Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biochem ; 174(5): 409-420, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37488092

RESUMO

Amyloid-ß (Aß) accumulation caused by an imbalance of the production and clearance of Aß in the brain is associated with the development of Alzheimer's disease (ad). Apolipoprotein E (ApoE) (the strongest genetic risk factor) enhances Aß clearance, preventing Aß deposition. Sirtuin 2 (Sirt2) is an NAD+-dependent histone deacetylase and its inhibition has been reported to ameliorate memory impairment in ad-like model mice. However, the role of Sirt2 in ApoE secretion is unknown. Here, we found that inhibition of Sirt2 activity in primary cultured astrocytes and BV2 cells decreased ApoE secretion, resulting in the accumulation of intracellular ApoE and inhibiting extracellular Aß degradation. However, the reduction of Sirt2 protein level by Sirt2 siRNA decreased ApoE protein level, which ultimately reduces ApoE secretion. In addition, the knockdown of Sirt2 in the HEK293-APP cells also decreased levels of intracellular ApoE leading to reduction of its secretion, which is accompanied by increased Aß levels without altering APP and APP processing enzymes. Our findings provide a novel role of Sirt2 in ApoE secretion.


Assuntos
Doença de Alzheimer , Sirtuína 2 , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrócitos , Encéfalo/metabolismo , Células HEK293 , Camundongos Transgênicos , Microglia/metabolismo , Sirtuína 2/metabolismo
2.
JACC Basic Transl Sci ; 8(1): 88-105, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36777165

RESUMO

This article provides a contemporary review and a new perspective on the role of neprilysin inhibition in heart failure (HF) in the context of recent clinical trials and addresses potential mechanisms and unanswered questions in certain HF patient populations. Neprilysin is an endopeptidase that cleaves a variety of peptides such as natriuretic peptides, bradykinin, adrenomedullin, substance P, angiotensin I and II, and endothelin. It has a broad role in cardiovascular, renal, pulmonary, gastrointestinal, endocrine, and neurologic functions. The combined angiotensin receptor and neprilysin inhibitor (ARNi) has been developed with an intent to increase vasodilatory natriuretic peptides and prevent counterregulatory activation of the angiotensin system. ARNi therapy is very effective in reducing the risks of death and hospitalization for HF in patients with HF and New York Heart Association functional class II to III symptoms, but studies failed to show any benefits with ARNi when compared with angiotensin-converting enzyme inhibitors or angiotensin receptor blocker in patients with advanced HF with reduced ejection fraction or in patients following myocardial infarction with left ventricular dysfunction but without HF. These raise the questions about whether the enzymatic breakdown of natriuretic peptides may not be a very effective solution in advanced HF patients when there is downstream blunting of the response to natriuretic peptides or among post-myocardial infarction patients in the absence of HF when there may not be a need for increased natriuretic peptide availability. Furthermore, there is a need for additional studies to determine the long-term effects of ARNi on albuminuria, obesity, glycemic control and lipid profile, blood pressure, and cognitive function in patients with HF.

