Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Alzheimers Dis ; 98(4): 1349-1360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578894

RESUMO

BACKGROUND: Background: Neurodegenerative diseases manifest behavioral dysfunction with disease progression. Intervention with neuropsychiatric drugs is part of most multi-drug treatment paradigms. However, only a fraction of patients responds to the treatments and those responding must deal with drug-drug interactions and tolerance issues generally attributed to off-target activities. Recent efforts have focused on the identification of underexplored targets and exploration of improved outcomes by treatment with selective molecular probes. Objective: As part of ongoing efforts to identify and validate additional targets amenable to therapeutic intervention, we examined levels of the serotonin 5-HT2b receptor (5-HT2bR) in Alzheimer's disease (AD) brains and the potential of a selective 5-HT2bR antagonist to counteract synaptic plasticity and memory damage induced by AD-related proteins, amyloid-ß, and tau. Methods: This work used a combination of biochemical, chemical biology, electrophysiological, and behavioral techniques. Biochemical methods included analysis of protein levels. Chemical biology methods included the use of an in vivo molecular probe MW071, a selective antagonist for the 5HT2bR. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated spatial memory and associative memory. Results: 5HT2bR levels are increased in brain specimens of AD patients compared to controls. 5HT2bR antagonist treatment rescued amyloid-ß and tau oligomer-induced impairment of synaptic plasticity and memory. Conclusions: The increased levels of 5HT-2bR in AD patient brains and the attenuation of disease-related synaptic and behavioral dysfunctions by MW071 treatment suggest that the 5HT-2bR is a molecular target worth pursuing as a potential therapeutic target.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Transtornos da Memória/tratamento farmacológico , Memória Espacial
3.
Eur J Med Chem ; 259: 115691, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37562117

RESUMO

(N)-Methanocarba adenosine derivatives were structurally modified to target 5-HT2B serotonin receptors as antagonists, predominantly containing branched N6-alkyl groups. N6-Dicycloalkyl-methyl groups, including their asymmetric variations, as well as 2-iodo, were found to generally favor 5-HT2Rs, while only N6-dicyclohexyl-methyl derivative 35 showed weak 5-HT2AR affinity (Ki 3.6 µM). The highest 5-HT2BR affinities were Ki 11-23 nM (N6-dicyclopropyl-methyl-2-iodo 11, 2-chloro-5'-deoxy-5'-methylthio 15 and N6-((R)-cyclobuty-cyclopropyl-methyl)-2-iodo 43), and Ki 73 nM at 5-HT2CR for 36. Direct comparison of adenine ribosides and their corresponding rigid (N)-methanocarba derivatives (cf. 51 and MRS8099 45) indicated a multifold affinity enhancement with the bicyclic ring system. Compounds 43, 45 and 48 were functional 5-HT2BR (KB 2-3 nM) and 5-HT2CR (KB 79-328 nM) antagonists in a Gq-mediated calcium flux assay, with 5-HT2BR functional selectivity ranging from 45- (48) to 113-fold (43). Substantial adenosine receptor (AR) affinity (Ki, A1AR < Ki, A3AR < Ki, A2AAR) was still present in this series, suggestive of dual acting compounds: 5-HT2B antagonist and A1AR agonist, potentially useful for treating chronic conditions (fibrosis; pain). Given its affinity (17 nM) and moderate 5-HT2BR binding selectivity (32-fold vs. 5-HT2CR, 4-fold vs. A1AR), 43 (MRS7925) could potentially be useful for anti-fibrotic therapy.


Assuntos
Adenosina , Serotonina , Antagonistas da Serotonina , Relação Estrutura-Atividade , Receptores Purinérgicos P1 , Receptor 5-HT2B de Serotonina
4.
Artigo em Inglês | MEDLINE | ID: mdl-37269940

RESUMO

The neurotransmitter 5-hydroxytryptamine (5-HT, serotonin) plays an essential role in the regulation of neural activity via multiple receptors. Here, we investigated the functional role of serotoninergic input on the Dahlgren cell population in the caudal neurosecretory system (CNSS) of olive flounder. In this study, the effect of 5-HT on the firing activity of Dahlgren cells was explored in terms of changes in firing frequency and firing pattern using multicellular recording electrophysiology ex vivo, and the role of several 5-HT receptor subtypes in the regulation was determined. The results revealed that 5-HT increased the firing frequency in a concentration-dependent manner and altered the firing pattern of Dahlgren cells. The effect of 5-HT on the firing activity of Dahlgren cells was mediated through the 5-HT1A and 5-HT2B receptors, selective agonists of both receptors effectively increased the firing frequency of Dahlgren cells, and selective receptor antagonists could also effectively inhibit the increase in firing frequency caused by 5-HT. In addition, the mRNA levels of major signaling pathway-related genes, ion channels, and major secretion hormone genes were significantly upregulated in CNSS after treatment with 5-HT. These findings demonstrate that 5-HT acts as an excitatory neuromodulator on Dahlgren cells and enhances neuroendocrine activity in CNSS.


Assuntos
Linguado , Serotonina , Animais , Serotonina/farmacologia , Linguado/fisiologia , Sistemas Neurossecretores/fisiologia , Neurotransmissores
5.
Am J Physiol Cell Physiol ; 324(2): C573-C587, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622066

RESUMO

The anthelmintic drug praziquantel (PZQ) causes contraction of parasitic schistosomes as well as constriction of blood vessels within the mesenteric vasculature of the host where the adult blood flukes reside. The contractile action of PZQ on the vasculature is mediated by the activation of host serotonergic 5-HT2B receptors (5-HT2BRs). However, the molecular basis for PZQ interaction with these targets and the location of these 5-HT2B receptors in the vessel wall have not been experimentally defined. Evaluation of a PZQ docking pose within the 5-HT2BR orthosteric site, using both Ca2+ reporter and bioluminescence resonance energy transfer (BRET) assays, identified residues F3406.51 and F3416.52 (transmembrane helix 6, TM6) as well as L209EL2 (extracellular loop 2) as critical for PZQ-mediated agonist activity. A key determinant of PZQ selectivity for the 5-HT2B receptor over the 5-HT2A/2C receptors was determined by M2185.39 in transmembrane helix 5 (TM5) of the orthosteric site. Mutation of this residue to valine (M218V), as found in 5-HT2A and 5-HT2C, decreased PZQ agonist activity, whereas the reciprocal mutation (V215M) in 5-HT2C increased PZQ activity. Two-photon imaging in intact mesenteric arterial strips visualized PZQ-evoked Ca2+ transients within the smooth muscle cells of the vessel wall. PZQ also triggered cytoplasmic Ca2+ signals in arterial smooth muscle cells in primary culture that were isolated from mesenteric blood vessels. These data define the molecular basis for PZQ action on 5-HT2B receptors localized in vascular smooth muscle.


Assuntos
Anti-Helmínticos , Praziquantel , Praziquantel/farmacologia , Serotonina , Anti-Helmínticos/uso terapêutico , Artérias
6.
Mol Cell Neurosci ; 121: 103750, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697176

RESUMO

The central serotonin2B receptor (5-HT2BR) modulates 5-HT and dopamine (DA) neuronal function in the mammalian brain and has been suggested as a potential target for the treatment of neuropsychiatric disorders involving derangements of these monoamine systems, such as schizophrenia, cocaine abuse and dependence and major depressive disorder. Studies in rats and mice yielded contrasting results on the control of 5-HT/DA networks by 5-HT2BRs, thereby leading to opposite views on the therapeutic potential of 5-HT2BR agents for treating the above disorders. These discrepancies may result from anatomo-functional differences related to a different cellular location of 5-HT2BRs in rat and mouse brain. Using immunohistochemistry, we assessed this hypothesis by examining the expression of 5-HT2BRs in 5-HT and GABAergic neurons of rats and mice within different subregions of the dorsal raphe nucleus (DRN), currently considered as the main site of action of 5-HT2B agents. Likewise, using in vivo microdialysis, we examined their functional relevance in the control of DRN 5-HT outflow, a surrogate index of 5-HT neuronal activity. In the DRN of both species, 5-HT2BRs are expressed in 5-HT cells expressing tryptophan hydroxylase 2 (TPH2), in GABAergic cells expressing glutamic acid decarboxylase 67 (GAD67), and in cells expressing both markers (GAD67 & TPH2; i.e., GABA-expressing 5-HT neurons). The proportion of 5-HT2BR-positive cells expressing only TPH2 was significantly larger in mouse than in rat DRN, whereas the opposite holds true for the expression in cells expressing GAD67 & TPH2. No major species differences were found in the dorsal and ventral subregions. In contrast, the lateral subregion exhibited large differences, with a predominant expression of 5-HT2BRs in TPH2-positive cells in mice (67.2 vs 19.9 % in rats), associated with a lower expression in GAD67 & TPH2 cells (7.9 % in mice vs 41.5 % in rats). Intra-DRN (0.1 µM) administration of the preferential 5-HT2BR agonist BW 723C86 decreased and increased DRN 5-HT outflow in rats and mice respectively, both effects being prevented by the intra-DRN perfusion of the selective 5-HT2BR antagonist RS 127445 (0.1 µM). Altogether, these results show the existence of anatomical differences in the cellular expression of 5-HT2BRs in the rat and mouse DRN, which translate into an opposite control of 5-HT outflow. Also, they highlight the relevance of the subset of GAD67-positive 5-HT neurons as a key factor responsible for the functional differences between rats and mice in terms of 5-HT neuronal activity modulation.


Assuntos
Núcleo Dorsal da Rafe , Receptor 5-HT2B de Serotonina , Neurônios Serotoninérgicos , Animais , Núcleo Dorsal da Rafe/metabolismo , Camundongos , Ratos , Receptor 5-HT2B de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/farmacologia
7.
Mol Cell Endocrinol ; 551: 111674, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35562012

RESUMO

Homeostasis during lactation is a special case in which the unit for regulation is a dyad comprising the mother and her currently nursing offspring (the mother-offspring dyad). This arrangement is not a trivial. A litter of mice can have a mass greater than the mother and nutrient demands that far exceed her. Homeostasis for milk secretion, appetite, and calcium metabolism must come under integrated control, responding seamlessly to the needs of the mother and the offspring. Serotonin (5-HT) is a primary local regulator of mammary homeostasis. 5-HT synthesis in the mammary epithelium is high during lactation and increases during milk stasis. Two important functions are attributed to the 5-HT system. Firstly, when alveolar spaces are filled with milk 5-HT inhibits milk secretion and opens tight junctions. This feedback induces early phases of involution. Secondly, 5-HT induces synthesis and secretion of parathyroid hormone-related peptide (PTHrP).


Assuntos
Glândulas Mamárias Animais , Serotonina , Animais , Feminino , Homeostase , Humanos , Lactação/fisiologia , Glândulas Mamárias Animais/metabolismo , Camundongos , Leite/metabolismo , Mães , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Serotonina/metabolismo
8.
Glia ; 69(3): 638-654, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33095507

RESUMO

Severe peripheral infections induce an adaptive sickness behavior and an innate immune reaction in various organs including the brain. On the long term, persistent alteration of microglia, the brain innate immune cells, is associated with an increased risk of psychiatric disorders. It is thus critical to identify genes and mechanisms controlling the intensity and duration of the neuroinflammation induced by peripheral immune challenges. We tested the hypothesis that the 5-HT2B receptor, the main serotonin receptor expressed by microglia, might represent a valuable candidate. First, we observed that Htr2b-/- mice, knock-out for the 5-HT2B receptor gene, developed, when exposed to a peripheral lipopolysaccharide (LPS) challenge, a stronger weight loss compared to wild-type mice; in addition, comparison of inflammatory markers in brain, 4 and 24 hr after LPS injection, showed that Htr2b deficiency leads to a prolonged neuroinflammation. Second, to assess the specific contribution of the microglial 5-HT2B receptor, we investigated the response to LPS of conditional knock-out mice invalidated for Htr2b in microglia only. We found that deletion of Htr2b in microglia since birth is sufficient to cause enhanced weight loss and increased neuroinflammatory response upon LPS injection at adult stage. In contrast, mice deleted for microglial Htr2b in adulthood responded normally to LPS, revealing a neonatal developmental effect. These results highlight the role of microglia in the response to a peripheral immune challenge and suggest the existence of a developmental, neonatal period, during which instruction of microglia through 5-HT2B receptors is necessary to prevent microglia overreactivity in adulthood.


Assuntos
Comportamento de Doença , Microglia , Animais , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Receptor 5-HT2B de Serotonina/genética , Serotonina , Redução de Peso
9.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379351

RESUMO

Interstitial lung disease (ILD) encompasses a heterogeneous group of more than 200 conditions, of which primarily idiopathic pulmonary fibrosis (IPF), idiopathic nonspecific interstitial pneumonia, hypersensitivity pneumonitis, ILD associated with autoimmune diseases and sarcoidosis may present a progressive fibrosing (PF) phenotype. Despite different aetiology and histopathological patterns, the PF-ILDs have similarities regarding disease mechanisms with self-sustaining fibrosis, which suggests that the diseases may share common pathogenetic pathways. Previous studies show an enhanced activation of serotonergic signaling in pulmonary fibrosis, and the serotonin (5-HT)2 receptors have been implicated to have important roles in observed profibrotic actions. Our research findings in support by others, demonstrate antifibrotic effects with 5-HT2B receptor antagonists, alleviating several key events common for the fibrotic diseases such as myofibroblast differentiation and connective tissue deposition. In this review, we will address the potential role of 5-HT and in particular the 5-HT2B receptors in three PF-ILDs: ILD associated with systemic sclerosis (SSc-ILD), ILD associated with rheumatoid arthritis (RA-ILD) and IPF. Highlighting the converging pathways in these diseases discloses the 5-HT2B receptor as a potential disease target for PF-ILDs, which today have an urgent unmet need for therapeutic strategies.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Receptor 5-HT2B de Serotonina/metabolismo , Animais , Humanos , Fibrose Pulmonar Idiopática/imunologia , Inflamação/patologia , Doenças Pulmonares Intersticiais/imunologia , Modelos Biológicos , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia
10.
Neuropharmacology ; 180: 108309, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956675

RESUMO

Serotonin2B receptor (5-HT2BR) antagonists inhibit cocaine-induced hyperlocomotion independently of changes of accumbal dopamine (DA) release. Given the tight relationship between accumbal DA activity and locomotion, and the inhibitory role of medial prefrontal cortex (mPFC) DA on subcortical DA neurotransmission and DA-dependent behaviors, it has been suggested that the suppressive effect of 5-HT2BR antagonists on cocaine-induced hyperlocomotion may result from an activation of mPFC DA outflow which would subsequently inhibit accumbal DA neurotransmission. Here, we tested this hypothesis by means of the two selective 5-HT2BR antagonists, RS 127445 and LY 266097, using a combination of neurochemical, behavioral and cellular approaches in male rats. The intraperitoneal (i.p.) administration of RS 127445 (0.16 mg/kg) or LY 266097 (0.63 mg/kg) potentiated cocaine (10 mg/kg, i.p.)-induced mPFC DA outflow. The suppressant effect of RS 127445 on cocaine-induced hyperlocomotion was no longer observed in rats with local 6-OHDA lesions in the mPFC. Also, RS 127445 blocked cocaine-induced changes of accumbal glycogen synthase kinase (GSK) 3ß phosphorylation, a postsynaptic cellular marker of DA neurotransmission. Finally, in keeping with the location of 5-HT2BRs on GABAergic interneurons in the dorsal raphe nucleus (DRN), the intra-DRN perfusion of the GABAAR antagonist bicuculline (100 µM) prevented the effect of the systemic or local (1 µM, intra-DRN) administration of RS 127445 on cocaine-induced mPFC DA outflow. Likewise, intra-DRN bicuculline injection (0.1 µg/0.2 µl) prevented the effect of the systemic RS 127445 administration on cocaine-induced hyperlocomotion and GSK3ß phosphorylation. These results show that DRN 5-HT2BR blockade suppresses cocaine-induced hyperlocomotion by potentiation of cocaine-induced DA outflow in the mPFC and the subsequent inhibition of accumbal DA neurotransmission.


