Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.518
Filtrar
1.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38979201

RESUMO

Adoptive chimeric antigen receptor T-cell (CAR-T) therapy is transformative and approved for hematologic malignancies. It is also being developed for the treatment of solid tumors, autoimmune disorders, heart disease, and aging. Despite unprecedented clinical outcomes, CAR-T and other engineered cell therapies face a variety of manufacturing and safety challenges. Traditional methods, such as lentivirus transduction and electroporation, result in random integration or cause significant cellular damage, which can limit the safety and efficacy of engineered cell therapies. We present hydroporation as a gentle and effective alternative for intracellular delivery. Hydroporation resulted in 1.7- to 2-fold higher CAR-T yields compared to electroporation with superior cell viability and recovery. Hydroporated cells exhibited rapid proliferation, robust target cell lysis, and increased pro-inflammatory and regulatory cytokine secretion in addition to improved CAR-T yield by day 5 post-transfection. We demonstrate that scaled-up hydroporation can process 5 x 108 cells in less than 10 s, showcasing the platform as a viable solution for high-yield CAR-T manufacturing with the potential for improved therapeutic outcomes.

2.
Quant Imaging Med Surg ; 14(7): 4998-5011, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022287

RESUMO

Background: As an autoimmune disease, antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) often affects multiple organs, including the ocular system. This study aims to investigate differences in retinal thickness (RT) and retinal superficial vascular density (SVD) between patients with AAV and healthy controls (HCs) using optical coherence tomography angiography (OCTA). Currently, these differences are not clear. Methods: A total of 16 AAV individuals (32 eyes) and 16 HCs (32 eyes) were recruited to this cross-sectional study conducted in the First Affiliated Hospital of Nanchang University from June 2023 to September 2023. The study protocol conformed with the tenets of the Declaration of Helsinki (as revised in 2013). Each image observed by OCTA was divided into 9 regions using the Early Treatment Diabetic Retinopathy Study (ETDRS) subzones as a guide. Results: In the full layer, the RT of AAV patients was found to be significantly reduced in the inner superior (IS, P<0.001), outer superior (OS, P=0.003), inner temporal (IT, P=0.003), and outer temporal (OT, P<0.001) regions; inner RT was significantly lower in the IS (P=0.006), OS (P<0.001), inner nasal (IN, P=0.005), outer nasal (ON, P<0.001), and center (C, P=0.01) regions than that in HCs. Outer RT of AAV patients showed a reduction in the IS (P<0.001), as well as IT (P=0.008), and OT (P<0.001) regions. No statistically significant differences were seen in the different subregions in other different layers (P>0.05). Only the inner inferior (II) and outer inferior (OI) regions of SVD in AAV patients did not differ significantly from controls. All other regions showed a reduction in SVD. The details are as follows: IS (P<0.001), OS (P<0.001), IT (P=0.005), OT (P<0.001), IN (P<0.001), ON (P<0.001), and C (P=0.003). According to receiver operating characteristic (ROC) curve analysis, the full IS region [area under the curve (AUC): 0.8892, 95% confidence interval (CI): 0.8041-0.9742, P<0.001] had the highest diagnostic value for AAV-induced reduction in RT. The IS (AUC: 0.9121, 95% CI: 0.8322-0.9920, P<0.001) region was also the most sensitive to changes in SVD of AAV individuals. In addition, we found that SVD in the IN region (r=-0.4224, 95% CI: -0.6779 to -0.0757, P=0.02) as well as mean visual acuity (r=-0.3922, 95% CI: -0.6579 to -0.0397, P=0.03) of AAV patients were negatively correlated with disease duration. However, we did not find an association between SVD and RT in this study. Conclusions: The findings from OCTA indicated a reduction in RT and SVD among patients with AAV. OCTA allows for the evaluation of AAV-related ocular lesions and holds promise for monitoring of disease progression through regular evaluations.

3.
Mol Ther Methods Clin Dev ; 32(3): 101275, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022742

RESUMO

Heterozygous mutations in the FOXG1 gene manifest as FOXG1 syndrome, a severe neurodevelopmental disorder characterized by structural brain anomalies, including agenesis of the corpus callosum, hippocampal reduction, and myelination delays. Despite the well-defined genetic basis of FOXG1 syndrome, therapeutic interventions targeting the underlying cause of the disorder are nonexistent. In this study, we explore the therapeutic potential of adeno-associated virus 9 (AAV9)-mediated delivery of the FOXG1 gene. Remarkably, intracerebroventricular injection of AAV9-FOXG1 to Foxg1 heterozygous mouse model at the postnatal stage rescues a wide range of brain pathologies. This includes the amelioration of corpus callosum deficiencies, the restoration of dentate gyrus morphology in the hippocampus, the normalization of oligodendrocyte lineage cell numbers, and the rectification of myelination anomalies. Our findings highlight the efficacy of AAV9-based gene therapy as a viable treatment strategy for FOXG1 syndrome and potentially other neurodevelopmental disorders with similar brain malformations, asserting its therapeutic relevance in postnatal stages.

