Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705391

RESUMO

Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize small molecule metabolites presented by major histocompatibility complex class I related protein 1 (MR1), via an αß T cell receptor (TCR). MAIT TCRs feature an essentially invariant TCR α-chain, which is highly conserved between mammals. Similarly, MR1 is the most highly conserved major histocompatibility complex-I-like molecule. This extreme conservation, including the mode of interaction between the MAIT TCR and MR1, has been shown to allow for species-mismatched reactivities unique in T cell biology, thereby allowing the use of selected species-mismatched MR1-antigen (MR1-Ag) tetramers in comparative immunology studies. However, the pattern of cross-reactivity of species-mismatched MR1-Ag tetramers in identifying MAIT cells in diverse species has not been formally assessed. We developed novel cattle and pig MR1-Ag tetramers and utilized these alongside previously developed human, mouse, and pig-tailed macaque MR1-Ag tetramers to characterize cross-species tetramer reactivities. MR1-Ag tetramers from each species identified T cell populations in distantly related species with specificity that was comparable to species-matched MR1-Ag tetramers. However, there were subtle differences in staining characteristics with practical implications for the accurate identification of MAIT cells. Pig MR1 is sufficiently conserved across species that pig MR1-Ag tetramers identified MAIT cells from the other species. However, MAIT cells in pigs were at the limits of phenotypic detection. In the absence of sheep MR1-Ag tetramers, a MAIT cell population in sheep blood was identified phenotypically, utilizing species-mismatched MR1-Ag tetramers. Collectively, our results validate the use and define the limitations of species-mismatched MR1-Ag tetramers in comparative immunology studies.


Assuntos
Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa , Especificidade da Espécie , Animais , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Camundongos , Bovinos , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/química , Suínos , Macaca , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética
2.
J Biol Chem ; 300(5): 107229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537698

RESUMO

Mucosal-associated invariant T (MAIT) cells can elicit immune responses against riboflavin-based antigens presented by the evolutionary conserved MHC class I related protein, MR1. While we have an understanding of the structural basis of human MAIT cell receptor (TCR) recognition of human MR1 presenting a variety of ligands, how the semi-invariant mouse MAIT TCR binds mouse MR1-ligand remains unknown. Here, we determine the crystal structures of 2 mouse TRAV1-TRBV13-2+ MAIT TCR-MR1-5-OP-RU ternary complexes, whose TCRs differ only in the composition of their CDR3ß loops. These mouse MAIT TCRs mediate high affinity interactions with mouse MR1-5-OP-RU and cross-recognize human MR1-5-OP-RU. Similarly, a human MAIT TCR could bind mouse MR1-5-OP-RU with high affinity. This cross-species recognition indicates the evolutionary conserved nature of this MAIT TCR-MR1 axis. Comparing crystal structures of the mouse versus human MAIT TCR-MR1-5-OP-RU complexes provides structural insight into the conserved nature of this MAIT TCR-MR1 interaction and conserved specificity for the microbial antigens, whereby key germline-encoded interactions required for MAIT activation are maintained. This is an important consideration for the development of MAIT cell-based therapeutics that will rely on preclinical mouse models of disease.


Assuntos
Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa , Ribitol , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/química , Camundongos , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Humanos , Ribitol/análogos & derivados , Ribitol/metabolismo , Ribitol/química , Uracila/análogos & derivados , Uracila/metabolismo , Uracila/química , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Cristalografia por Raios X
3.
J Inflamm (Lond) ; 21(1): 6, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419084

RESUMO

Mucosal-associated invariant T (MAIT) cells are an atypical subset of T lymphocytes, which have a highly conserved semi-constant αß chain of T-cell receptor (TCR) and recognize microbe-derived vitamin B metabolites via major histocompatibility complex class I related-1 molecule (MR1). MAIT cells get activated mainly through unique TCR-dependent and TCR-independent pathways, and express multiple functional and phenotypic traits, including innate-like functionality, T helper (Th) 1 cell immunity, Th 17 cell immunity, and tissue homing. Given the functions, MAIT cells are extensively reported to play a key role in mucosal homeostasis and infectious diseases. In the current work, we review the basic characteristics of MAIT cells and their roles in mucosal homeostasis and development of respiratory infectious diseases as well as their potential therapeutic targets.