Assuntos
Córtex Cerebral/metabolismo , Dopamina/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Locomoção/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2B de Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Neurosci Bull ; 36(11): 1259-1270, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32506374

RESUMO

Chronic loss of sleep damages health and disturbs the quality of life. Long-lasting sleep deprivation (SD) as well as sleep abnormalities are substantial risk factors for major depressive disorder, although the underlying mechanisms are not clear. Here, we showed that chronic SD in mice promotes a gradual elevation of extracellular ATP, which activates astroglial P2X7 receptors (P2X7Rs). Activated P2X7Rs, in turn, selectively down-regulated the expression of 5-HT2B receptors (5-HT2BRs) in astrocytes. Stimulation of P2X7Rs induced by SD selectively suppressed the phosphorylation of AKT and FoxO3a in astrocytes, but not in neurons. The over-expression of FoxO3a in astrocytes inhibited the expression of 5-HT2BRs. Down-regulation of 5-HT2BsRs instigated by SD suppressed the activation of STAT3 and relieved the inhibition of Ca2+-dependent phospholipase A2. This latter cascade promoted the release of arachidonic acid and prostaglandin E2. The depression-like behaviors induced by SD were alleviated in P2X7R-KO mice. Our study reveals the mechanism underlying chronic SD-induced depression-like behaviors and suggests 5-HT2BRs as a key target for exploring therapeutic strategies aimed at the depression evoked by sleep disorders.


Assuntos
Astrócitos , Depressão/fisiopatologia , Receptor 5-HT2B de Serotonina/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Privação do Sono , Trifosfato de Adenosina , Animais , Astrócitos/citologia , Proteína Forkhead Box O3/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-akt/metabolismo , Qualidade de Vida , Fator de Transcrição STAT3/metabolismo , Serotonina
12.
ACS Chem Neurosci ; 11(4): 549-559, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31968160

RESUMO

The 5-HT2C receptor has emerged as a promising target in the treatment of a variety of central nervous system disorders. We have first identified aporphines as a new class of 5-HT2C receptor agonists. Structure-activity relationship results indicate that the aporphine core may be required for 5-HT2C receptor activity, and substitutions at its C1 position are important for 5-HT2C receptor activity. Our efforts to optimize our hit 15781 lead to the identification of the highly potent and selective 5-HT2C agonist 18b (MQ02-439) with an EC50 value of 104 nM and weak antagonism at the 5-HT2A and 5-HT2B receptors. The findings may serve as good starting points for the development of more potent and selective 5-HT2C agonists as valuable pharmacological tools or potential drug candidates.


Assuntos
Aporfinas/farmacologia , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ensaio Radioligante , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/metabolismo , Relação Estrutura-Atividade
13.
Eur J Med Chem ; 182: 111626, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445232

RESUMO

A new series of fluorinated 5-HT2C agonists were designed and synthesized on the basis of our previous work on 2-phenylcyclopropylmethylamines as a potential approach for the treatment of central nervous system disorders. Key fluorinated cyclopropane moieties were constructed through transition metal catalyzed [2 + 1]-cycloaddition of aromatic vinyl fluorides, and the absolute stereochemistry of the representative compound (-)-21a was established. Functional activity measuring calcium flux at 5-HT2 receptors reveals high potency for compounds (+)-21a-d. In particular, (+)-21b had no detectable 5-HT2B agonism and displayed reasonable selectivity against 5-HT2A. Molecular docking studies were further performed to explain the compounds' possible binding poses to the 5-HT2C receptor.


Assuntos
Ciclopropanos/farmacologia , Desenho de Fármacos , Metilaminas/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Ciclopropanos/síntese química , Ciclopropanos/química , Relação Dose-Resposta a Droga , Halogenação , Humanos , Metilaminas/síntese química , Metilaminas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptor 5-HT2B de Serotonina/metabolismo , Relação Estrutura-Atividade
14.
Neurochem Int ; 129: 104479, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31145970

RESUMO

Previously we reported that gene expression of astrocytic 5-HT2B receptors was decreased in brains of depressed animals exposed to chronic mild stress (CMS) (Li et al., 2012) and of Parkinson's disease (Song et al., 2018). Depression is also one of the psychiatric symptoms in hyperammonemia, and astrocyte is a primary target of ammonium in brain in vivo. In the present study, we have used preparations of the brains of urease-treated mice and ammonium-treated astrocytes in culture to study gene expression and function of 5-HT2B receptors. The urease-treated mice showed depressive behaviour. Both mRNA and protein of 5-HT2B receptors were increased in the brains of urease-treated mice and in ammonium-treated cultured astrocytes. Further study revealed that mRNA and protein expression of adenosine deaminase acting on RNA 2 (ADAR2), an enzyme catalyze RNA deamination of adenosine to inosine was increased in the brains of urease-treated mice and in ammonium-treated cultured astrocytes. This increase in ADAR2 induced RNA editing of 5-HT2B receptors. Cultured astrocytes treated with ammonium lost 5-HT induced Ca2+ signalling and ERK1/2 phosphorylation, indicating dysfunction of 5-HT2B receptors. This is in agreement with our previous observation that edited 5-HT2B receptors no longer respond to 5-HT (Hertz et al., 2014). Ammonium effects are inhibited by ADAR2 siRNA in cultured astrocytes, suggesting that increased gene expression and editing and loss of function of 5-HT2B receptors are results of increased activity of ADAR2. In summary, we have demonstrated that functional malfunction of astrocytic 5-HT2B receptors occurs in animal models of major depression, Parkinson depression and hepatic encephalopathy albeit via different mechanisms. Understanding the role of astrocytic 5-HT2B receptors in different pathological contexts may instigate development of novel therapeutic strategies for treating disease-specific depressive behaviour.


Assuntos
Compostos de Amônio/farmacologia , Astrócitos/efeitos dos fármacos , Fluoxetina/farmacologia , Receptor 5-HT2B de Serotonina/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cálcio/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos
15.
Eur J Med Chem ; 164: 499-516, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30622024

RESUMO

Allosteric modulators of G-protein-coupled receptors have lately gained significant traction in drug discovery. Recent studies have shown that allosteric modulation of serotonin 2C receptor (5-HT2C) as a viable strategy for the treatment of various central nervous system (CNS) disorders. Considering the critical role of 5-HT2C in the modulation of appetite, a selective positive allosteric modulator (PAM) of 5-HT2C offers a new opportunity for anti-obesity therapeutic development. In this study, phenyl cyclopropyl-linked N-heterocycles were synthesized and evaluated at 5-HT2C for agonist and PAM activity. Our study shows that imidazole linked phenyl cyclopropyl methanones has PAM activity on both 5-HT2C and serotonin 2B receptor (5-HT2B). Interestingly, piperazine linked phenyl cyclopropyl methanones (58) was active as PAM of 5-HT2C (increased the Emax of 5-HT to 139%), and as negative allosteric modulator (NAM) of 5-HT2B (decreases EC50 of 5-HT 10 times without affecting Emax). Similar effect of compound 58 was observed with synthetic orthosteric agonist lorcaserin on 5-HT2B. Molecular docking study revealed that all active compounds were binding to the predicted allosteric site on 5-HT2C and shared a common interacting residues. Finally, compound 58 suppressed food intake in Sprague Dawley (SD) rats similar to lorcaserin after i.c.v. administration. Therefore, these results suggest that piperazine moiety is essential for dual activity (PAM & NAM) of compounds 58, and supports the hypothesis of 5-HT2C PAM for the treatment of obesity similar to the full agonist.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Piperazina/farmacologia , Receptor 5-HT2B de Serotonina/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Animais , Ingestão de Alimentos/efeitos dos fármacos , Compostos Heterocíclicos/síntese química , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Piperazina/química , Ratos , Ratos Sprague-Dawley
16.
Exp Neurol ; 311: 57-66, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257183

RESUMO

The central serotonin2B receptor (5-HT2BR) is a well-established modulator of dopamine (DA) neuron activity in the rodent brain. Recent studies in rats have shown that the effect of 5-HT2BR antagonists on accumbal and medial prefrontal cortex (mPFC) DA outflow results from a primary action in the dorsal raphe nucleus (DRN), where they activate 5-HT neurons innervating the mPFC. Although the mechanisms underlying this interaction remain largely unknown, data in the literature suggest the involvement of DRN GABAergic interneurons in the control of 5-HT activity. The present study examined this hypothesis using in vivo (intracerebral microdialysis) and in vitro (immunohistochemistry coupled to reverse transcription-polymerase chain reaction) experimental approaches in rats. Intraperitoneal (0.16 mg/kg) or intra-DRN (1 µM) administration of the selective 5-HT2BR antagonist RS 127445 increased 5-HT outflow in both the DRN and the mPFC, these effects being prevented by the intra-DRN perfusion of the GABAA antagonist bicuculline (100 µM), as well as by the subcutaneous (0.16 mg/kg) or the intra-DRN (0.1 µM) administration of the selective 5-HT1AR antagonist WAY 100635. The increase in DRN 5-HT outflow induced by the intra-DRN administration of the selective 5-HT reuptake inhibitor citalopram (0.1 µM) was potentiated by the intra-DRN administration (0.5 µM) of RS 127445 only in the absence of bicuculline perfusion. Finally, in vitro experiments revealed the presence of the 5-HT2BR mRNA on DRN GABAergic interneurons. Altogether, these results show that, in the rat DRN, 5-HT2BRs are located on GABAergic interneurons, and exert a tonic inhibitory control on 5-HT neurons innervating the mPFC.


Assuntos
Núcleo Dorsal da Rafe/metabolismo , Neurônios GABAérgicos/metabolismo , Inibição Neural/fisiologia , Receptor 5-HT2B de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Inibição Neural/efeitos dos fármacos , Pirimidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Neurônios Serotoninérgicos/efeitos dos fármacos , Serotonina/metabolismo , Antagonistas da Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Ácido gama-Aminobutírico/metabolismo
17.
Expert Rev Neurother ; 18(5): 435-442, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29600729

RESUMO

Introduction: Astroglia represent the main cellular homeostatic system of the central nervous system (CNS). Astrocytes are intimately involved in regulation and maintenance of neurotransmission by regulating neurotransmitters removal and turnover and by supplying neurons with neurotransmitters precursors. Astroglial cells are fundamental elements of monoaminergic transmission in the brain and in the spinal cord. Astrocytes receive monoaminergic inputs and control catabolism of monoamines through dedicated transporters and intracellular enzymatic pathways.Areas covered: Astroglial cells express serotonergic receptors; in this review, we provide an in-depth characterization of 5-HT2B receptors. Activation of these receptors triggers numerous intracellular signaling cascades that regulate expression of multiple genes. Astroglial 5-HT2B receptors are activated by serotonin-specific reuptake inhibitors, such as major anti-depressant fluoxetine. Expression of astroglial serotonin receptors undergoes remarkable changes in depression disorders, and these changes can be corrected by chronic treatment with anti-depressant drugs.Expert commentary: Depressive behaviors, which occur in rodents following chronic stress or in neurotoxic models of Parkinson disease, are associated with significant changes in the expression of astroglial, but not neuronal 5-HT2B receptors; while therapy with anti-depressants normalizes both receptors expression and depressive behavioral phenotype. In summary, astroglial serotonin receptors are linked to mood disorders and may represent a novel target for cell- and molecule-specific therapies of depression and mood disorders.

18.
Elife ; 62017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984573

RESUMO

Our understanding of the molecular mechanisms underlying sleep homeostasis is limited. We have taken a systematic approach to study neural signaling by the transmitter 5-hydroxytryptamine (5-HT) in drosophila. We have generated knockout and knockin lines for Trh, the 5-HT synthesizing enzyme and all five 5-HT receptors, making it possible for us to determine their expression patterns and to investigate their functional roles. Loss of the Trh, 5HT1a or 5HT2b gene decreased sleep time whereas loss of the Trh or 5HT2b gene diminished sleep rebound after sleep deprivation. 5HT2b expression in a small subset of, probably a single pair of, neurons in the dorsal fan-shaped body (dFB) is functionally essential: elimination of the 5HT2b gene from these neurons led to loss of sleep homeostasis. Genetic ablation of 5HT2b neurons in the dFB decreased sleep and impaired sleep homeostasis. Our results have shown that serotonergic signaling in specific neurons is required for the regulation of sleep homeostasis.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Homeostase , Neurônios/fisiologia , Receptor 5-HT2B de Serotonina/metabolismo , Sono , Vigília , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Receptor 5-HT2B de Serotonina/genética
19.
Neuropharmacology ; 119: 91-99, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28390892

RESUMO

Recent studies have shown that serotonin2B receptor (5-HT2BR) antagonists exert opposite facilitatory and inhibitory effects on dopamine (DA) release in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAc), respectively, thereby leading to the proposal that these compounds could provide an interesting pharmacological tool for treating schizophrenia. Although the mechanisms underlying these effects remain unknown, several data in the literature suggest that 5-HT1ARs located into the mPFC could participate in this interaction. The present study, using in vivo microdialysis and electrophysiological recordings in rats, assessed this hypothesis by means of two selective 5-HT1AR (WAY 100635) and 5-HT2BR (RS 127445) antagonists. WAY 100635, administered either subcutaneously (0.16 mg/kg, s.c) or locally into the mPFC (0.1 µM), blocked the changes of mPFC and NAc DA release induced by the intraperitoneal administration of RS 127445 (0.16 mg/kg, i.p.). The administration of RS 127445 (0.16 mg/kg, i.p.) increased both dorsal raphe nucleus (DRN) 5-HT neuron firing rate and 5-HT outflow in the mPFC. Likewise, mPFC 5-HT outflow was increased following the intra-DRN injection of RS 127445 (0.032 µg/0.2 µl). Finally, intra-DRN injection of RS 127445 increased and decreased DA outflow in the mPFC and the NAc, respectively, these effects being reversed by the intra-mPFC perfusion of WAY 100635. These results demonstrate the existence of a functional interplay between mPFC 5-HT1ARs and DRN 5-HT2BRs in the control of the DA mesocorticolimbic system, and highlight the clinical interest of this interaction, as both receptors represent an important pharmacological target for the treatment of schizophrenia.


Assuntos
Dopamina/metabolismo , Vias Neurais/fisiologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Microdiálise , Vias Neurais/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Piperazinas/farmacologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia , Fatores de Tempo
20.
Cephalalgia ; 37(4): 365-371, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27127104

RESUMO

Objective In this review we attempt to characterize the acute and chronic role of 5-HT2B receptors with regard to meningeal nociception in animal experiments and clinical data targeting migraine therapy. Background Migraine is a common disabling neurovascular primary headache disease, the pathomechanism of which is still unclear. Serotonin (5-HT) and its receptors might play an important role in some aspects of migraine pathogenesis. The ability of the unselective 5-HT2B receptor agonist m-chlorophenylpiperazine to induce migraine attacks in migraine sufferers, the high affinity of prophylactic antimigraine drugs to this receptor and its expression in migraine-relevant structures like the dura mater argue for a role of 5-HT2B receptors in the pathogenesis of migraine attacks. Methods For this review, the relevant databases such as PubMed, MEDLINE®, Cochrane Library and EMBASE, respectively, were searched to December 2015 using the keywords "migraine, 5-HT2, trigeminal, neurogenic inflammation, nitric oxide, nitroxyl, vasodilatation, plasma protein extravasation" and combinations thereof. Conclusion Our literature review suggests an important role of 5-HT2B receptor activation in meningeal nociception and the generation of migraine pain.


Assuntos
Transtornos de Enxaqueca/fisiopatologia , Dor/fisiopatologia , Receptor 5-HT2B de Serotonina/metabolismo , Animais , Humanos , Transtornos de Enxaqueca/metabolismo , Dor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...