4.
Mol Ther Methods Clin Dev ; 32(3): 101273, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39022744

RESUMO

Adeno-associated virus (AAV) vectors are promising gene therapy candidates, but pre-existing anti-AAV neutralizing antibodies (NAbs) pose a significant challenge to successful gene delivery. Knowledge of NAb seroprevalence remains limited and inconsistent. We measured activity of NAbs against six clinically relevant AAV serotypes across 10 countries in adults (n = 502) and children (n = 50) using a highly sensitive transduction inhibition assay. NAb prevalence was generally highest for AAV1 and lowest for AAV5. There was considerable variability across countries and geographical regions. NAb prevalence increased with age and was higher in females, participants of Asian ethnicity, and participants in cancer trials. Co-prevalence was most frequently observed between AAV1 and AAV6 and less frequently between AAV5 and other AAVs. Machine learning analyses revealed a unique clustering of AAVs that differed from previous phylogenetic classifications. These results offer insights into the biological relationships between the immunogenicity of AAVs in humans beyond that observed previously using standard clades, which are based on linear capsid sequences. Our findings may inform improved vector design and facilitate the development of AAV vector-mediated clinical gene therapies.

5.
Hum Gene Ther ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38970421

RESUMO

Adeno-associated virus-mediated gene therapies for certain muscle disorders require regulatory cassettes that provide high-level, striated muscle-specific activity. However, cardiotoxicity has emerged as a serious concern in clinical trials for Duchenne muscular dystrophy and X-linked myotubular myopathy. While this may be caused by systemic inflammatory effects of the treatment, high transgene expression in the heart may also play a role. Thus, certain muscle disorders may require a modulated level of therapeutic expression in the heart, while others may not require any cardiac expression at all. Additionally, the size of some cargos requires regulatory cassettes to be small enough that large cDNAs and other therapeutic payloads can be accommodated. Thus, we have performed enhancer/promoter optimization to develop highly minimized regulatory cassettes that are active in skeletal muscles, with either low or no detectable activity in cardiac muscle. Our No-heart (NH) cassette is active in most skeletal muscles, but exhibits only very low activity in extensor digitorum longus (EDL), soleus, and diaphragm, and no activity in the heart. By contrast, our Have a Little Heart (HLH) cassette displays high activity in most skeletal muscles, comparable to the ∼800-bp CK8 cassette, with increased activity in EDL, soleus, and diaphragm, and low activity in the heart. Due to their small size, these cassettes can be used in therapeutic strategies with both flexible (e.g., antisense) and stringent (e.g., CRISPR/Cas or bicistronic) size limitations. Thus, our new cassettes may be useful for gene therapies of muscle disorders in which the need for low or almost no expression in cardiac muscle would outweigh the need for high levels of therapeutic product in certain skeletal muscles.

6.
Sci Rep ; 14(1): 16490, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019967

RESUMO

Retinitis Pigmentosa is a leading cause of severe vision loss. Retinitis Pigmentosa can present with a broad range of phenotypes impacted by disease age of onset, severity, and progression. This variation is influenced both by different gene mutations as well as unique variants within the same gene. Mutations in the nuclear hormone receptor 2 family e, member 3 are associated with several forms of retinal degeneration, including Retinitis Pigmentosa. In our previous studies we demonstrated that subretinal administration of one Nr2e3 dose attenuated retinal degeneration in rd7 mice for at least 3 months. Here we expand the studies to evaluate the efficacy and longitudinal impact of the NR2E3 therapeutic by examining three different doses administered at early or intermediate stages of retinal degeneration in the rd7 mice. Our study revealed retinal morphology was significantly improved 6 months post for all doses in the early-stage treatment groups and for the low and mid doses in the intermediate stage treatment groups. Similarly, photoreceptor function was significantly improved in the early stage for all doses and intermediate stage low and mid dose groups 6 months post treatment. This study demonstrated efficacy in multiple doses of NR2E3 therapy.