4.
Pathog Immun ; 7(1): 122-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072570

RESUMO

Background: Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in the mucosa with capacity for B-cell help. We hypothesize that targeting MAIT cells, using a MAIT-activating ligand as an adjuvant, could improve mucosal vaccine responses to bacterial pathogens such as Vibrio cholerae. Methods: We utilized murine models of V. cholerae vaccination to test the adjuvant potential of the MAIT-activating ligand, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU). We measured V. cholerae-specific antibody and antibody-secreting cell responses and used flow cytometry to examine MAIT-cell and B-cell phenotype, in blood, bronchoalveolar lavage fluid (BALF), and mucosal tissues, following intranasal vaccination with live V. cholerae O1 or a V. cholerae O1 polysaccharide conjugate vaccine. Results: We report significant expansion of MAIT cells in the lungs (P < 0.001) and BALF (P < 0.001) of 5-OP-RU treated mice, and higher mucosal (BALF, P = 0.045) but not systemic (serum, P = 0.21) V. cholerae O-specific-polysaccharide IgG responses in our conjugate vaccine model when adjuvanted with low-dose 5-OP-RU. In contrast, despite significant MAIT cell expansion, no significant differences in V. cholerae-specific humoral responses were found in our live V. cholerae vaccination model. Conclusions: Using a murine model, we demonstrate the potential, as well as the limitations, of targeting MAIT cells to improve antibody responses to mucosal cholera vaccines. Our study highlights the need for future research optimizing MAIT-cell targeting for improving mucosal vaccines.

5.
JHEP Rep ; 3(4): 100318, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34377970

RESUMO

BACKGROUND & AIMS: Virus-specific T cell dysfunction is a common feature of HBV-related hepatocellular carcinoma (HBV-HCC). Conventional T (ConT) cells can be redirected towards viral antigens in HBV-HCC when they express an HBV-specific receptor; however, their efficacy can be impaired by liver-specific physical and metabolic features. Mucosal-associated invariant T (MAIT) cells are the most abundant innate-like T cells in the liver and can elicit potent intrahepatic effector functions. Here, we engineered ConT and MAIT cells to kill HBV expressing hepatoma cells and compared their functional properties. METHODS: Donor-matched ConT and MAIT cells were engineered to express an HBV-specific T cell receptor (TCR). Cytotoxicity and hepatocyte homing potential were investigated using flow cytometry, real-time killing assays, and confocal microscopy in 2D and 3D HBV-HCC cell models. Major histocompatibility complex (MHC) class I-related molecule (MR1)-dependent and MR1-independent activation was evaluated in an Escherichia coli THP-1 cell model and by IL-12/IL-18 stimulation, respectively. RESULTS: HBV TCR-MAIT cells demonstrated polyfunctional properties (CD107a, interferon [IFN] γ, tumour necrosis factor [TNF], and IL-17A) with strong HBV target sensitivity and liver-homing chemokine receptor expression when compared with HBV TCR-ConT cells. TCR-mediated lysis of hepatoma cells was comparable between the cell types and augmented in the presence of inflammation. Coculturing with HBV+ target cells in a 3D microdevice mimicking aspects of the liver microenvironment demonstrated that TCR-MAIT cells migrate readily towards hepatoma targets. Expression of an ectopic TCR did not affect the ability of the MAIT cells to be activated via MR1-presented bacterial antigens or IL-12/IL-18 stimulation. CONCLUSIONS: HBV TCR-MAIT cells demonstrate anti-HBV functions without losing their endogenous antimicrobial mechanisms or hepatotropic features. Our results support future exploitations of MAIT cells for liver-directed immunotherapies. LAY SUMMARY: Chronic HBV infection is a leading cause of liver cancer. T cell receptor (TCR)-engineered T cells are patients' immune cells that have been modified to recognise virus-infected and/or cancer cells. Herein, we evaluated whether mucosal-associated invariant T cells, a large population of unconventional T cells in the liver, could recognise and kill HBV infected hepatocytes when engineered with an HBV-specific TCR. We show that their effector functions may exceed those of conventional T cells currently used in the clinic, including antimicrobial properties and chemokine receptor profiles better suited for targeting liver tumours.

