RESUMO
Ongoing climate changes are expected to intensify drought periods in tropical regions, directly impacting epiphytic bromeliads that depend on intermittent water availability. This study aimed to elucidate if Acanthostachys pitcairnioides, an epiphytic bromeliad of Atlantic Forest, tolerates extended drought periods and the potential strategies involved in its tolerance and recovery capacity. We suppressed irrigation for 42 days, rehydrated plants for four days, and evaluated leaf water status, and photochemical, metabolic, and anatomical changes. During the initial 28 days of drought, translocation of water from hydrenchyma to chlorenchyma, higher chlorophyll content, and accumulation of abscisic and salicylic acid and antioxidants contributed to maintaining the cell turgor and functionality of photosynthetic apparatus. At 42 days, a significant reduction in leaf water content to 45.5% was accompanied by a 2.5-fold increase in non-photochemical quenching and enhanced levels of carotenoids, anthocyanins, osmoregulators (proline, myo-inositol, and trehalose), and phytohormones (abscisic acid and jasmonates). After rewatering, water storage in the hydrenchyma and almost all pigments, hormones, and metabolites were restored to pre-stress conditions. Leaf succulence, carbohydrate and organic acid accumulation, and carbon isotope data (δ13C-14.5) provide evidence of induction of CAM metabolism by water limitation in A. pitcairnioides. Our findings indicate the prevalence of water accumulation strategy during the first half of the drought stress. At the end of the drought period, the complete depletion of water from the hydrenchyma favored the osmotic adjustment. Considering this set of tolerance strategies and the rapid recovery after rehydration, A. pitcairnioides can successfully withstand environments with restricted water availability.
RESUMO
The 1H and 13C NMR spectra of the N-(3,5-dichloro-4-hydroxyphenyl)- 2,4,6-triphenylpyridinium perchlorate and of its deprotonated betaine 4-(2,4,6-triphenylpyridinio)-2,6-dichlorophenolate (Wolfbeis's ET(33) dye) were recorded in various solvents and analyzed in search of solvent-dependent shifts that characterize their solvatomagnetism, which was compared with the well-known UV-vis spectral behavior of this important solvatochromic dye. Although the NMR spectra of ET(33) and its phenolic precursor in different solvents correlated only poorly with their UV-vis spectral responses, they provided valuable information on specific structural features and solute-solvent interactions that are not available from their UV-vis spectra.
RESUMO
DNA metabarcoding and stable isotope analysis have significantly advanced our understanding of marine trophic ecology, aiding systematic research on foraging habits and species conservation. In this study, we employed these methods to analyse faecal and blood samples, respectively, to compare the trophic ecology of two Red-billed Tropicbird (Phaethonaethereus; Linnaeus, 1758) colonies on Mexican islands in the Pacific. Trophic patterns among different breeding stages were also examined at both colonies. Dietary analysis reveals a preference for epipelagic fish, cephalopods, and small crustaceans, with variations between colonies and breeding stages. Isotopic values (δ15N and δ13C) align with DNA metabarcoding results, with wider niches during incubation stages. Differences in diet are linked to environmental conditions and trophic plasticity among breeding stages, influenced by changing physiological requirements and prey availability. Variations in dietary profiles reflect contrasting environmental conditions affecting local prey availability.
Assuntos
Código de Barras de DNA Taxonômico , Cadeia Alimentar , Animais , Isótopos de Carbono/análise , Dieta , Isótopos de Nitrogênio/análise , Aves/fisiologia , MéxicoRESUMO
Mefloquine (MQ) is an antimalarial medication prescribed to treat or malaria prevention.. When taken by children, vomiting usually occurs, and new doses of medication frequently need to be taken. So, developing pediatric medicines using taste-masked antimalarial drug complexes is mandatory for the success of mefloquine administration. The hypothesis that binding mefloquine to an ion-exchange resin (R) could circumvent the drug's bitter taste problem was proposed, and solid-state 13C cross-polarization magic angle spinning (CPMAS) NMR was able to follow MQ-R mixtures through chemical shift and relaxation measurements. The nature of MQ-R complex formation could then be determined. Impedimetric electronic tongue equipment also verified the resinate taste-masking efficiency in vitro. Variations in chemical shifts and structure dynamics measured by proton relaxation properties (e.g., T1ρH) were used as probes to follow the extension of mixing and specific interactions that would be present in MQ-R. A significant decrease in T1ρH values was observed for MQ carbons in MQ-R complexes, compared to the ones in MQ (from 100-200 ms in MQ to 20-50 ms in an MQ-R complex). The results evidenced that the cationic resin interacts strongly with mefloquine molecules in the formulation of a 1:1 ratio complex. Thus, 13C CPMAS NMR allowed the confirmation of the presence of a binding between mefloquine and polacrilin in the MQ-R formulation studied.
RESUMO
Abscisic acid (ABA) is crucial for plant water deficit (WD) acclimation, but how the interplay between ABA and guard cell (GC) metabolism aids plant WD acclimation remains unclear. Here, we investigated how ABA regulates GC metabolism and how this contributes to plant WD acclimation using tomato wild type (WT) and the ABA-deficient sitiens mutant. These genotypes were characterized at physiological, metabolic, and transcriptional levels under recurring WD periods and were used to perform a13C-glucose labelling experiment using isolated guard cells following exogenously applied ABA. ABA deficiency altered the level of sugars and organic acids in GCs in both irrigated and WD plants and the dynamic of accumulation/degradation of these compounds in GCs during the dark-to-light transition. WD-induced metabolic changes were more pronounced in sitiens than WT GCs. Results from the 13C-labelling experiment indicate that ABA is required for the glycolytic fluxes toward malate and acts as a negative regulator of a putative sucrose substrate cycle. The expression of key ABA-biosynthetic genes was higher in WT than in sitiens GCs after two cycles of WD. Additionally, the intrinsic leaf water use efficiency increased only in WT after the second WD cycle, compared to sitiens. Our results highlight that ABA deficiency disrupts the homeostasis of GC primary metabolism and the WD memory, negatively affecting plant WD acclimation. Our study demonstrates which metabolic pathways are activated by WD and/or regulated by ABA in GCs, which improves our understanding of plant WD acclimation, with clear consequences for plant metabolic engineering in the future.
Assuntos
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacosRESUMO
Aquatic humic substances (AHS) are defined as an important components of organic matter, being composed as small molecules in a supramolecular structure and can interact with metallic ions, thereby altering the bioavailability of these species. To better understand this behavior, AHS were extracted and characterized from Negro River, located near Manaus city and Carú River, that is situated in Itacoatiara city, an area experiencing increasing anthropogenic actions; both were characterized as blackwater rivers. The AHS were characterized by 13C nuclear magnetic ressonance and thermochemolysis GC-MS to obtain structural characteristics. Interaction studies with Cu (II), Al (III), and Fe (III) were investigated using fluorescence spectroscopy applied to parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy with Fourier transform infrared spectroscopy (2D-COS FTIR). The AHS from dry season had more aromatic fractions not derived from lignin and had higher content of alkyls moities from microbial sources and vegetal tissues of autochthonous origin, while AHS isolated in the rainy season showed more metals in its molecular architecture, lignin units, and polysacharide structures. The study showed that AHS composition from rainy season were able to interact with Al (III), Fe (III), and Cu (II). Two fluorescent components were identified as responsible for interaction: C1 (blue-shifted) and C2 (red-shifted). C1 showed higher complexation capacities but with lower complexation stability constants (KML ranged from 0.3 to 7.9 × 105) than C2 (KML ranged from 3.1 to 10.0 × 105). 2D-COS FTIR showed that the COO- and C-O in phenolic were the most important functional groups for interaction with studied metallic ions.
Assuntos
Alumínio , Cobre , Monitoramento Ambiental , Substâncias Húmicas , Rios , Estações do Ano , Poluentes Químicos da Água , Substâncias Húmicas/análise , Rios/química , Espectroscopia de Infravermelho com Transformada de Fourier , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Cobre/análise , Alumínio/análise , Alumínio/química , Ferro/análise , Ferro/química , Brasil , Análise FatorialRESUMO
Tracing methods of non-European EVOOs commercialized worldwide are becoming crucial for effective authenticity controls. Limited analytical studies of these oils are available on a global scale, similar to those of European EVOOs. We report for the first time the fatty acid concentrations, bulk-oil 2H/1H, 13C/12C, and 18O/16O ratios and fatty acid 13C/12C ratios of 43 authentic monovarietal EVOOs from different geographical regions in Argentina and Uruguay. The samples were obtained from a wide range of latitudes and altitudes along an E-W profile, from lowlands near the Atlantic Ocean to the pre-Andean highlands near the Pacific Ocean. Principal component scores were used to cluster EVOOs into three groups- central-western Argentina, central Argentina, and Uruguay-based on nine stable isotope ratios and the oleic-linoleic acid concentration ratio. The bulk 2H/1H and 18O/16O values and 13C/12C of palmitoleic and linoleic acids provide good tools for differentiating these oils via linear discriminant analysis.
Assuntos
Ácidos Graxos , Azeite de Oliva , Uruguai , Argentina , Ácidos Graxos/química , Ácidos Graxos/análise , Azeite de Oliva/química , Análise Discriminante , Isótopos de Carbono/análiseRESUMO
Estuarine mangroves are often considered nurseries for the Atlantic Goliath grouper juveniles. Yet, the contributions of different estuarine primary producers and habitats as sources of organic matter during early ontogenetic development remain unclear. Given the species' critically endangered status and protection in Brazil, obtaining biological samples from recently settled recruits in estuaries is challenging. In this study, we leveraged a local partnership with fishers and used stable isotope (C and N) profiles from the eye lenses of stranded individuals or incidentally caught by fishery to reconstruct the trophic and habitat changes of small juveniles. The eye lens grows by the apposition of protein-rich layers. Once these layers are formed, they become inert, allowing to make inferences on the trophic ecology and habitat use along the development of the individual until its capture. We used correlations between fish size and the entire eye lens size, along with estuarine baselines, to reconstruct the fish size and trophic positions for each of the lens layers obtained. We then used dominant primary producers and basal sources from mangrove sheltered, exposed estuarine and marine habitats to construct an ontogenetic model of trophic and habitat support changes since maternal origins. Our model revealed marine support before the juveniles reached 25 mm (standard length), followed by a rapid increase in reliance on mangrove sheltered sources, coinciding with the expected size at settlement. After reaching 60 mm, individuals began to show variability. Some remained primarily supported by the mangrove sheltered area, while others shifted to rely more on the exposed estuarine area around 150 mm. Our findings indicate that while mangroves are critical for settlement, as Goliath grouper juveniles grow, they can utilize organic matter produced throughout the estuary. This underscores the need for conservation strategies that focus on seascape connectivity, as protecting just one discrete habitat may not be sufficient to preserve this endangered species and safeguard its ecosystem functions.
Assuntos
Ecossistema , Espécies em Perigo de Extinção , Cristalino , Animais , Cristalino/crescimento & desenvolvimento , Brasil , Estuários , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Bass/fisiologia , Bass/crescimento & desenvolvimento , Cadeia Alimentar , Monitoramento AmbientalRESUMO
Sesquiterpene lactones (SL) represent a class of secondary metabolites found in the Asteraceae family, notable for their unique structures. The SL α-santonin (1) and its derivatives are worthy of mention due to their diverse biological properties. Additionally, 4H-chromenes and 4H-chromones are appealing frameworks holding the capability to be used as structural motifs for new drugs. Furthermore, unambiguous structural elucidation is crucial for developing novel compounds for diverse applications. In this context, it is common to find in the literature molecules erroneously assigned. Therefore, the use of quantum mechanical calculations to simulate NMR chemical shifts has emerged as a valuable strategy. In this work, we conceived the synthesis of two halogenated 4H-chromenediones derived from photosantonic acid (2), a photoproduct arising from irradiation of α-santonin (1) in the ultraviolet region. The structure of the chlorinated and brominated products was determined by NMR analysis, with the aid of quantum mechanical calculations at the B3LYP/6-311 + G(2d,p)//M062x/6-31 + G(d,p) level of theory. All analyses were in agreement and led to the assignment of the brominated 4H-chromene-2,7-dione as (3S,3aS,5aR,9bS)-5a-(2-bromopropan-2-yl)-3-methyl-3,3a,5,5a,8,9b-hexahydro-4H-furo[2,3-f]chromene-2,7-dione (11b) and of the chlorinated 4H-chromene-2,7-dione as (3S,3aS,5aR,9bS)-5a-(2-chloropropan-2-yl)-3-methyl-3,3a,5,5a,8,9b-hexahydro-4H-furo[2,3-f]chromene-2,7-dione (12b). The diastereoselectivities of the reactions were explained based on products and intermediates formation energy calculated using B3LYP/6-31 + G(d,p) as the level of theory. Structures 11b and 12b were identified as the thermodynamic and kinetic products of the reaction among all candidates. Consequently, the strategy utilized in this study is robust and successfully illustrates the use of quantum mechanical calculations in the structural elucidation of new compounds with potential applications as novel drugs or products.
RESUMO
NMR spectroscopy has become a standard technique in studies both on carbon capture and storage. 13 C NMR allows the detection of two peaks for carbonated aqueous samples: one for CO2(aq) and another one for the species H2 CO3 , HCO3 - , and CO3 2- -herein collectively named Hx CO3 x-2 . The chemical shift of this second peak depends on the molar fraction of the three species in equilibrium and has been used to assess the equilibrium between HCO3 - and CO3 2- . The detection of H2 CO3 at low pH solutions is hindered, because of the concurrent liberation of CO2 when the medium is acidified. Herein, a valved NMR tube facilitates the detection of the Hx CO3 x-2 peak across a wide pH range, even at pH 1.8 where the dominant species is H2 CO3 . The method employed the formation of frozen layers of NaH13 CO3 and acid solutions within the tube, which are mixed as the tube reaches room temperature. At this point, the tube is already securely sealed, preventing any loss of CO2 to the atmosphere. A spectrophotometry approach allowed the measurement of the actual pH inside the pressurized NMR tube. The chemical shift for H2 CO3 was determined as 160.33 ± 0.03 ppm, which is in good agreement with value obtained by DFT calculations combined with Car-Parrinello molecular dynamics. The H2 CO3 pKa value determined by the present method was 3.41 ± 0.03, for 15% D2 O aqueous medium and 0.8 mol/L ionic strength. The proposed method can be extended to studies about analogs such as alkyl carbonic and carbamic acids.
RESUMO
Since consumers reflect the isotopic composition of an assimilated diet, stable isotopes can be a useful tool to address the feeding ecology of tropical snakes. This is the first study reporting carbon and nitrogen stable isotopic composition of Bothrops atrox (Linnaeus, 1758) living in different landscapes located in the lower Amazon river, encompassing four main natural landscapes of the Amazon: old-growth forests, várzeas (flooded forests), savannas, and pastures. Our null hypothesis is that the δ13C of forest specimens of B.atrox is more negative because forests are dominated by C3 plants, while C4 plants are common in the other landscapes. On the other hand, δ15N of forest specimens should be more positive, since the δ15N of old-growth forests are higher than plants of savanna, várzea, and pastures. Confirming our hypothesis, the δ13C of B. atrox scales of the Tapajós National Forest was approximate −25‰ to −24‰, increased to approximately −23.5‰ to −23.0‰ in the savanna and pasture, and to −21‰ in the várzea, showing an increased contribution of C4-derived carbon. Some specimens of B. atrox had δ15N as high as 18‰, which is much higher than the average δ15N of the snake's prey (7‰), confirming the apex position of B. atrox in the Amazon region. The δ15N values of the forest specimens were 5‰ higher than the savanna specimens, and this difference decreased to 3‰ between the forest and the pasture, and the várzea specimens. Finally, there were not large differences between δ15N values of livers and scales in any of the landscapes, suggesting a constant diet through time, and reinforcing the possibility of the use of snake's scale as a less invasive and non-lethal tissue to analyze.
RESUMO
Planted forest soils can have great potential for CO2-C sequestration, mainly due to belowground C inputs, which impact deep soil C (DSC) accumulation. However, there are still gaps in understanding the CO2 emission dynamics in eucalypt plantations. Therefore, we used isotopic techniques to investigate the dynamics of the soil surface CO2-C flux and CO2-C concentration with depth for a eucalypt plantation influenced by different C inputs (above- and belowground). The gas evaluations were carried in depth the root to valuation of root priming effect (RPE) was calculated. In addition, measurements of the plant (C-fine root and C-litterfall) and soil (total organic carbon - TOC, total nitrogen - TN, soil moisture - SM, and soil temperature - ST) were performed. After planting the eucalypt trees, there was an increase in the soil surface CO2-C flux with plant growth. Root growth contributed greatly to the soil surface CO2-C flux, promoting greater surface RPE over time. In comparison to the other factors, SM had a greater influence on litterfall decomposition and root respiration. It was not possible to detect losses in TOC and TN in the different soil layers for the 31-month-old eucalypt. However, the 40-month-old eucalypt showed a positive RPE with depth, indicating possible replacement of DSC ("old C") by rhizodeposition-C ("new C") in the soil. Thus, in eucalyptus plantations, aboveground plant growth influences CO2 emissions on the soil surface, while root growth and activity influence C in deeper soil layers. This information indicates the need for future changes in forest management, with a view to reducing CO2 emissions.
Assuntos
Dióxido de Carbono , Solo , Dióxido de Carbono/análise , Monitoramento Ambiental , Florestas , Árvores , Carbono/análiseRESUMO
Quinones are natural products widely distributed in nature, which are involved in stages of several vital biological processes, with mostly having a variety of pharmacological properties. The main groups comprising most of these compounds are benzoquinones, naphthoquinones, anthraquinones, and phenanthraquinones. Quinone isolation has been a focus of study around the world in recent years; for this reason, this study approaches the junction of natural quinones identified by 13 C Nuclear Magnetic Resonance (NMR) spectroscopic analytical techniques. The methodology used to obtain the data collected articles from various databases on quinones from 2000 to 2022. As a result, 137â compounds were selected, among which 70 were characterized for the first time in the period investigated; moreover, the study also discusses the biosynthetic pathways of quinones and the pharmacological activities of the compounds found, giving an overview of the various applications of these compounds.
Assuntos
Naftoquinonas , Quinonas , Quinonas/farmacologia , Quinonas/química , Benzoquinonas/química , Naftoquinonas/química , Antraquinonas/química , Espectroscopia de Ressonância MagnéticaRESUMO
Different tissues are used for stable isotope analysis in cetacean investigations. However, variation in the isotopic composition of tissues with different turnover rates has been reported for cetaceans. To better understand stable carbon and nitrogen isotopes (δ13C and δ15N) in skin compared to other tissues, this study assessed the isotopic variation among the liver, muscle, and skin of Guiana dolphins (Sotalia guianensis), as well as the influence of sex on these variations. No differences were found in δ13C among male tissues, but females showed lower values in the liver compared to muscle and skin. Differences in δ15N were observed among all tissues, with different variation patterns for males and females. Four females were distinguished from males and other females by their 13C depletion in all tissues and δ15N variation pattern. We conclude that skin and muscle may be equivalent in δ13C values for Guiana dolphins. The multiple-tissue analysis brings new insights into their feeding ecology and provides background for stable isotope analysis using non-destructive sampling techniques in small cetaceans.
Assuntos
Golfinhos , Animais , Feminino , Masculino , Golfinhos/fisiologia , Carbono , Isótopos de Nitrogênio/análise , Isótopos de Carbono/análise , EcologiaRESUMO
Salvia hispanica L., commonly known as chía, and its seeds have been used since ancient times to prepare different beverages. Due to its nutritional content, it is considered a dietary ingredient and has been reported with many health benefits. Chia seed components are helpful in cardiovascular disease (CVD) by reducing blood pressure, platelet aggregation, cholesterol, and oxidation. Still, its vasodilator effects on the vascular system were not reported yet. The hexanic (HESh), dichloromethanic (DESh), and methanolic (MESh) extracts obtained from chía seeds were evaluated on an aortic ring ex-vivo experimental model. The vasorelaxant efficacy and mechanism of action were determined. Also, phytochemical data was obtained through 13C NMR-based dereplication. The MESh extract showed the highest efficacy (Emax = 87%), and its effect was partially endothelium-dependent. The mechanism of action was determined experimentally, and the vasorelaxant curves were modified in the presence of L-NAME, ODQ, and potassium channel blockers. MESh caused a relaxing effect on KCl 80 mM-induced contraction and was less potent than nifedipine. The CaCl2-induced contraction was significantly decreased compared with the control curve. Phytochemical analysis of MESh suggests the presence of mannitol, previously reported as a vasodilator on aortic rings. Our findings suggest NO-cGMP pathway participation as a vasodilator mechanism of action of S. hispanica seeds; this effect can be attributed, in part, to the mannitol presence. S. hispanica could be used in future research focused on antihypertensive therapies.
Assuntos
Salvia hispanica , Vasodilatadores , Vasodilatadores/farmacologia , Óxido Nítrico , NifedipinoRESUMO
Dissolved organic matter (DOM) contributes to forest C cycling. We assessed temporal variability, sources, and transformations of DOM during four years in a tropical montane forest with the help of stable C isotope ratios (δ13C values). We measured δ13C values of DOM in rainfall (RF), throughfall (TF), stemflow (SF), litter leachate (LL), soil solutions at the 0.15 and 0.30 m depths (SS15, SS30), and streamflow (ST) with TOC-IRMS. The δ13C values of DOM did not vary seasonally. We detected an event with a high δ13C value likely attributable to black carbon from local pasture fires. The mean δ13C values of DOM outside the event decreased in the order, RF (-26.0 ± 1.3) > TF (-28.7 ± 0.3) > SF (-29.2 ± 0.2) > LL (-29.6 ± 0.2) because of increasing leaching of C-isotopically light compounds. The higher δ13C values of DOM in SS15 (-27.8 ± 1.0), SS30 (-27.6 ± 1.1), and ST (-27.9 ± 1.1) than in the above-ground solutions suggested that roots and root exudates are major belowground DOM sources. Although in DOM the C/N ratios correlated with the δ13C values when all solutions were considered, this was not the case for SS15, SS30, and ST alone. Thus, the δ13C values of DOM provide an additional tool to assess the sources and turnover of DOM.
RESUMO
Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 µg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.
Assuntos
Gases de Efeito Estufa , Solo , Ecossistema , Brasil , Sequestro de Carbono , Dióxido de Carbono/análise , Esterco , Carbono/análise , Florestas , ÁrvoresRESUMO
Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.
Assuntos
Dióxido de Carbono , Malatos , Malatos/metabolismo , Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Citratos/metabolismoRESUMO
Four aromatic acid compounds: benzoic acid (Bz), 4-hydroxyphenylpropionic acid (HPPA), gallic acid (GA) and 4-aminobenzoic acid (PABA) were covalently bonded to chitosan in order to improve water solubility at neutral pH. The synthesis was performed via a radical redox reaction in heterogeneous phase by employing ascorbic acid and hydrogen peroxide (AA/H2O2) as radical initiators in ethanol. The analysis of chemical structure and conformational changes on acetylated chitosan was also the focus of this research. Grafted samples exhibited as high as 0.46 M degree of substitution (MS) and excellent solubility in water at neutral pH. Results showed a correlation between the disruption of C3-C5 (O3 O5) hydrogen bonds with increasing solubility in grafted samples. Spectroscopic techniques such as FT-IR and 1H and 13C NMR showed modifications in both glucosamine and N-Acetyl-glucosamine units by ester and amide linkage at C2, C3 and C6 position, respectively. Finally, loss of crystalline structure of 2-helical conformation of chitosan after grafting was observed by XRD and correlated with 13C CP-MAS-NMR analyses.
RESUMO
This study investigates spatio-temporal variations of PM10 mass concentrations and associated metal(oid)s, δ13C carbon isotope ratios, polycyclic aromatic hydrocarbons (PAHs), total organic carbon (TOC) and equivalent black carbon (eBC) concentrations over a half year period (from March 2017 to October 2017) in two residential areas of Medellín (MED-1 and MED-2) and Itagüí municipality (ITA-1 and ITA-2) at a tropical narrow valley (Aburrá Valley, Colombia), where few data are available. A total of 104 samples were analysed by using validated analytical methodologies, providing valuable data for PM10 chemical characterisation. Metal(oid)s concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion, and PAHs concentrations were measured by Gas Chromatography-Mass Spectrometry (GC-MS) after Pressurised Hot Water Extraction (PHWE) and Membrane Assisted Solvent Extraction (MASE). Mean PM10 mass concentration ranged from 37.0 µg m-3 to 45.7 µg m-3 in ITA-2 and MED-2 sites, respectively. Al, Ca, Mg and Na (from 6249 ng m-3 for Mg at MED-1 site to 10,506 ng m-3 for Ca at MED-2 site) were the major elements in PM10 samples, whilst As, Be, Bi, Co, Cs, Li, Ni, Sb, Se, Tl and V were found at trace levels (< 5.4 ng m-3). Benzo[g,h,i] perylene (BghiP), benzo[b + j]fluoranthene (BbjF) and indene(1,2,3-c,d)pyrene (IcdP) were the most profuse PAHs in PM10 samples, with average concentrations of 0.82-0.86, 0.60-0.78 and 0.47-0.58 ng m-3, respectively. Results observed in the four sampling sites showed a similar dispersion pattern of pollutants, with temporal fluctuations which seems to be associated to the meteorology of the valley. A PM source apportionment study were carried out by using the positive matrix factorization (PMF) model, pointing to re-suspended dust, combustion processes, quarry activity and secondary aerosols as PM10 sources in the study area. Among them, combustion was the major PM10 contribution (accounting from 32.1 to 32.9% in ITA-1 and ITA-2, respectively), followed by secondary aerosols (accounting for 13.2% and 23.3% ITA-1 and MED-1, respectively). Finally, a moderate carcinogenic risk was observed for PM10-bound PAHs exposure via inhalation, whereas significant carcinogenic risk was estimated for carcinogenic metal(oid)s exposure in the area during the sampling period.