Assuntos
Modelos Animais de Doenças , Receptores Nucleares Órfãos , Degeneração Retiniana , Animais , Camundongos , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/tratamento farmacológico , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Retinose Pigmentar/tratamento farmacológico , Retina/patologia , Retina/metabolismo , Retina/efeitos dos fármacos
7.
Theranostics ; 14(10): 3827-3842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994027

RESUMO

Rationale: In male mammals, many developmental-stage-specific RNA transcripts (both coding and noncoding) are preferentially or exclusively expressed in the testis, where they play important roles in spermatogenesis and male fertility. However, a reliable platform for efficiently depleting various types of RNA transcripts to study their biological functions during spermatogenesis in vivo has not been developed. Methods: We used an adeno-associated virus serotype nine (AAV9)-mediated CRISPR-CasRx system to knock down the expression of exogenous and endogenous RNA transcripts in the testis. Virus particles were injected into the seminiferous tubules via the efferent duct. Using an autophagy inhibitor, 3-methyladenine (3-MA), we optimized the AAV9 transduction efficiency in germ cells in vivo. Results: AAV9-mediated delivery of CRISPR-CasRx effectively and specifically induces RNA transcripts (both coding and noncoding) knockdown in the testis in vivo. In addition, we showed that the co-microinjection of AAV9 and 3-MA into the seminiferous tubules enabled long-term transgene expression in the testis. Finally, we found that a promoter of Sycp1 gene induced CRISPR-CasRx-mediated RNA transcript knockdown in a germ-cell-type-specific manner. Conclusion: Our results demonstrate the efficacy and versatility of the AAV9-mediated CRISPR-CasRx system as a flexible knockdown platform for studying gene function during spermatogenesis in vivo. This approach may advance the development of RNA-targeting therapies for conditions affecting reproductive health.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Técnicas de Silenciamento de Genes , Espermatogênese , Testículo , Masculino , Animais , Dependovirus/genética , Sistemas CRISPR-Cas/genética , Camundongos , Testículo/metabolismo , Técnicas de Silenciamento de Genes/métodos , Espermatogênese/genética , RNA/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem
8.
Mol Ther Methods Clin Dev ; 32(3): 101276, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-38983872

RESUMO

Glutaric aciduria type 1 (GA1) is a rare inherited metabolic disorder caused by a deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), with accumulation of neurotoxic metabolites, resulting in a complex movement disorder, irreversible brain damage, and premature death in untreated individuals. While early diagnosis and a lysine restricted diet can extend survival, they do not prevent neurological damage in approximately one-third of treated patients, and more effective therapies are required. Here we report the efficacy of adeno-associated virus 9 (AAV9)-mediated systemic delivery of human GCDH at preventing a high lysine diet (HLD)-induced phenotype in Gcdh -/- mice. Neonatal treatment with AAV-GCDH restores GCDH expression and enzyme activity in liver and striatum. This treatment protects the mice from HLD-aggressive phenotype with all mice surviving this exposure; in stark contrast, a lack of treatment on an HLD triggers very high accumulation of glutaric acid, 3-hydroxyglutaric acid, and glutarylcarnitine in tissues, with about 60% death due to brain accumulation of toxic lysine metabolites. AAV-GCDH significantly ameliorates the striatal neuropathology, minimizing neuronal dysfunction, gliosis, and alterations in myelination. Magnetic resonance imaging findings show protection against striatal injury. Altogether, these results provide preclinical evidence to support AAV-GCDH gene therapy for GA1.

9.
Acta Biomater ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025389

RESUMO

Recombinant adeno-associated viruses (rAAVs) have been extensively studied for decades as carriers for delivering therapeutic genes. However, designing rAAV vectors with selective tropism for specific cell types and tissues has remained challenging. Here, we introduce a strategy for redirecting rAAV by attaching nanobodies with desired tropism at specific sites, effectively replacing the original tropism. To demonstrate this concept, we initially modified the genetic code of rAAV2 to introduce an azido-containing unnatural amino acid at a precise site within the capsid protein. Following a screening process, we identified a critical site (N587+1) where the introduction of unnatural amino acid eliminated the natural tropism of rAAV2. Subsequently, we successfully redirected rAAV2 by conjugating various nanobodies at the N587+1 site, using click and SpyTag-Spycatcher chemistries to form nanobody-AAV conjugates (NACs). By investigating the relationship between NACs quantity and effect and optimizing the linker between rAAV2 and the nanobody using a cathepsin B-susceptible valine-citrulline (VC) dipeptide, we significantly improved gene delivery efficiency both in vitro and in vivo. This enhancement can be attributed to the facilitated endosomal escape of rAAV2. Our method offers an exciting avenue for the rational modification of rAAV2 as a retargeting vehicle, providing a convenient platform for precisely engineering various rAAV2 vectors for both basic research and therapeutic applications. STATEMENT OF SIGNIFICANCE: AAVs hold great promise in the treatment of genetic diseases, but their clinical use has been limited by off-target transduction and efficiency. Here, we report a strategy to construct NACs by conjugating a nanobody or scFv to an rAAV capsid site, specifically via biorthogonal click chemistry and a spy-spycatcher reaction. We explored the structure-effect and quantity-effect relationships of NACs and then optimized the transduction efficiency by introducing a valine-citrulline peptide linker. This approach provides a biocompatible method for rational modification of rAAV as a retargeting platform without structural disruption of the virus or alteration of the binding capacity of the nanobody, with potential utility across a broad spectrum of applications in targeted imaging and gene delivery.