6.
Eur J Med Chem ; 211: 113066, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33341648

RESUMO

MAIT cells are preset αß T lymphocytes that recognize a series of microbial antigens exclusively derived from the riboflavin biosynthesis pathway, which is present in most bacteria. The most active known antigen is unstable 5-(2-oxopropylideneamino)-6-(d-ribitylamino)uracil (5-OP-RU) which is stabilized when bound and presented to MAIT cells by MHC-related protein 1 (MR1). Here we describe the chemical synthesis and biological evaluation of new chemical probes for the study of MAIT cell biology. The two probes were ethinyl functionalized analogues of 5-OP-RU able to react through CuAAC also called "click chemistry". The molecules up-regulated more MR1 than 5-OP-RU and they efficiently activated iVα19 Vß8 TCR transgenic murine MAIT cells but not iVα19 TCRα transgenic MAIT cells indicating a surprisingly strong impact of the TRCß chain. Moreover, the use of these molecules as chemical probes was validated in vitro by efficient and selective binding to MR1 revealed via fluorescence microscopy. This study was also complemented by molecular modelling investigation of the probes and the binary/ternary complexes they form with MR1 and the TCR. These new probes will be crucial to delineate the dynamics of 5-OP-RU at the cellular or whole organism level and to identify the cells presenting 5-OP-RU to MAIT cells in vivo.


Assuntos
Química Click/métodos , Células T Invariantes Associadas à Mucosa/metabolismo , Ribitol/análogos & derivados , Uracila/análogos & derivados , Animais , Biologia Celular , Humanos , Camundongos , Modelos Moleculares , Ribitol/síntese química , Ribitol/química , Uracila/síntese química , Uracila/química
7.
Methods Mol Biol ; 2111: 285-293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31933215

RESUMO

Mucosal-associated invariant T (MAIT) cells are a novel subset of innate-like T cells that recognize vitamin B metabolites from a range of microbes presented by MHC class I-related molecules (MR1). The term mucosal-associated invariant T cells derives from the fact that MAIT cells are abundant in the liver and mucosal tissues, and human MAIT cells use a semi-invariant TCR Vα7.2 Jα33 paired with Vß2 or Vß13. Here, based on the interaction between MAIT cell and its ligand 5-OP-RU/MR1, we describe the protocols for identification, rapid expansion, and isolation of human MAIT cells.


Assuntos
Técnicas de Cultura de Células/métodos , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/citologia , Células Cultivadas , Humanos , Células T Invariantes Associadas à Mucosa/metabolismo , Ribitol/análogos & derivados , Ribitol/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia
8.
Methods Mol Biol ; 2098: 97-124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31792818

RESUMO

Mucosal-associated invariant T (MAIT) cells are an abundant innate-like T cell subset in humans, enriched in mucosal tissues and the liver. MAIT cells express a semi-invariant T cell receptor (TCR) and recognize microbial-derived riboflavin metabolites presented on the MHC Class I-like molecule MR1. In addition to activation via the TCR, MAIT cells can also be activated in response to cytokines such as IL-12 and IL-18, in contrast to conventional T cells. Here we describe TCR-dependent and -independent methods for MAIT cell activation. The TCR-dependent approaches include stimulation with microbead- or plate-bound anti-CD3/anti-CD28 antibodies, and with 5-OP-RU or paraformaldehyde (PFA)-fixed E. coli in the presence of antigen-presenting cells (APCs). The latter method includes a combination of TCR- and cytokine-mediated stimulation. The TCR-independent methods include direct stimulation with the recombinant cytokines IL-12 and IL-18, and indirect stimulation with TLR-4/TLR-8 agonists or influenza A virus in the presence of APCs. Finally, we outline a protocol to analyze activated MAIT cells using flow cytometry.


Assuntos
Ativação Linfocitária/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Escherichia coli/imunologia , Citometria de Fluxo , Humanos , Imunofenotipagem , Ativação Linfocitária/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Coloração e Rotulagem , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Vírus/imunologia
9.
Immunol Cell Biol ; 96(6): 573-587, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29656544

RESUMO

Mucosal associated invariant T (MAIT) cells are restricted by the monomorphic MHC class I-like molecule, MHC-related protein-1 (MR1). Until 2012, the origin of the MAIT cell antigens (Ags) was unknown, although it was established that MAIT cells could be activated by a broad range of bacteria and yeasts, possibly suggesting a conserved Ag. Using a combination of protein chemistry, mass spectrometry, cellular biology, structural biology and small molecule chemistry, we discovered MR1 ligands derived from folic acid (vitamin B9) and from an intermediate in the microbial biosynthesis of riboflavin (vitamin B2). While the folate derivative 6-formylpterin generally inhibited MAIT cell activation, two riboflavin pathway derivatives, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil, were potent MAIT cell agonists. Other intermediates and derivatives of riboflavin synthesis displayed weak or no MAIT cell activation. Collectively, these studies revealed that in addition to peptide and lipid-based Ags, small molecule natural product metabolites are also ligands that can activate T cells expressing αß T-cell receptors, and here we recount this discovery.


Assuntos
Antígenos/imunologia , Ativação Linfocitária/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA