RESUMO
Nanocomplexes, which possess immense potential to function as nanovehicles, can link diverse ligand compounds. The objective of the present study was to design and characterize resveratrol (RSV)- and tocopherol (TOC)-loaded 11S quinoa seed protein nanocomplexes. Firstly, molecular docking was performed to describe the probable binding sites between protein and ligands, and binding energies of -5.6 and -6.2 kcal/mol were found for RSV and TOC, respectively. Isothermal titration calorimetry allowed us to obtain the thermodynamic parameters that described the molecular interactions between RSV or TOC with the protein, finding the complexation process to be exothermic and spontaneous. 11S globulin intrinsic fluorescence spectra showed quenching effects exerted by RSV and TOC, demonstrating protein-bioactive compound interactions. The application of Stern-Volmer, Scatchard, and Förster resonance energy transfer models confirmed static quenching and allowed us to obtain parameters that described the 11S-RSV and 11S-TOC complexation processes. RSV has a higher tendency to bind 11S globulin according to ITC and fluorescence analysis. Secondly, the protein aggregation induced by bioactive compound interactions was confirmed by dynamic light scattering and atomic force microscopy, with diameters <150 nm detected by both techniques. Finally, it was found that the antioxidant capacity of a single 11S globulin did not decrease; meanwhile, it was additive for 11S-RSV. These nanocomplexes could constitute a real platform for the design of nutraceutical products.
RESUMO
Some studies aimed at revealing the relationship between protein structure and their functional properties. However, the majority of these reports have been carried out using protein isolates. There are limited reports on the possible relationship between the functional properties and the structure of a purified protein. In this work the amaranth 11S globulin acidic subunit (AAC) and five mutations of the same protein that were modified in their variable regions with antihypertensive peptides (VYVYVYVY and RIPP), were analyzed at two ionic strength (2.9 and 17.6 g/L NaCl) and pH (3.0-7.0). Results revealed better solubility for the proteins mutated at the terminal ends (AACM.1 and AACM.4) and lower solubility for the protein inserted with RIPP peptide. Spectroscopy studies revealed an increase of ß-sheet structure at high salt concentration for all proteins. It was also observed that salt concentration acted as a modulator, which allowed a better foam features for all modified proteins limiting movement of side chains and reducing red-shifted displacement of λmax. All proteins showed foam capacity ranging from 76 to 93% although foam stability was twofold better for modified proteins than for AAC at high salt concentration. This study allowed better understanding about the structural changes that influence the foaming properties of engineered proteins.
Assuntos
Amaranthus , Globulinas , Amaranthus/química , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Globulinas/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Peptídeos/metabolismo , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND: Almonds and Brazil nuts are widely consumed allergenic nuts whose presence must be declared according to food labelling regulations. Their detection in food products has been recently achieved by ELISA methods with recombinant antibodies (scFv) isolated against complete Brazil nut and almond protein extracts. The screening of phage-scFv libraries against complete protein extracts confers a series of advantages over the use of purified proteins, as recombinant proteins might alter their native folding. However, using this strategy, the nature of the target detected by phage-displayed antibodies remains unknown, and requires further research to identify whether they are nut allergens or other molecules present in the extract, but not related to their allergenic potential. RESULTS: Electrophoretic, chromatographic, immunological and spectrometric techniques revealed that the Brazil nut (BE95) and almond (PD1F6 and PD2C9) specific phage-scFvs detected conformational epitopes of the Brazil nut and almond 11S globulins, recognised by WHO/IUIS as Ber e 2 and Pru du 6 major allergens. Circular dichroism data indicated that severe heat treatment would entail loss of epitope structure, disabling scFv for target detection. CONCLUSIONS: The presence of important Brazil nut and almond allergens (Ber e 2 and Pru du 6) in foodstuffs can be determined by using phage-display antibodies BE95, PD1F6 and PD2C9 as affinity probes in ELISA. © 2017 Society of Chemical Industry.
Assuntos
Bacteriófagos/genética , Bertholletia/imunologia , Prunus dulcis/imunologia , Anticorpos de Cadeia Única/imunologia , Bacteriófagos/metabolismo , Bertholletia/química , Reações Cruzadas , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Nozes/química , Nozes/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Prunus dulcis/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Cadeia Única/genéticaRESUMO
This work aimed to study the influence of pH (3.5 and 7.0) and CaCl2 and MgCl2 addition on heat-set gelation of a quinoa protein isolate at 10% and 15% (w/w). The protein isolate obtained was composed mainly of 11S globulin as was observed by electrophoresis and mass spectrometry analysis. Heat-set gelation occurred at both pH values studied. Nevertheless, the gels formed at pH 3.5 were more viscoelastic and denser than those formed at pH 7.0, that was coarser and presented syneresis. The CaCl2 and MgCl2 addition increased the gel strength during rheological analysis at pH 3.5, possibly due to the formation of fiber-like connections in the gel network. At pH 7.0, the divalent salts resulted in weaker gels formed by agglomerates, suggesting a neutralization of the protein surface charges. The differences in quinoa protein gelation were attributed to solubility, and the flexibility of proteins secondary structure at the pH studied.