10.
Mol Ther ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956871

RESUMO

Chronic pancreatitis (CP) is marked by progressive fibrosis and the activation of pancreatic stellate cells (PSCs), accompanied by the destruction of pancreatic parenchyma, leading to the loss of acinar cells (ACs). Few research studies have explored the mechanism by which damaged ACs (DACs) contribute to PSCs activation and pancreatic fibrosis. Currently, there are no effective drugs for curing CP or limiting the progression of pancreatic fibrosis. In this research, co-culture with intact acinar cells (IACs) suppressed PSC activation, while co-culture with DACs did the opposite. Krüppel-like factor 4 (KLF4) was significantly upregulated in DACs and was established as the key molecule that switches ACs from PSCs-suppressor to PSCs-activator. We revealed the exosomes of IACs contributed to the anti-activated function of IACs-CS on PSCs. MiRNome profiling showed that let-7 family is significantly enriched in IAC-derived exosomes (>30% miRNome), which partially mediates IACs' suppressive impacts on PSCs. Furthermore, it has been observed that the enrichment of let-7 in exosomes was influenced by the expression level of KLF4. Mechanistic studies demonstrated that KLF4 in ACs upregulated Lin28A, thereby decreasing let-7 levels in AC-derived exosomes, and thus promoting PSCs activation. We utilized an adeno-associated virus specifically targeting KLF4 in ACs (shKLF4-pAAV) to suppress PSCs activation in CP, resulting in reduced pancreatic fibrosis. IAC-derived exosomes hold potential as potent weapons against PSCs activation via let-7s, while activated KLF4/Lin28A signaling in DACs diminished such functions. ShKLF4-pAAV holds promise as a novel therapeutic approach for CP.

11.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000316

RESUMO

We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood-brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding a SCA3 causative gene containing abnormally long 89 CAG repeats [ATXN3(Q89)] under the control of the ubiquitous chicken ß-actin hybrid (CBh) promoter. Control mice received high doses of AAV-PHP.B encoding ATXN3 with non-pathogenic 15 CAG repeats [ATXN3(Q15)] or phosphate-buffered saline (PBS) alone. More than half of the mice injected with high doses of AAV-PHP.B encoding ATXN3(Q89) died within 4 weeks after the injection. No mice in other groups died during the 12-week observation period. Mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89) exhibited progressive motor uncoordination starting 4 weeks and a shorter stride in footprint analysis performed at 12 weeks post-AAV injection. Immunohistochemistry showed thinning of the molecular layer and the formation of nuclear inclusions in Purkinje cells from mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89). Moreover, ATXN3(Q89) expression significantly reduced the number of large projection neurons in the cerebellar nuclei to one third of that observed in mice expressing ATXN3(Q15). This AAV-based approach is superior to conventional methods in that the required number of model mice can be created simply by injecting AAV, and the expression levels of the responsible gene can be adjusted by changing the amount of AAV injected. Moreover, this method may be applied to produce SCA3 models in non-human primates.


Assuntos
Ataxina-3 , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos , Doença de Machado-Joseph , Camundongos Endogâmicos C57BL , Animais , Dependovirus/genética , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Camundongos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Ataxina-3/genética , Ataxina-3/metabolismo , Injeções Intravenosas , Barreira Hematoencefálica/metabolismo , Regiões Promotoras Genéticas
12.
J Extracell Vesicles ; 13(7): e12464, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961538

RESUMO

MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.