3.
Radiol Case Rep ; 18(1): 275-279, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36388611

RESUMO

Patients with Alzheimer's disease who have been given monoclonal antibodies targeting amyloid-ß (Aß) (eg, gantenerumab, donanemab, lecanemab, and aducanumab) for scientific purposes may have a spectrum of imaging findings known as amyloid-related imaging abnormalities (ARIA), shown on brain magnetic resonance imaging (MRI) scans. These neuroimaging abnormalities are caused by antibody-mediated destruction of accumulated Aß aggregates in cerebral blood vessels and brain parenchyma. ARIA may demonstrate as brain edema or sulcal effusion (ARIA-E) or as hemosiderin deposits caused by brain parenchymal or pial hemorrhage (ARIA-H). The current study explores 2 cases with interval development of FLAIR hyper signal intensity along the bilateral corticospinal tracts in the motor cortex/precentral gyri after treatment by aducanumab. We believe this manifestation is a subtype of ARIA-A that has not been explored earlier. Our first case was a 72-year-old woman with a history of HTN and kidney transplant (polycystic kidney) who presented with mild cognitive impairment with clinical findings consistent with early Alzheimer's disease. After receiving 3 doses of aducunumab and experiencing cognition improvement, she underwent a brain MRI because of dizziness and vertigo. The brain MRI demonstrated new FLAIR hyper signal intensity in subcortical regions of precentral gyri (motor cortex) symmetrically as well as trace subarachnoid hemorrhage at the vertex compatible with ARIA-E and ARIA-H. Our second case was an 85-year-old woman with a history of small lymphocytic leukemia which was treated 20 years earlier. After orthopedic surgery 2 years ago, she developed dementia with anterograde amnesia. Since then, Aricept and Namenda have been started, but there have been no improvements in her subjective condition. The initial Amyloid PET/MR imaging showed diffuse cerebral Amyloid deposition. After tolerating 6 doses of aducanumab a safety MRI revealed new bilateral symmetric FLAIR hyper signal intensity in the subcortical motor cortex. Results of our study suggest that the subcortical corticospinal tract is another hotspot for ARIA findings. Hence, these regions might be an unknown site for both the action and adverse effects of aducanumab on amyloid plaques with secondary inflammation. In addition, radiologists must take this phenomenon into the account, and be cognizant that the FLAIR hyper signal intensities should not be misinterpreted as motor neuron disease (eg, amyotrophic lateral sclerosis).

4.
Data Brief ; 45: 108598, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36425960

RESUMO

Nanostructured surfaces are widespread in nature and are being further developed in materials science. This makes them highly relevant for biomolecules, such as peptides. In this data article, we present a curvature model and molecular dynamics (MD) simulation data on the influence of nanoparticle size on the stability of amyloid peptide fibrils related to our research article entitled "Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation" (John et al., 2022) [1]. We provide the code to perform MD simulations in GROMACS 4.5.7 software of arbitrarily chosen biomolecule oligomers adsorbed on a curved surface of chosen nanoparticle size. We also provide the simulation parameters and data for peptide oligomers of Aß40, NNFGAIL, GNNQQNY, and VQIYVK. The data provided allows researchers to further analyze our MD simulations and the curvature model allows for a better understanding of oligomeric structures on surfaces.

5.
Acta Pharm Sin B ; 12(4): 2043-2056, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847504

RESUMO

The presence of protein corona on the surface of nanoparticles modulates their physiological interactions such as cellular association and targeting property. It has been shown that α-mangostin (αM)-loaded poly(ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles (NP-αM) specifically increased low density lipoprotein receptor (LDLR) expression in microglia and improved clearance of amyloid beta (Aß) after multiple administration. However, how do the nanoparticles cross the blood‒brain barrier and access microglia remain unknown. Here, we studied the brain delivery property of PEG-PLA nanoparticles under different conditions, finding that the nanoparticles exhibited higher brain transport efficiency and microglia uptake efficiency after αM loading and multiple administration. To reveal the mechanism, we performed proteomic analysis to characterize the composition of protein corona formed under various conditions, finding that both drug loading and multiple dosing affect the composition of protein corona and subsequently influence the cellular uptake of nanoparticles in b.End3 and BV-2 cells. Complement proteins, immunoglobulins, RAB5A and CD36 were found to be enriched in the corona and associated with the process of nanoparticles uptake. Collectively, we bring a mechanistic understanding about the modulator role of protein corona on targeted drug delivery, and provide theoretical basis for engineering brain or microglia-specific targeted delivery system.

