Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38137274

RESUMO

Acetobacter pasteurianus is always used to brew vinegar because of its ability of producing and tolerating a high concentration of acetic acid. During vinegar fermentation, initial acetic acid contributes to acetic acid accumulation, which varies with initial concentrations. In this study, to investigate the mechanisms of tolerating and producing acetic acid of Acetobacter pasteurianus under different concentrations of substrate acetic acid, four-dimensional label-free proteomic technology has been used to analyze the protein profiles of Acetobacter pasteurianus at different growth stages (the lag and exponential phases) and different substrate acetic acid concentrations (0%, 3%, and 6%). A total of 2093 proteins were quantified in this study. The differentially expressed proteins were majorly involved in gene ontology terms of metabolic processes, cellular metabolic processes, and substance binding. Under acetic acid stress, strains might attenuate the toxicity of acetic acid by intensifying fatty acid metabolism, weakening the tricarboxylic acid cycle, glycerophospholipid and energy metabolism during the lag phase, while strains might promote the assimilation of acetic acid and inter-conversion of substances during the exponential phase by enhancing the tricarboxylic acid cycle, glycolysis, pyruvate, and energy metabolism to produce and tolerate acid. Besides, cell cycle regulation and protein translation might be potential acid tolerance pathways under high acid stress. The result contributes to the exploration of new potential acid tolerance mechanisms in Acetobacter pasteurianus from four-dimensional label-free relative quantitative proteomics analysis.

2.
J Agric Food Chem ; 71(37): 13920-13933, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37688549

RESUMO

In this study, changes in the physical, structural, and assembly characteristics of silver carp myofibrillar proteins (MPs) at different ionic strength (I) values were investigated. Moreover, the differential proteomic profile of soluble MPs was analyzed using 4D proteomics based on timsTOF Pro mass spectrometry. Solubility of MPs significantly increased at high I (>0.3), and the increase in I enhanced the apparent viscosity, fluorescence intensity, surface hydrophobicity, and α-helix content of MPs solution. Particle size and sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns also supported the solubility profiles. Transmission electron microscopy and atomic force microscopy observations revealed the morphological assembly and disassembly of MPs under different I conditions. Finally, proteomic analysis revealed the evolution law of salt-induced solubilization of MPs and the critical molecular characteristics in different I environments. The number of differentially abundant proteins (DAPs) decreased with the increase of I, and most DAPs related to the muscle filament sliding, contraction and assembly, actinin binding, and actin filament binding. The soluble abundance of myosin and some structural proteins was dependent on I, and structural proteins in the Z-disk and M-band might contribute to the solubilization of myosin. Our findings provide insightful information about the impact of common I on the solubility pattern of MPs from freshwater fish.


Assuntos
Carpas , Proteômica , Animais , Eletroforese em Gel de Poliacrilamida , Água Doce , Espectrometria de Massas
3.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077440

RESUMO

Ginsenoside Rg1 is an important active substance isolated from the root of ginseng. In previous studies, Rg1 has shown excellent therapeutic effects in antioxidant, anti-inflammatory, and metabolic modulation. However, the therapeutic targets of Rg1 are still unknown. In this study, we investigated the therapeutic effects of Rg1 on oxidative stress-related liver damage. The oxidative stress damage model was achieved by intraperitoneal injection of D-galactose (D-gal) for 42 consecutive days in C57BL/6J mice. Rg1 treatment started on Day 16. Body weight, liver weight, degree of hepatic oxidative stress damage, serum lipid levels, and hepatic lipid and glucose metabolism were measured. Proteomics analysis was used to measure liver protein expression. The differential expression proteins were analyzed with bioinformatics. The results showed that Rg1 treatment attenuated liver damage from oxidative stress, reduced hepatic fat accumulation, promoted hepatic glycogen synthesis, and attenuated peripheral blood low-density lipoprotein (LDL), cholesterol (CHO), and triglycerides (TG) levels. Proteomic analysis suggested that Rg1 may regulate hepatocyte metabolism through ECM-Receptor, the PI3K-AKT pathway. The epidermal growth factor receptor (EGFR) and activator of transcription 1 (STAT1) may be the key protein. In conclusion, this study provides an experimental basis for further clarifying the specific mechanism of Rg1 in the treatment of oxidative stress damage-related liver disease.


Assuntos
Ginsenosídeos , Hepatopatias , Animais , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Lipídeos/farmacologia , Hepatopatias/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA