground and aboveground, and silicon is beneficial for soil health and plant stress resistance. This study aims to explore the effect of different amendment strategies (earthworm and/or silicon) and the related influencing factors on the alleviation of ARGs using high-throughput qPCR. The results showed that the application of earthworms and silicon fertilizers reduced the absolute abundance of ARGs in the rhizosphere soils, either singly or in combination. According to the structural equation model and random forest analysis, mobile genetic elements are the major factors enhancing ARGs transfers and the treatment affects ARGs in direct or indirect ways. Our results highlight the role of "rhizosphere effect" in alleviating antibiotic resistance and suggest that silicon fertilizers, together with the earthworms, can be considered as a sustainable and natural solution to mitigate high-risk ARGs spread in the soil-plant systems. Our findings provide guidance in formulating strategies for halting the spread of ARGs in the agroecosystem.


Assuntos
Brassica , Oligoquetos , Animais , Humanos , Antibacterianos/farmacologia , Genes Bacterianos , Silício/farmacologia , Solo/química , Fertilizantes/análise , Esterco/análise , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo
17.
Water Res ; 229: 119466, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502654

RESUMO

The propagation of antibiotic resistance genes (ARGs) in freshwater reservoirs threatens ecosystem security and human health, and has attracted increasing attention. A series of recent research articles on ARGs provides a unique opportunity for data-driven discoveries in this emerging field. Here, we mined data from a total of 290 samples from 60 reservoirs worldwide with a data-driven framework (DD) developed to discover geographical distribution, influencing factors and pollution hotspots of ARGs in freshwater reservoirs. Most data came from Asia and Europe where nine classes of ARGs were most frequently detected in reservoirs with multi-drug resistance and sulfonamide resistance genes prevailing. Factors driving distribution of reservoir ARGs differed between reservoir waters and sediments, and interactions among these factors had linear or nonlinear enhancement effects on the explanatory power of ARG distribution. During the cold season, small-sized reservoir waters rich in organic carbon, mobile genetic elements (MGEs) and antibiotics had a higher pollution potential of ARGs; during the spring drought, sediments in large reservoirs located in densely populated areas were more conducive to dissemination of ARGs due to their richness in antibiotics and MGEs. Thus, distribution pattern of ARG pollution hotspots in reservoir waters and sediments varies greatly depending on the differences of internal and external factors. From the "One Health" perspective, this widespread contamination of freshwater reservoirs by ARGs we discovered through the DD framework should be a push to promote integrated research across regions and disciplines. Especially the human - food-chain - ecosystem interface needs an improved understanding of ARG contamination mechanisms and targeted monitoring and evaluation systems should be developed to maintain all ecosystem services in freshwater reservoirs as well as to safeguard human health.


Assuntos
Ecossistema , Genes Bacterianos , Humanos , Resistência Microbiana a Medicamentos/genética , Água Doce , Antibacterianos/farmacologia
18.
J Extracell Vesicles ; 11(12): e12292, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36463395

RESUMO

Exchange of mobile functional genes within microbiota benefits the microbial community. However, the status of the mobile gene pool in environment is still largely unclear, impeding the understanding on the process of gene transfer in natural microbial communities. The release of extracellular vesicles (EVs) by diverse organisms has been proposed to be a vital way in the complex networks of interactions between microbes and their habitats. In this study, we hypothesized that microbial EVs encapsulating functional DNA are widely distributed in the environmental matrix. The prevalence, source and DNA cargoes of EVs in three types of typical microbial habitats were studied. High abundance of EVs comparable to the bacterial concentration was found in human faeces, wastewater and soil. Metagenomic analysis showed the diverse and differential taxonomy of EVs-associated DNA compared to source microbiome. An array of efficient EVs producing species was identified. A wide variety of mobile genes including glycoside hydrolase family 25 were enriched. Antibiotic resistance genes co-localizing with mobile genetic elements were abundant in the EVs. This study provides novel insights into the prevalent EVs as a reservoir for the mobile functional genes in the natural environment.


Assuntos
Vesículas Extracelulares , Microbiota , Humanos , Microbiota/genética , Vesículas Extracelulares/genética , Metagenoma/genética , Metagenômica , Fezes
19.
Front Cardiovasc Med ; 9: 1017833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451921

RESUMO

Background: Percutaneous coronary intervention (PCI) has a well-established role in revascularization for coronary artery disease. We performed network meta-analysis to provide evidence on optimal intervention strategies for de novo lesions in small coronary arteries. Materials and methods: Enrolled studies were randomized clinical trials that compared different intervention strategies [balloon angioplasty (BA), biolimus-coated balloon (BCB), bare-metal stent (BMS), new-generation drug-eluting stent (New-DES), older generation sirolimus-eluting stent (Old-SES), paclitaxel-coated balloon (PCB), and paclitaxel-eluting stent (PES)] for de novo lesions in small coronary arteries. The primary outcome was major adverse cardiac events (MACE). Results: A total of 23 randomized clinical trials comparing seven intervention devices were analyzed. In terms of the primary outcome, New-DES was the intervention device with the best efficacy [surface under the cumulative ranking curve (SUCRA), 89.1%; mean rank, 1.7], and the Old-SES [risk ratio (RR), 1.09; 95% confidence interval (CI), 0.45-2.64] and PCB (RR, 1.40; 95% CI, 0.72-2.74) secondary to New-DES, but there was no statistically significant difference between these three intervention devices. All DES and PCB were superior to BMS and BA for MACE in both primary and sensitivity analysis. For secondary outcomes, there was no association between all-cause mortality and myocardial infarction (MI) with any intervention strategy, and additionally, the findings of target lesion revascularization (TLR) were similar to the primary outcomes. Conclusion: Paclitaxel-coated balloon yielded similar outcomes to New-DES for de novo lesions in small coronary arteries. Therefore, this network meta-analysis may provide potential support for PCB as a feasible, effective, and safe alternative intervention strategy for the revascularization of small coronary arteries. Systematic review registration: [https://www.crd.york.ac.uk/PROSPERO/#recordDetails], identifier [CRD42022338433].

20.
Toxicology ; : 153388, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36462643

RESUMO

Paraquat (PQ) is a bipyridine herbicide and oral exposure is the main way of PQ exposure with a very high mortality. At present, it is believed that large number of oxygen free radicals are generated and cause lipid peroxidation of tissue and organ cell membranes after PQ is absorbed. PQ exposure could cause multiple organ dysfunction, among which acute lung injury is the most common and most serious. However, its specific mechanism is still unclear. In this study, the C57BL/6J mouse (alveolar epithelial cell-specific knockout HIF-1α) model of acute lung injury (40mg/kg PQ) at several time pointes and a model of acute type II alveolar epithelial cell (A549, 800µM PQ) injury constructed. The oxidative stress (ROS, MDA) and inflammatory response (IL-1ß, IL-6, TNF-α) were significantly inhibited in the alveolar epithelial cell-specific knockout of HIF-1α mice and siRNA technology to inhibit HIF-1α in alveolar epithelial cells. Further proteomic analysis showed that the expression of Rac2 protein, which is closely related to oxidative stress, was significantly increased after PQ exposure. And the inhibition of Rac2 expression in vitro significantly alleviated PQ-induced oxidative stress and inflammatory response. The expression of Rac2 protein was regulated by HIF-1α. The above suggests that HIF-1α may promote oxidative stress and inflammatory response in alveolar epithelial cells by regulating the expression of Rac2, and then participate in the promotion of PQ exposure-induced acute lung injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...