6.
J Ginseng Res ; 46(3): 464-472, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600775

RESUMO

Background: Gut microbiota influence the central nervous system through gut-brain-axis. They also affect the neurological disorders. Gut microbiota differs in patients with Alzheimer's disease (AD), as a potential factor that leads to progression of AD. Oral intake of Korean Red Ginseng (KRG) improves the cognitive functions. Therefore, it can be proposed that KRG affect the microbiota on the gut-brain-axis to the brain. Methods: Tg2576 were used for the experimental model of AD. They were divided into four groups: wild type (n = 6), AD mice (n = 6), AD mice with 30 mg/kg/day (n = 6) or 100 mg/kg/day (n = 6) of KRG. Following two weeks, changes in gut microbiota were analyzed by Illumina HiSeq4000 platform 16S gene sequencing. Microglial activation were evaluated by quantitative Western blot analyses of Iba-1 protein. Claudin-5, occludin, laminin and CD13 assay were conducted for Blood-brain barrier (BBB) integrity. Amyloid beta (Aß) accumulation demonstrated through Aß 42/40 ratio was accessed by ELISA, and cognition were monitored by Novel object location test. Results: KRG improved the cognitive behavior of mice (30 mg/kg/day p < 0.05; 100 mg/kg/day p < 0.01), and decreased Aß 42/40 ratio (p < 0.01) indicating reduced Aß accumulation. Increased Iba-1 (p < 0.001) for reduced microglial activation, and upregulation of Claudin-5 (p < 0.05) for decreased BBB permeability were shown. In particular, diversity of gut microbiota was altered (30 mg/kg/day q-value<0.05), showing increased population of Lactobacillus species. (30 mg/kg/day 411%; 100 mg/kg/day 1040%). Conclusions: KRG administration showed the Lactobacillus dominance in the gut microbiota. Improvement of AD pathology by KRG can be medicated through gut-brain axis in mice model of AD.

7.
Acta Pharm Sin B ; 12(2): 483-495, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256930

RESUMO

Alzheimer's disease (AD), the most prominent form of dementia in the elderly, has no cure. Strategies focused on the reduction of amyloid beta or hyperphosphorylated Tau protein have largely failed in clinical trials. Novel therapeutic targets and strategies are urgently needed. Emerging data suggest that in response to environmental stress, mitochondria initiate an integrated stress response (ISR) shown to be beneficial for healthy aging and neuroprotection. Here, we review data that implicate mitochondrial electron transport complexes involved in oxidative phosphorylation as a hub for small molecule-targeted therapeutics that could induce beneficial mitochondrial ISR. Specifically, partial inhibition of mitochondrial complex I has been exploited as a novel strategy for multiple human conditions, including AD, with several small molecules being tested in clinical trials. We discuss current understanding of the molecular mechanisms involved in this counterintuitive approach. Since this strategy has also been shown to enhance health and life span, the development of safe and efficacious complex I inhibitors could promote healthy aging, delaying the onset of age-related neurodegenerative diseases.

8.
IBRO Neurosci Rep ; 12: 131-141, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35146484

RESUMO

Lysosomal network abnormalities are an increasingly recognised feature of Alzheimer's disease (AD), which appear early and are progressive in nature. Sandhoff disease and Tay-Sachs disease (neurological lysosomal storage diseases caused by mutations in genes that code for critical subunits of ß-hexosaminidase) result in accumulation of amyloid-ß (Aß) and related proteolytic fragments in the brain. However, experiments that determine whether mutations in genes that code for ß-hexosaminidase are risk factors for AD are currently lacking. To determine the relationship between ß-hexosaminidase and AD, we investigated whether a heterozygous deletion of Hexb, the gene that encodes the beta subunit of ß-hexosaminidase, modifies the behavioural phenotype and appearance of disease lesions in App NL-G-F/NL-G-F (App KI/KI ) mice. App KI/KI and Hexb +/- mice were crossed and evaluated in a behavioural test battery. Neuropathological hallmarks of AD and ganglioside levels in the brain were also examined. Heterozygosity of Hexb in App KI/KI mice reduced learning flexibility during the Reversal Phase of the Morris water maze. Contrary to expectation, heterozygosity of Hexb caused a small but significant decrease in amyloid beta deposition and an increase in the microglial marker IBA1 that was region- and age-specific. Hexb heterozygosity caused detectable changes in the brain and in the behaviour of an AD model mouse, consistent with previous reports that described a biochemical relationship between HEXB and AD. This study reveals that the lysosomal enzyme gene Hexb is not haplosufficient in the mouse AD brain.

9.
Acta Pharm Sin B ; 11(8): 2306-2325, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34522589

RESUMO

Blood-brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.

10.
Toxicol Rep ; 8: 1156-1168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150525

RESUMO

Mesenchymal stem cells (MSCs) possess a preventive capacity against free radical toxicity in various tissues. The present study aimed to demonstrate the reformative and treatment roles of adipose-derived MSCs (AD-MSCs) against severe toxicity in the hippocampal cells of the brain caused by aluminum oxide nanoparticles (Al2O3-NPs). Rats were divided into five experimental groups: an untreated control group, a control group receiving NaCl, a group receiving Al2O3-NPs (6 mg/kg) for 20 days, a group that was allowed to recover (R) for 20 days following treatment with Al2O3-NPs, and a Al2O3-NPs + AD-MSCs group, where each rat was injected with 0.8 × 106 AD-MSCs via the caudal vein. Oral administration of Al2O3-NPs increased the protein levels of P53, cleaved caspase-3, CYP2E1, and beta-amyloid (Aß); contrarily, AD-MSCs transplantation downregulated the levels of these proteins. In addition, the AD-MSCs-treated hippocampal cells were protected from Al2O3-NPs-induced toxicity, as detected by the expression levels of Sox2 and Oct4 that are essential for the maintenance of self-renewal. It was also found that AD-MSCs injection significantly altered the levels of brain total peroxide and monoamine oxidase (MAO)-A and MAO-B activities. Histologically, our results indicated that AD-MSCs alleviated the severe damage in the hippocampal cells induced by Al2O3-NPs. Moreover, the role of AD-MSCs in reducing hippocampal cell death was reinforced by the regulation of P53, cleaved caspase-3, Aß, and CYP2E1 proteins, as well as by the regulation of SOX2 and OCT4 levels and MAO-A and MAO-B activities.

11.
Acta Pharm Sin B ; 11(5): 1341-1354, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094838

RESUMO

Breast cancer brain metastases (BCBMs) are one of the most difficult malignancies to treat due to the intracranial location and multifocal growth. Chemotherapy and molecular targeted therapy are extremely ineffective for BCBMs due to the inept brain accumulation because of the formidable blood‒brain barrier (BBB). Accumulation studies prove that low density lipoprotein receptor-related protein 1 (LRP1) is promising target for BBB transcytosis. However, as the primary clearance receptor for amyloid beta and tissue plasminogen activator, LRP1 at abluminal side of BBB can clear LRP1-targeting therapeutics. Matrix metalloproteinase-1 (MMP1) is highly enriched in metastatic niche to promote growth of BCBMs. Herein, it is reported that nanoparticles (NPs-K-s-A) tethered with MMP1-sensitive fusion peptide containing HER2-targeting K and LRP1-targeting angiopep-2 (A), can surmount the BBB and escape LRP1-mediated clearance in metastatic niche. NPs-K-s-A revealed infinitely superior brain accumulation to angiopep-2-decorated NPs-A in BCBMs bearing mice, while comparable brain accumulation in normal mice. The delivered doxorubicin and lapatinib synergistically inhibit BCBMs growth and prolongs survival of mice bearing BCBMs. Due to the efficient BBB penetration, special and remarkable clearance escape, and facilitated therapeutic outcome, the fusion peptide-based drug delivery strategy may serve as a potential approach for clinical management of BCBMs.

12.
J Adv Res ; 34: 1-12, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35024177

RESUMO

Introduction: Alzheimer's disease (AD) is a progressive brain disorder, and one of the most common causes of dementia and amnesia. Due to the complex pathogenesis of AD, the underlying mechanisms remain unclear. Although scientists have made increasing efforts to develop drugs for AD, no effective therapeutic agents have been found. Objectives: Natural products and their constituents have shown promise for treating neurodegenerative diseases, including AD. Thus, in-depth study of medical plants, and the main active ingredients thereof against AD, is necessary to devise therapeutic agents. Methods: In this study, N2a/APP cells and SAMP8 mice were employed as in vitro and in vivo models of AD. Multiple molecular biological methods were used to investigate the potential therapeutic actions of oxyphylla A, and the underlying mechanisms. Results: Results showed that oxyphylla A, a novel compound extracted from Alpinia oxyphylla, could reduce the expression levels of amyloid precursor protein (APP) and amyloid beta (Aß) proteins, and attenuate cognitive decline in SAMP8 mice. Further investigation of the underlying mechanisms showed that oxyphylla A exerted an antioxidative effect through the Akt-GSK3ß and Nrf2-Keap1-HO-1 pathways.Conclusions.Taken together, our results suggest a new horizon for the discovery of therapeutic agents for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Caproatos , Cognição , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Cresóis , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt
13.
Nutr Neurosci ; 24(2): 82-89, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30905309

RESUMO

Objectives: Alzheimer's disease (AD) is a neurodegenerative disorder resulting from the accumulation of toxic ß-amyloid (Aß) aggregates in the human brain. Epidemiological studies have shown that elevated cholesterol plasma levels are associated with the development of AD and we have previously shown that cholesterol restriction reduces the Aß-induced paralysis in an Alzheimer model of the nematode Caenorhabditis elegans. In the present study we investigated the effects of the cholesterol homolog cholecalciferol, i.e. vitamin D, on Aß-induced paralysis in C. elegans and its interference with the steroid-signaling pathway. Methods: Aß-induced paralysis was assessed in the C. elegans strain CL2006, expressing human Aß1-42 under control of a muscle-specific promoter. Knockdown of members of the steroid-signaling pathway was achieved by RNA interference (RNAi). Nuclear translocation of foxo transcription factor DAF-16 was visualized using the strain TJ356, carrying a daf-16::gfp transgene. Results: Cholecalciferol at a concentration of 1 µM reduced the Aß-induced paralysis in CL2006 significantly, which was reverted by increasing the cholesterol concentration in the medium. Knockdown of nhr-8, daf-36, daf-9 or daf-12, all reduced Aß-induced paralysis to the same extent as cholecalciferol with no additional or synergistic effects under co-application. Functional DAF-16 proved to be crucial for the effects of cholecalciferol and DAF-16 nuclear translocation was increased by cholecalciferol and also RNAi versus nhr-8, daf-36, daf-9 or daf-12 with no additive or synergistic effects. Conclusions: Our results suggest, that cholecalciferol inhibits Aß-induced paralysis in C. elegans through inhibition of steroid-signaling and the concomitant nuclear translocation of DAF-16.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Colecalciferol/metabolismo , Paralisia/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Paralisia/induzido quimicamente , Transdução de Sinais
14.
J Ginseng Res ; 44(4): 538-543, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32617033

RESUMO

Cardiovascular diseases are a rapidly growing epidemic with high morbidity and mortality. There is an urgent need to develop nutraceutical-based therapy with minimum side effects to reduce cardiovascular risk. Panax ginseng occupies a prominent status in herbal medicine for its various therapeutic effects against inflammation, allergy, diabetes, cardiovascular diseases, and even cancer, with positive, beneficial, and restorative effects. The active components found in most P. ginseng varieties are known to include ginsenosides, polysaccharides, peptides, alkaloids, polyacetylene, and phenolic compounds, which are considered to be the main pharmacologically active constituents in ginseng. P. ginseng is an adaptogen. That is, it supports living organisms to maintain optimal homeostasis by exerting effects that counteract physiological changes caused by physical, chemical, or biological stressors. P. ginseng possesses immunomodulatory (including both immunostimulatory and immunosuppressive), neuromodulatory, and cardioprotective effects; suppresses anxiety; and balances vascular tone. P. ginseng has an antihypertensive effect that has been explained by its vasorelaxant action, and paradoxically, it is also known to increase blood pressure by vasoconstriction and help maintain cardiovascular health. Here, we discuss the potential adaptogenic effects of P. ginseng on the cardiovascular system and outline a future research perspective in this area.

15.
Toxicol Rep ; 7: 583-595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426239

RESUMO

The advent of new technologies has paved the rise of various chemicals that are being employed in industrial as well as consumer products. This leads to the accumulation of these xenobiotic compounds in the environment where they pose a serious threat to both target and non-target species. miRNAs are one of the key epigenetic mechanisms that have been associated with toxicity by modulating the gene expression post-transcriptionally. Here, we provide a comprehensive view on miRNA biogenesis, their mechanism of action and, their possible role in xenobiotic toxicity. Further, we review the recent in vitro and in vivo studies involved in xenobiotic exposure induced miRNA alterations and the mRNA-miRNA interactions. Finally, we address the challenges associated with the miRNAs in toxicological studies.

16.
Saudi J Biol Sci ; 27(2): 736-750, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32210695

RESUMO

The incidence of Alzheimer's disease (AD) has risen exponentially worldwide over the past decade. A growing body of research indicates that AD is linked to diabetes mellitus (DM) and suggests that impaired insulin signaling acts as a crucial risk factor in determining the progression of this devastating disease. Many studies suggest people with diabetes, especially type 2 diabetes, are at higher risk of eventually developing Alzheimer's dementia or other dementias. Despite nationwide efforts to increase awareness, the prevalence of Diabetes Mellitus (DM) has risen significantly in the Middle East and North African (MENA) region which might be due to rapid urbanization, lifestyle changes, lack of physical activity and rise in obesity. Growing body of evidence indicates that DM and AD are linked because both conditions involve impaired glucose homeostasis and altered brain function. Current theories and hypothesis clearly implicate that defective insulin signaling in the brain contributes to synaptic dysfunction and cognitive deficits in AD. In the periphery, low-grade chronic inflammation leads to insulin resistance followed by tissue deterioration. Thus insulin resistance acts as a bridge between DM and AD. There is pressing need to understand on how DM increases the risk of AD as well as the underlying mechanisms, due to the projected increase in age related disorders. Here we aim to review the incidence of AD and DM in the Middle East and the possible link between insulin signaling and ApoE carrier status on Aß aggregation, tau hyperphosphorylation, inflammation, oxidative stress and mitochondrial dysfunction in AD. We also critically reviewed mutation studies in Arab population which might influence DM induced AD. In addition, recent clinical trials and animal studies conducted to evaluate the efficiency of anti-diabetic drugs have been reviewed.

17.
Comput Struct Biotechnol J ; 17: 579-590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073393

RESUMO

Deregulation of Cdk5 is a hallmark in neurodegenerative diseases and its complex with p25 forms Cdk5/p25, thereby causes severe neuropathological insults. Cdk5/p25 abnormally phosphorylates tau protein, and induces tau-associated neurofibrillary tangles in neurological disorders. Therefore, the pharmacological inhibition of Cdk5/p25 alleviates tau-associated neurological disorders. Herein, computational simulations probed two candidate inhibitors of Cdk5/p25. Structure-based pharmacophore investigated the essential complementary chemical features of ATP-binding site of Cdk5 in complex with roscovitine. Resultant pharmacophore harbored polar interactions with Cys83 and Asp86 residues and non-polar interactions with Ile10, Phe80, and Lys133 residues of Cdk5. The chemical space of selected pharmacophore was comprised of two hydrogen bond donors, one hydrogen bond acceptor, and three hydrophobic features. Decoy test validation of pharmacophore obtained highest Guner-Henry score (0.88) and enrichment factor score (7.23). The screening of natural product drug-like databases by validated pharmacophore retrieved 1126 compounds as candidate inhibitors of Cdk5/p25. The docking of candidate inhibitors filtered 10 molecules with docking score >80.00 and established polar and non-polar interactions with the ATP-binding site residues of Cdk5/p25. Finally, molecular dynamics simulation and binding free energy analyses identified two candidate inhibitors of Cdk5/p25. During 30 ns simulation, the candidate inhibitors established <3.0 Šroot mean square deviation and stable hydrogen bond interactions with the ATP-binding site residues of Cdk5/p25. The final candidate inhibitors obtained lowest binding free energies of -122.18 kJ/mol and - 117.26 kJ/mol with Cdk5/p25. Overall, we recommend two natural product candidate inhibitors to target the pharmacological inhibition of Cdk5/p25 in tau-associated neurological disorders.

18.
Clin Mass Spectrom ; 14 Pt B: 83-88, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34917764

RESUMO

In the field of Alzheimer's disease, there is an urgent need for novel analytical tools to identify disease-specific biomarkers and to evaluate therapeutics. Preclinical trials commonly employ amyloid beta (Aß) peptide signatures as a read-out. In this paper, we report a simplified and detailed protocol for robust immunoprecipitation of Aß in brain tissue prior to mass spectrometric detection exemplified by a study using transgenic mice. The established method employed murine monoclonal and rabbit polyclonal antibodies and was capable of yielding well-reproducible peaks of high intensity with low background signal intensities corresponding to various Aß forms.

19.
J Biomol Struct Dyn ; 37(5): 1282-1306, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29578387

RESUMO

Alzheimer's disease (AD) is a multi-factorial disease, which can be simply outlined as an irreversible and progressive neurodegenerative disorder with an unclear root cause. It is a major cause of dementia in old aged people. In the present study, utilizing the structural and biological activity information of ligands for five important and mostly studied vital targets (i.e. cyclin-dependant kinase 5, ß-secretase, monoamine oxidase B, glycogen synthase kinase 3ß, acetylcholinesterase) that are believed to be effective against AD, we have developed five classification models using linear discriminant analysis (LDA) technique. Considering the importance of data curation, we have given more attention towards the chemical and biological data curation, which is a difficult task especially in case of big data-sets. Thus, to ease the curation process we have designed Konstanz Information Miner (KNIME) workflows, which are made available at http://teqip.jdvu.ac.in/QSAR_Tools/ . The developed models were appropriately validated based on the predictions for experiment derived data from test sets, as well as true external set compounds including known multi-target compounds. The domain of applicability for each classification model was checked based on a confidence estimation approach. Further, these validated models were employed for screening of natural compounds collected from the InterBioScreen natural database ( https://www.ibscreen.com/natural-compounds ). Further, the natural compounds that were categorized as 'actives' in at least two classification models out of five developed models were considered as multi-target leads, and these compounds were further screened using the drug-like filter, molecular docking technique and then thoroughly analyzed using molecular dynamics studies. Finally, the most potential multi-target natural compounds against AD are suggested.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Descoberta de Drogas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Doença de Alzheimer/tratamento farmacológico , Biomarcadores , Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Desenho de Fármacos , Humanos , Ligantes , Curva ROC , Fluxo de Trabalho
20.
Neuroimage Clin ; 19: 190-201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023169

RESUMO

Alzheimer's disease (AD) is characterized by an accumulation of ß-amyloid (Aß42) accompanied by brain atrophy and cognitive decline. Several recent studies have shown that Aß42 accumulation is associated with gray matter (GM) changes prior to the development of cognitive impairment, in the so-called preclinical stage of the AD (pre-AD). It also has been proved that the GM atrophy profile is not linear, both in normal ageing but, especially, on AD. However, several other factors may influence this association and may have an impact on the generalization of results from different samples. In this work, we estimate differences in rates of GM volume change in cognitively healthy elders in association with baseline core cerebrospinal fluid (CSF) AD biomarkers, and assess to what these differences are sample dependent. We report the dependence of atrophy rates, measured in a two-year interval, on Aß42, computed both over continuous and categorical values of Aß42, at voxel-level (p < 0.001; k < 100) and corrected for sex, age and education. Analyses were performed jointly and separately, on two samples. The first sample was formed of 31 individuals (22 Ctrl and 9 pre-AD), aged 60-80 and recruited at the Hospital Clinic of Barcelona. The second sample was a replica of the first one with subjects selected from the ADNI dataset. We also investigated the dependence of the GM atrophy rate on the basal levels of continuous p-tau and on the p-tau/Aß42 ratio. Correlation analyses on the whole sample showed a dependence of GM atrophy rates on Aß42 in medial and orbital frontal, precuneus, cingulate, medial temporal regions and cerebellum. Correlations with p-tau were located in the left hippocampus, parahippocampus and striatal nuclei whereas correlation with p-tau/Aß42 was mainly found in ventral and medial temporal areas. Regarding analyses performed separately, we found a substantial discrepancy of results between samples, illustrating the complexities of comparing two independent datasets even when using the same inclusion criteria. Such discrepancies may lead to significant differences in the sample size needed to detect a particular reduction on cerebral atrophy rates in prevention trials. Higher cognitive reserve and more advanced pathological progression in the ADNI sample could partially account for the observed discrepancies. Taken together, our findings in these two samples highlight the importance of comparing and merging independent datasets to draw more robust and generalizable conclusions on the structural changes in the preclinical stages of AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Encéfalo/patologia , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Atrofia/líquido cefalorraquidiano , Atrofia/diagnóstico por imagem , Atrofia/patologia , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA