Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 14(1): 014401, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877557

RESUMO

The multiband iron-based superconductors have layered structure with a phase diagram characterized by a complex interplay of charge, spin and lattice excitations, with nanoscale atomic structure playing a key role in their fundamental electronic properties. In this paper, we briefly review nanoscale structure and atomic disorder in iron-based chalcogenide superconductors. We focus on the Fe(Se,S)1-x Te x (11-type) and K0.8Fe1.6Se2 (122-type) systems, discussing their local structure obtained by extended x-ray absorption fine structure. Local structure studies on the Fe(Se,S)1-x Te x system reveal clear nanoscale phase separation characterized by coexisting components of different atomic configurations, similar to the case of random alloys. In fact, the Fe-Se/S and Fe-Te distances in the ternary Fe(Se,S)1-x Te x are found to be closer to the respective distances in the binary FeSe/FeS and FeTe systems, showing significant divergence of the local structure from the average one. The observed features are characteristic of ternary random alloys, indicating breaking of the local symmetry in these materials. On the other hand, K0.8Fe1.6Se2 is known for phase separation in an iron-vacancy ordered phase and an in-plane compressed lattice phase. The local structure of these 122-type chalcogenides shows that this system is characterized by a large local disorder. Indeed, the experiments suggest a nanoscale glassy phase in K0.8Fe1.6Se2, with the superconductivity being similar to the granular materials. While the 11-type structure has no spacer layer, the 122-type structure contains intercalated atoms unlike the 1111-type REFeAsO (RE = rare earth) oxypnictides, having well-defined REO spacer layers. It is clear that the interlayer atomic correlations in these iron-based superconducting structures play an important role in structural stability as well as superconductivity and magnetism.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31080344

RESUMO

We present a hybrid approach for Bethe-Salpeter equation (BSE) calculations of core excitation spectra, including x-ray absorption (XAS), electron energy loss spectra (EELS), and nonresonant inelastic x-ray scattering (NRIXS). The method is based on ab initio wave functions from the plane-wave pseudopotential code ABINIT; atomic core-level states and projector augmented wave (PAW) transition matrix elements; the NIST core-level BSE solver; and a many-pole self-energy model to account for final-state broadening and self-energy shifts. Multiplet effects are also approximately accounted for. The approach is implemented using an interface dubbed OCEAN (Obtaining Core Excitations using ABINIT and NBSE). To demonstrate the utility of the code we present results for the K edges in LiF as probed by XAS and NRIXS, the K edges of KCl as probed by XAS, the Ti L2,3 edge in SrTiO3 as probed by XAS, and the Mg L2,3 edge in MgO as probed by XAS. These results are compared with experiment and with other theoretical approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA