Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 291(Pt 1): 132701, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34715100

RESUMO

The exploration of low-cost, long-term stable, and highly electrochemically active cathode catalysts is important for the practical application of microbial fuel cell (MFC). In this work, a series of the 3D hierarchical porous Co-N-C (3DHP Co-N-C) materials are designed and synthesized by a metal-organic framework ZIF-67 as a precursor and SiO2 sphere of different sizes as the hard template. The 3DHP Co-N-C-2 with 129 nm macropore exhibits excellent ORR performance in 0.1 M KOH solution with a half-wave potential of 0.80 V vs. RHE and superior durability than Pt/C (20%) due to the specific macropore-mesopore-micropore structure that exposes a large number of active sites and accelerates the electrolyte transport and oxygen diffusion. The MFC with 3DHP Co-N-C-2 as the cathode catalysts shows excellent performance with a maximum power density of 426.9±7.87 mW m-2 and favorable durability after 50 d of operation. In addition, 16s rDNA results reveal the presence of different dominant electrogenic bacteria and different abundance of important non-electrogenic bacteria in the anode biofilm in MFCs using cathode catalysts with different ORR activity. And 3DHP Co-N-C-2 was found to be beneficial to the synergistic effect of electrogenic and non-electrogenic bacteria. This study explores electrocatalysts in terms of both electrocatalytic activity and anode microorganisms, providing new and comprehensive insights into the power generation of MFC.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Biofilmes , Carbono , Eletrodos , Porosidade , Dióxido de Silício
2.
ACS Appl Mater Interfaces ; 12(31): 34858-34872, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32657571

RESUMO

The poor electronic conductivity of Na2FeSiO4 always limits its electrochemical reactivities and no effective solution has been found to date. Herein, the novel Ni-substituted Na2Fe1-xNixSiO4@C nanospheres (50-100 nm) encapsulated with a 3D hierarchical porous skeleton (named as alveolation-like configuration) constructed using in situ carbon are first synthesized via a facile sol-gel method, and the effects of Ni substitution combined with the design of a unique carbon network on Na-storage properties are assessed systematically, focusing on alleviating the inherent defects of the Na2FeSiO4 cathode material. A series of characterization technologies such as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and so forth, coupled with the electrochemical measurements and first-principles calculations, are used to explore the structure, morphology and electrochemical behaviors of the as-prepared materials. The results show that the synergism between Ni substitution and the special alveolation-like configuration enables fast Na ions mobility (from 10-14 to 10-12 cm2 s-1), reduces band gap energy (from 2.82 to 1.79 eV) and lowers Na-ion diffusion barriers, finally reciprocating the vigorous electrochemical kinetics of the electrode. Especially, the elaborately designed material-Na2Fe0.97Ni0.03SiO4@C-displays superior Na-storage properties of around 197.51 mA h g-1 (corresponding to 1.43 Na+ intercalation) at 0.1 C within 1.5-4.5 V along with desirable capacity retention (84.44% after 100 cycles), and the rate capability is also markedly enhanced (a capacity of 133.62 mA h g-1 at 2 C). Such the effective methodology employed in this work opens a potential pathway to synthesize the silicate cathode material with excellent electrochemical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA