Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.207
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 249, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561725

RESUMO

BACKGROUND: This study investigated the role of Galectin-3 in the degeneration of intervertebral disc cartilage. METHODS: The patients who underwent lumbar spine surgery due to degenerative disc disease were recruited and divided into Modic I, Modic II, and Modic III; groups. HE staining was used to detect the pathological changes in endplates. The changes of Galectin-3, MMP3, Aggrecan, CCL3, and Col II were detected by immunohistochemistry, RT-PCR, and Western blot. MTT and flow cytometry were used to detect cartilage endplate cell proliferation, cell cycle, and apoptosis. RESULTS: With the progression of degeneration (from Modic I to III), the chondrocytes and density of the cartilage endplate of the intervertebral disc decreased, and the collagen arrangement of the cartilage endplate of the intervertebral disc was broken and calcified. Meanwhile, the expressions of Aggrecan, Col II, Galectin-3, Aggrecan, and CCL3 gradually decreased. After treatment with Galectin-3 inhibitor GB1107, the proliferation of rat cartilage end plate cells was significantly reduced (P < 0.05). GB1107 (25 µmol/L) also significantly promoted the apoptosis of cartilage endplate cells (P < 0.05). Moreover, the percentage of cartilage endplate cells in the G1 phase was significantly higher, while that in the G2 and S phases was significantly lower (P < 0.05). Additionally, the mRNA and protein expression levels of MMP3, CCL3, and Aggrecan in rat cartilage end plate cells were lower than those in the control group. CONCLUSIONS: Galectin-3 decreases with the progression of the cartilage endplate degeneration of the intervertebral disc. Galectin-3 may affect intervertebral disc degeneration by regulating the degradation of the extracellular matrix.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Animais , Humanos , Ratos , Agrecanas/genética , Agrecanas/metabolismo , Cartilagem/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Metaloproteinase 3 da Matriz
2.
Acta Pharm Sin B ; 14(4): 1605-1623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572102

RESUMO

Immune-mediated liver injury (ILI) is a condition where an aberrant immune response due to various triggers causes the destruction of hepatocytes. Fibroblast growth factor 4 (FGF4) was recently identified as a hepatoprotective cytokine; however, its role in ILI remains unclear. In patients with autoimmune hepatitis (type of ILI) and mouse models of concanavalin A (ConA)- or S-100-induced ILI, we observed a biphasic pattern in hepatic FGF4 expression, characterized by an initial increase followed by a return to basal levels. Hepatic FGF4 deficiency activated the mitochondria-associated intrinsic apoptotic pathway, aggravating hepatocellular apoptosis. This led to intrahepatic immune hyper-reactivity, inflammation accentuation, and subsequent liver injury in both ILI models. Conversely, administration of recombinant FGF4 reduced hepatocellular apoptosis and rectified immune imbalance, thereby mitigating liver damage. The beneficial effects of FGF4 were mediated by hepatocellular FGF receptor 4, which activated the Ca2+/calmodulin-dependent protein kinasekinase 2 (CaMKKß) and its downstream phosphatase and tensin homologue-induced putative kinase 1 (PINK1)-dependent B-cell lymphoma 2-like protein 1-isoform L (Bcl-XL) signalling axis in the mitochondria. Hence, FGF4 serves as an early response factor and plays a protective role against ILI, suggesting a therapeutic potential of FGF4 and its analogue for treating clinical immune disorder-related liver injuries.

3.
Plant Mol Biol ; 114(3): 36, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598012

RESUMO

Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA-miRNA-mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA-miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.


Assuntos
Arabidopsis , MicroRNAs , RNA Longo não Codificante , 60414 , RNA Longo não Codificante/genética , Ácido Abscísico/farmacologia , Arabidopsis/genética , Manitol , MicroRNAs/genética , RNA Mensageiro , Triticum/genética , Ceras
4.
Bioorg Chem ; 147: 107333, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38599055

RESUMO

To promote the development and exploitation of novel antifungal agents, a series of thiazol-2-ylbenzamide derivatives (3A-3V) and thiazole-2-ylbenzimidoyl chloride derivatives (4A-4V) were designed and selective synthesis. The bioassay results showed that most of the target compounds exhibited excellent in vitro antifungal activities against five plant pathogenic fungi (Valsa mali, Sclerotinia scleotiorum, Botrytis cinerea, Rhizoctonia solani and Trichoderma viride). The antifungal effects of compounds 3B (EC50 = 0.72 mg/L) and 4B (EC50 = 0.65 mg/L) against S. scleotiorum were comparable to succinate dehydrogenase inhibitors (SDHIs) thifluzamide (EC50 = 1.08 mg/L) and boscalid (EC50 = 0.78 mg/L). Especially, compounds 3B (EC50 = 0.87 mg/L) and 4B (EC50 = 1.08 mg/L) showed higher activity against R. solani than boscalid (EC50 = 2.25 mg/L). In vivo experiments in rice leaves revealed that compounds 3B (86.8 %) and 4B (85.3 %) exhibited excellent protective activities against R. solani comparable to thifluzamide (88.5 %). Scanning electron microscopy (SEM) results exhibited that compounds 3B and 4B dramatically disrupted the typical structure and morphology of R. solani mycelium. Molecular docking demonstrated that compounds 3B and 4B had significant interactions with succinate dehydrogenase (SDH). Meanwhile, SDH inhibition assay results further proved their potential as SDHIs. In addition, acute oral toxicity tests on A. mellifera L. showed only low toxicity for compounds 3B and 4B to A. mellifera L. populations. These results suggested that these two series of compounds had merit for further investigation as potential low-risk agricultural SDHI fungicides.

5.
Sci Data ; 11(1): 342, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580686

RESUMO

Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.


Assuntos
Genoma de Planta , Cardo-Mariano , Melhoramento Vegetal , Plantas Medicinais/genética , Cardo-Mariano/genética , Cromossomos de Plantas
6.
J Agric Food Chem ; 72(14): 8140-8148, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563232

RESUMO

Rebaudioside (Reb) M is an important sweetener with high sweetness, but its low content in Stevia rebaudiana and low catalytic capacity of the glycosyltransferases in heterologous microorganisms limit its production. In order to improve the catalytic efficiency of the conversion of stevioside to Reb M by Saccharomyces cerevisiae, several key issues must be resolved including knocking out endogenous hydrolases, enhancing glycosylation, and extending the enzyme catalytic process. Herein, endogenous glycosyl hydrolase SCW2 was knocked out in S. cerevisiae. The glycosylation process was enhanced by screening glycosyltransferases, and UGT91D2 from S. rebaudiana was identified as the optimum glycosyltransferase. The UDP-glucose supply was enhanced by overexpressing UGP1, and co-expressing UGT91D2 and UGT76G1 achieved efficient conversion of stevioside to Reb M. In order to extend the catalytic process, the silencing information regulator 2 (SIR2) which can prolong the growth cycle of S. cerevisiae was introduced. Finally, combining these modifications produced 12.5 g/L Reb M and the yield reached 77.9% in a 5 L bioreactor with 10.0 g/L stevioside, the highest titer from steviol glycosides to Reb M reported to date. The engineered strain could facilitate the industrial production of Reb M, and the strategies provide references for the production of steviol glycosides.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Trissacarídeos , Saccharomyces cerevisiae/genética , Difosfato de Uridina , Hidrolases , Glucosídeos , Glicosiltransferases/genética , Glicosídeos , Folhas de Planta
7.
Cell Mol Life Sci ; 81(1): 164, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575795

RESUMO

Diabetic hyperglycemia induces dysfunctions of arterial smooth muscle, leading to diabetic vascular complications. The CaV1.2 calcium channel is one primary pathway for Ca2+ influx, which initiates vasoconstriction. However, the long-term regulation mechanism(s) for vascular CaV1.2 functions under hyperglycemic condition remains unknown. Here, Sprague-Dawley rats fed with high-fat diet in combination with low dose streptozotocin and Goto-Kakizaki (GK) rats were used as diabetic models. Isolated mesenteric arteries (MAs) and vascular smooth muscle cells (VSMCs) from rat models were used to assess K+-induced arterial constriction and CaV1.2 channel functions using vascular myograph and whole-cell patch clamp, respectively. K+-induced vasoconstriction is persistently enhanced in the MAs from diabetic rats, and CaV1.2 alternative spliced exon 9* is increased, while exon 33 is decreased in rat diabetic arteries. Furthermore, CaV1.2 channels exhibit hyperpolarized current-voltage and activation curve in VSMCs from diabetic rats, which facilitates the channel function. Unexpectedly, the application of glycated serum (GS), mimicking advanced glycation end-products (AGEs), but not glucose, downregulates the expression of the splicing factor Rbfox1 in VSMCs. Moreover, GS application or Rbfox1 knockdown dynamically regulates alternative exons 9* and 33, leading to facilitated functions of CaV1.2 channels in VSMCs and MAs. Notably, GS increases K+-induced intracellular calcium concentration of VSMCs and the vasoconstriction of MAs. These results reveal that AGEs, not glucose, long-termly regulates CaV1.2 alternative splicing events by decreasing Rbfox1 expression, thereby enhancing channel functions and increasing vasoconstriction under diabetic hyperglycemia. This study identifies the specific molecular mechanism for enhanced vasoconstriction under hyperglycemia, providing a potential target for managing diabetic vascular complications.


Assuntos
Diabetes Mellitus Experimental , Angiopatias Diabéticas , Hiperglicemia , Animais , Ratos , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Constrição , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/metabolismo , Glucose/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos Sprague-Dawley
8.
Stem Cell Res Ther ; 15(1): 102, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589967

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a major cause of infertility. In this study, we aimed to investigate the effects of the combination of bone marrow mesenchymal stem cells (BMSCs) and moxibustion (BMSCs-MOX) on POI and evaluate the underlying mechanisms. METHODS: A POI rat model was established by injecting different doses of cyclophosphamide (Cy). The modeling of POI and the effects of the treatments were assessed by evaluating estrous cycle, serum hormone levels, ovarian weight, ovarian index, and ovarian histopathological analysis. The effects of moxibustion on BMSCs migration were evaluated by tracking DiR-labeled BMSCs and analyzing the expression of chemokines stromal cell-derived factor 1 (Sdf1) and chemokine receptor type 4 (Cxcr4). Mitochondrial function and mitophagy were assessed by measuring the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP, and the mitophagy markers (Drp1, Pink1, and Parkin). Furthermore, the mitophagy inhibitor Mdivi-1 and the mitophagy activator CCCP were used to confirm the role of mitophagy in Cy-induced ovarian injury and the underlying mechanism of combination therapy. RESULTS: A suitable rat model of POI was established using Cy injection. Compared to moxibustion or BMSCs transplantation alone, BMSCs-MOX showed improved outcomes, such as reduced estrous cycle disorders, improved ovarian weight and index, normalized serum hormone levels, increased ovarian reserve, and reduced follicle atresia. Moxibustion enhanced Sdf1 and Cxcr4 expression, promoting BMSCs migration. BMSCs-MOX reduced ROS levels; upregulated MMP and ATP levels in ovarian granulosa cells (GCs); and downregulated Drp1, Pink1, and Parkin expression in ovarian tissues. Mdivi-1 significantly mitigated mitochondrial dysfunction in ovarian GCs and improved ovarian function. CCCP inhibited the ability of BMSCs-MOX treatment to regulate mitophagy and ameliorate Cy-induced ovarian injury. CONCLUSIONS: Moxibustion enhanced the migration and homing of BMSCs following transplantation and improves their ability to repair ovarian damage. The combination of BMSCs and moxibustion effectively reduced the excessive activation of mitophagy, which helped prevent mitochondrial damage, ultimately improving ovarian function. These findings provide a novel approach for the treatment of pathological ovarian aging and offer new insights into enhancing the efficacy of stem cell therapy for POI patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Moxibustão , Insuficiência Ovariana Primária , Humanos , Feminino , Ratos , Animais , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/efeitos adversos , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/patologia , Ciclofosfamida/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Hormônios/efeitos adversos , Hormônios/metabolismo , Trifosfato de Adenosina/metabolismo
9.
Biosens Bioelectron ; 257: 116296, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38643550

RESUMO

Breathing is an important physiological activity of human body, which not only reflects the state of human movement, but also is one of the important health indicators. Breathing can change the concentration of water molecules, so monitoring humidity has gradually become a hot topic in modern research. In this study, a humidity sensing composite film with high sensitivity and short response time was made by using the mixture of graphene oxide (GO) and bacterial cellulose (BC) with simple dry film-forming method. L-ascorbic acid was used as reducing agent to reduce GO and improve the conductivity of GO/BC composite film (BG). The influence of different BC contents and the different reduction degree on the resistance change rate of composite film was investigated in details. The maximum resistance change rate of partially reduced BG humidity sensitive composite film reached up to 94%, and the response and recovery time were 13 s and 47 s respectively. Furthermore, the sensor shows obvious resistance change in noncontact sensing test and different breathing states. This kind of humidity sensitive film with fast response and high sensitivity has great potential in human health monitoring and noncontact sensing, and is of great significance in promoting health detection and intelligent life.

10.
J Int Med Res ; 52(4): 3000605241240579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603605

RESUMO

The mortality rate of gastric varices bleeding can reach 20% within 6 weeks. Isolated gastric varices (IGVs) refer to gastric varices without esophageal varices and typically arise as a common complication of left portal hypertension. Although IGVs commonly form in the setting of splenic vein occlusion, the combination of antiphospholipid syndrome and protein S deficiency leading to splenic vein occlusion is rare. We herein present a case of a 28-year-old woman with intermittent epigastric pain and melena. She was diagnosed with antiphospholipid syndrome based on the triad of pregnancy morbidity, unexplained venous occlusion, and positive lupus anticoagulant. Laparoscopic splenectomy and pericardial devascularization were performed for the treatment of IGVs. During the 6-month postoperative follow-up, repeated endoscopy and contrast-enhanced computed tomography revealed disappearance of the IGVs. This is the first description of splenic vein occlusion associated with both antiphospholipid syndrome and protein S deficiency. We also provide a review of the etiology, clinical manifestations, diagnosis, and treatment methods of IGVs.


Assuntos
Síndrome Antifosfolipídica , Varizes Esofágicas e Gástricas , Deficiência de Proteína S , Doenças Vasculares , Feminino , Humanos , Adulto , Varizes Esofágicas e Gástricas/complicações , Varizes Esofágicas e Gástricas/diagnóstico , Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/diagnóstico , Deficiência de Proteína S/complicações , Hemorragia Gastrointestinal/etiologia , Doenças Vasculares/complicações
11.
Physiol Plant ; 176(2): e14277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566271

RESUMO

In order to maintain the dynamic physiological balance, plants are compelled to adjust their energy metabolism and signal transduction to cope with the abiotic stresses caused by complex and changeable environments. The diterpenoid natural compound and secondary metabolites, sclareol, derived from Salvia sclarea, has gained significant attention owing to its economic value as a spice material and diverse physiological activities. Here, we focused on the roles and regulatory mechanisms of the sclareol diterpene synthase gene SsdTPS in the resistance of S. sclarea to abiotic stresses. Our results suggested that abiotic stresses could induce the response and upregulation of SsdTPS expression and isoprenoid pathway in S. sclarea. Ectopic expression of SsdTPS conferred drought tolerance in transgenic Arabidopsis, compared with wild-type. Overexpression of SsdTPS enhanced the transcription of ABA signal transduction synthetic regulators and induced the positive feedback upregulating key regulatory genes in the MEP pathway, thereby promoting the increase of ABA content and improving drought tolerance in transgenic plants. In addition, SsdTPS-overexpressed transgenic Arabidopsis improved the responses of stomatal regulatory genes and ROS scavenging enzyme activities and gene expression to drought stress. This promoted the stomatal closure and ROS reduction, thus enhancing water retention capacity and reducing oxidative stress damage. These findings unveil the potentially positive role of SsdTPS in orchestrating multiple regulatory mechanisms and maintaining homeostasis for improved abiotic stress resistance in S. sclarea, providing a novel insight into strategies for promoting drought resistance and cultivating highly tolerant plants.


Assuntos
Arabidopsis , Diterpenos , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Secas , Retroalimentação , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Terpenos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacologia
12.
Biodegradation ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573500

RESUMO

Acetaldehyde (AL), a primary carcinogen, not only pollutes the environment, but also endangers human health after drinking alcohol. Here a promising bacterial strain was successfully isolated from a white wine cellar pool in the province of Shandong, China, and identified as Bacillus velezensis-YW01 with 16 S rDNA sequence. Using AL as sole carbon source, initial AL of 1 g/L could be completely biodegraded by YW01 within 84 h and the cell-free extracts of YW01 has also been detected to biodegrade the AL, which indicate that YW01 is a high-potential strain for the biodegradation of AL. The optimal culture conditions and the biodegradation of AL of YW01 are at pH 7.0 and 38 °C, respectively. To further analyze the biodegradation mechanism of AL, the whole genome of YW01 was sequenced. Genes ORF1040, ORF1814 and ORF0127 were revealed in KEGG, which encode for acetaldehyde dehydrogenase. Furthermore, ORF0881 and ORF052 encode for ethanol dehydrogenase. This work provides valuable information for exploring metabolic pathway of converting ethanol to AL and subsequently converting AL to carboxylic acid compounds, which opened up potential pathways for the development of microbial catalyst against AL.

13.
Pestic Biochem Physiol ; 200: 105846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582578

RESUMO

In recent years, the fungal disease 'pepper stem rot', contracted from the soil-borne pathogen sclerotium rolfsii, has been increasing year by year, causing significant losses to the pepper (Capsicum annuum L.) industry. To investigate the infection mechanism of stem rot, the fungus S. rolfsii was used to infect the roots of pepper plants, and was found to affect root morphology and reduce root activity, which subsequently inhibited root growth and development. With fungal infestation, its secretions (oxalic acid, PG and PMG enzyme) were able to break normal tissues in the stem base and induced the burst of the active oxygen, which leads to injury aggravation. Morphological observations of the site of damage at the base of the stem using SEM revealed that the vascular bundles and stomata were completely blocked by hyphae, resulting in a blockade of material exchange in the plant. It was subsequently found that most of the stomata in the leaves were closed, which caused the leaves to lose their ability to photosynthesize, then turned yellow, wilt, shed, and the plant died. Commercialized fungicide thifluzamide with excellent in vitro (EC50 = 0.1 µg/mL) and in vivo curative (EC50 = 29.2 µg/mL) antifungal activity was selected to control the stem rot disease in peppers. The results demonstrated that it was able to suppress the secretion of associated pathogenic factors and reduce the outbursts of reactive oxygen species, thus reducing the damage caused by S. rolfsii at the base of the plant's stem and also enhancing the root activity of the infected plant, thereby promoting root growth. It could also inhibit fungal growth, unblock the vascular bundles and stomata, maintain a balance of material and energy exchange within the plant, and thus restore the damaged plant to its normal growth capacity. All the results will provide an adequate reference for the prevention and control of stem rot disease on peppers with thifluzamide.


Assuntos
Basidiomycota , Doenças das Plantas , Tiazóis , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Anilidas
14.
Biomed Environ Sci ; 37(2): 228-232, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582987

RESUMO

As a reducing salt, sodium sulfite could deprive oxygen in solution, which could mimic hypoxic stress in Caenorhabditis elegans. In this study, the wild-type Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves. We also analyzed the growth curves of mutant strains (for arcA/B, soxR/S, fnr, and oxyR) related to E. coli hypoxic pathways to reveal roles of the related genes during hypoxia. The ultrastructure of hypoxia-inhibited bacteria were also observed using transmission electron microscopy. Sodium sulfite could maintain hypoxic condition of bacterial culture for 8 h with concentrations over 40 mmol/L. Complete ultrastructure of the bacteria indicated sodium sulfite did inhibit bacterial growth and division. Among the hypoxia genes, fnr and arcB played key roles in sodium sulfite-induced hypoxia. This study showed that sodium sulfite could be used as a novel hypoxia revulsant for bacterial cultures.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Sulfitos , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Hipóxia , Regulação Bacteriana da Expressão Gênica
15.
Foods ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611312

RESUMO

This study investigates the impact of urea and ß-GP on the growth of Streptococcus thermophilus S-3, a bacterium commonly used in industrial fermentation processes. Through a series of growth experiments, transcriptome, metabolome, and omics-based analyses, the research demonstrates that both urea and ß-GP can enhance the biomass of S. thermophilus, with urea showing a more significant effect. The optimal urea concentration for growth was determined to be 3 g/L in M17 medium. The study also highlights the metabolic pathways influenced by urea and ß-GP, particularly the galactose metabolism pathway, which is crucial for cell growth when lactose is the substrate. The integration of omics data into the genome-scale metabolic model of S. thermophilus, iCH502, allowed for a more accurate prediction of metabolic fluxes and growth rates. The study concludes that urea can serve as a viable substitute for ß-GP in the cultivation of S. thermophilus, offering potential cost and efficiency benefits in industrial fermentation processes. The findings are supported by validation experiments with 11 additional strains of S. thermophilus, which showed increased biomass in UM17 medium.

16.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612686

RESUMO

Bis (3',5')-cyclic diguanylic acid (c-di-GMP) is a ubiquitous second messenger that controls several metabolic pathways in bacteria. In Streptomyces, c-di-GMP is associated with morphological differentiation, which is related to secondary metabolite production. In this study, we identified and characterized a diguanylate cyclase (DGC), CdgB, from Streptomyces diastatochromogenes 1628, which may be involved in c-di-GMP synthesis, through genetic and biochemical analyses. To further investigate the role of CdgB, the cdgB-deleted mutant strain Δ-cdgB and the cdgB-overexpressing mutant strain O-cdgB were constructed by genetic engineering. A phenotypic analysis revealed that the O-cdgB colonies exhibited reduced mycelium formation, whereas the Δ-cdgB colonies displayed wrinkled surfaces and shriveled mycelia. Notably, O-cdgB demonstrated a significant increase in the toyocamycin (TM) yield by 47.3%, from 253 to 374 mg/L, within 10 days. This increase was accompanied by a 6.7% elevation in the intracellular concentration of c-di-GMP and a higher transcriptional level of the toy cluster within four days. Conversely, Δ-cdgB showed a lower c-di-GMP concentration (reduced by 6.2%) in vivo and a reduced toyocamycin production (decreased by 28.9%, from 253 to 180 mg/L) after 10 days. In addition, S. diastatochromogenes 1628 exhibited a slightly higher inhibitory effect against Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani compared to Δ-cdgB, but a lower inhibition rate than that of O-cdgB. The results imply that CdgB provides a foundational function for metabolism and the activation of secondary metabolism in S. diastatochromogenes 1628.


Assuntos
Streptomyces , Toiocamicina , Sistemas do Segundo Mensageiro , Engenharia Genética , Streptomyces/genética
17.
Environ Sci Technol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653213

RESUMO

The interaction effects between the main components (proteins (P), carbohydrates (C), and lipids (L)) of protein-rich biomass during microwave-assisted pyrolysis were investigated in depth with an exploration of individual pyrolysis and copyrolysis (PC, PL, and CL) of model compounds. The average heating rate of P was higher than those of C and L, and the interactions in all copyrolysis groups reduced the max instant heating rate. The synergistic extent (S) of PC and PL for bio-oil yield was 16.78 and 18.24%, respectively, indicating that the interactions promoted the production of bio-oil. Besides, all of the copyrolysis groups exhibited a synergistic effect on biochar production (S = 19.43-28.24%), while inhibiting the gas generation, with S ranging from -20.17 to -6.09%. Regarding the gaseous products, apart from H2, P, C, and L primarily generated CO2, CO, and CH4, respectively. Regarding bio-oil composition, the interactions occurring within PC, PL, and CL exhibited a significantly synergistic effect (S = 47.81-412.96%) on the formation of N-heterocyclics/amides, amides/nitriles, and acids/esters, respectively. Finally, the favorable applicability of the proposed interaction effects was verified with microalgae. This study offers valuable insights for understanding the microwave-assisted pyrolysis of protein-rich biomass, laying the groundwork for further research and process optimization.

18.
Fish Shellfish Immunol ; : 109572, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636739

RESUMO

Streptococcosis outbreaks caused by Streptococcus agalactiae infection in tilapia aquaculture have been consistently reported and associated with high mortality and morbidity leading to significant economic losses. Existing vaccine candidates against Streptococcus spp. are designed for intraperitoneal injections that are not practical and labor-intensive which have prompted farmers to protect aquatic animals with antibiotics, thus encouraging the emergence of multidrug resistant bacteria. In this study, a live recombinant L. lactis vaccine expressing a 1403 bp surface immunogenic protein (SIP) and a 1100 bp truncated SIP (tSIP) gene was developed and evaluated against S. agalactiae infection in tilapia. Both SIP and tSIP sequences were cloned and transformed into L. lactis. The recombinant L. lactis vaccine was orally administered to juvenile tilapia for a month. Detection of SIP-specific serum IgM in vaccinated groups compared to control groups indicated that recombinant proteins expressed from L. lactis could elicit immunogenic reactions in tilapia. Fish immunized with the tSIP vaccine also showed the highest level of protection compared to other test groups, and the mortality rate was significantly reduced compared to both control groups. The relative percentage of survival (RPS) against S. agalactiae for both SIP and tSIP-vaccinated groups was 50% and 89%, respectively, at 14 days post-challenge. Significant up-regulation of IgM, IL-1ß, IL-10, TNF-α and IFN-γ were observed at day 34 between the vaccinated and control groups. These results indicated that the recombinant lactococcal tSIP vaccine can elicit both cell-mediated and humoral responses and is recommended as a potential oral vaccine against S. agalactiae infection. Future work will include further in vivo challenge assessments of this vaccine candidate fused with adjuvants to boost immunogenicity levels in tilapia.

19.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611768

RESUMO

In industrial manufacturing, pyrrhotite(Fe1-xS), once depressed, is commonly activated for flotation. However, the replacement of CuSO4 is necessary due to the need for exact control over the dosage during the activation of pyrrhotite, which can pose challenges in industrial settings. This research introduces the use of FeSO4 for the first time to efficiently activate pyrrhotite. The impact of two different activators on pyrrhotite was examined through microflotation experiments and density functional theory (DFT) calculations. Microflotation experiments confirmed that as the CuSO4 dosage increased from 0 to 8 × 10-4 mol/L, the recovery of pyrrhotite initially increased slightly from 71.27% to 87.65% but then sharply decreased to 16.47%. Conversely, when the FeSO4 dosage was increased from 0 to 8 × 10-4 mol/L, pyrrhotite's recovery rose from 71.27% to 82.37%. These results indicate a higher sensitivity of CuSO4 to dosage variations, suggesting that minor alterations in dosage can significantly impact its efficacy under certain experimental conditions. In contrast, FeSO4 might demonstrate reduced sensitivity to changes in dosage, leading to more consistent performance. Fe ions can chemically adsorb onto the surface of pyrrhotite (001), creating a stable chemical bond, thereby markedly activating pyrrhotite. The addition of butyl xanthate (BX), coupled with the action of Fe2+ on activated pyrrhotite, results in the formation of four Fe-S bonds on Fe2+. The proximity of their atomic distances contributes to the development of a stable double-chelate structure. The S 3p orbital on BX hybridizes with the Fe 3d orbital on pyrrhotite, but the hybrid effect of Fe2+ activation is stronger than that of nonactivation. In addition, the Fe-S bond formed by the addition of activated Fe2+ has a higher Mulliken population, more charge overlap, and stronger covalent bonds. Therefore, Fe2+ is an excellent, efficient, and stable pyrrhotite activator.

20.
Environ Pollut ; 349: 123939, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593938

RESUMO

Bisphenol S (BPS) is an emerging environmental endocrine disruptor capable of crossing the placental barrier, resulting in widespread exposure to pregnant women due to its extensive usage. However, the impact of perinatal maternal exposure to BPS on reproductive health in offspring and the underlying molecular mechanism remain underexplored. In this study, gestational ICR mice were provided with drinking water containing 3.33 mg/L BPS to mimic possible human exposure in some countries. Results demonstrated that BPS accelerated the breakdown of germ-cell cysts and the assembly of primordial follicles in neonates, leading to oocyte over-loss. Furthermore, the expression levels of folliculogenesis-related genes (Kit, Nobox, Gdf9, Sohlh2, Kitl, Bmp15, Lhx8, Figla, and Tgfb1) decreased, thus compromising oocyte quality and disrupting early folliculogenesis dynamics. BPS also disrupted other aspects of offspring reproduction, including advancing puberty onset, disrupting the estrus cycle, and impairing fertility. Further investigation found that BPS exposure inhibited the activities and expression levels of antioxidant-related enzymes in neonatal ovaries, leading to the substantial accumulation of MDA and ROS. The increased oxidative burden exacerbated the intracellular apoptotic signaling, manifested by increased expression levels of pro-apoptotic markers (Bax, Caspase 3, and Caspase 9) and decreased expression levels of anti-apoptotic marker (Bcl2). Concurrently, BPS inhibited autophagy by increasing p-mTOR/mTOR and decreasing p-ULK1/ULK1, subsequently down-regulating autophagy flux-related biomarkers (LC3b/LC3a and Beclin-1) and impeding the degradation of autophagy substrate p62. However, the imbalanced crosstalk between autophagy, apoptosis and oxidative stress homeostasis was restored after rapamycin treatment. Collectively, the findings demonstrated that BPS exposure induced reproductive disorders in offspring by perturbing the mTOR/autophagy axis, and such autophagic dysfunction exacerbated redox imbalance and promoted excessive apoptosis. These results provide novel mechanistic insights into the role of autophagy in mitigating BPS-induced intergenerational reproductive dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...