Assuntos
Efeito Espectador , Dependovirus , Vesículas Extracelulares , Terapia Genética , RNA Mensageiro , Humanos , Terapia Genética/métodos , Dependovirus/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Vesículas Extracelulares/metabolismo , Mucopolissacaridose III/terapia , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/genética , Vetores Genéticos , Acetiltransferases/metabolismo , Acetiltransferases/genética
13.
Skelet Muscle ; 14(1): 17, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044305

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration, leading to neuromuscular junction (NMJ) dismantling and severe muscle atrophy. The nuclear receptor interaction protein (NRIP) functions as a multifunctional protein. It directly interacts with calmodulin or α-actinin 2, serving as a calcium sensor for muscle contraction and maintaining sarcomere integrity. Additionally, NRIP binds with the acetylcholine receptor (AChR) for NMJ stabilization. Loss of NRIP in muscles results in progressive motor neuron degeneration with abnormal NMJ architecture, resembling ALS phenotypes. Therefore, we hypothesize that NRIP could be a therapeutic factor for ALS. METHODS: We used SOD1 G93A mice, expressing human SOD1 with the ALS-linked G93A mutation, as an ALS model. An adeno-associated virus vector encoding the human NRIP gene (AAV-NRIP) was generated and injected into the muscles of SOD1 G93A mice at 60 days of age, before disease onset. Pathological and behavioral changes were measured to evaluate the therapeutic effects of AAV-NRIP on the disease progression of SOD1 G93A mice. RESULTS: SOD1 G93A mice exhibited lower NRIP expression than wild-type mice in both the spinal cord and skeletal muscle tissues. Forced NRIP expression through AAV-NRIP intramuscular injection was observed in skeletal muscles and retrogradely transduced into the spinal cord. AAV-NRIP gene therapy enhanced movement distance and rearing frequencies in SOD1 G93A mice. Moreover, AAV-NRIP increased myofiber size and slow myosin expression, ameliorated NMJ degeneration and axon terminal denervation at NMJ, and increased the number of α-motor neurons (α-MNs) and compound muscle action potential (CMAP) in SOD1 G93A mice. CONCLUSIONS: AAV-NRIP gene therapy ameliorates muscle atrophy, motor neuron degeneration, and axon terminal denervation at NMJ, leading to increased NMJ transmission and improved motor functions in SOD1 G93A mice. Collectively, AAV-NRIP could be a potential therapeutic drug for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Dependovirus , Modelos Animais de Doenças , Terapia Genética , Camundongos Transgênicos , Neurônios Motores , Atrofia Muscular , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Terapia Genética/métodos , Atrofia Muscular/genética , Atrofia Muscular/terapia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Dependovirus/genética , Camundongos , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Vetores Genéticos/administração & dosagem , Degeneração Neural/genética , Degeneração Neural/terapia , Masculino , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
14.
Neurobiol Dis ; 200: 106612, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032798

RESUMO

Astrocytes play key roles in the brain. When astrocyte support fails, neurological disorders follow, resulting in disrupted synaptic communication, neuronal degeneration, and cell death. We posit that astrocytes overexpressing neurotrophic factors, such as Insulin Like Growth Factor 1 (IGF1), prevent the onset of neurodegeneration. We overexpressed IGF1 and the reporter TdTomato (TOM) in hippocampal astrocytes with bicistronic Adeno-Associated Virus (AAV) harboring the Glial Fibrillary Acidic Protein (GFAP) promoter and afterwards induced neurodegeneration by the intracerebroventricular (ICV) injection of streptozotocin (STZ), a rat model of behavioral impairment, neuroinflammation and shortening of hippocampal astrocytes. We achieved a thorough transgene expression along the hippocampus with a single viral injection. Although species typical behavior was impaired, memory deficit was prevented by IGF1. STZ prompted astrocyte shortening, albeit the length of these cells in animals injected with GFP and IGF1 vectors did not statistically differ from the other groups. In STZ control animals, hippocampal microglial reactive cells increased dramatically, but this was alleviated in IGF1 rats. We conclude that overexpression of IGF1 in astrocytes prevents neurodegeneration onset. Hence, individuals with early neurotrophic exhaustion would be vulnerable to age-related neurodegeneration.

15.
Elife ; 132024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042440

RESUMO

Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is commonly used to target expression to specific brain regions, can be conveniently used with any mouse strain of interest without the need for prior crossing with a GECI mouse line, and avoids potential hazards due to the chronic expression of GECIs during development. A key requirement for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially confined aberrant Ca2+ microwaves slowly travelling through the hippocampus following expression of GCaMP6, GCaMP7, or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene transfer in a titre-dependent fashion. Ca2+ microwaves developed in hippocampal CA1 and CA3, but not dentate gyrus nor neocortex, were typically first observed at 4 wk after viral transduction, and persisted up to at least 8 wk. The phenomenon was robust and observed across laboratories with various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ microwaves depend on the promoter and viral titre of the GECI, density of expression, as well as the targeted brain region. We used an alternative viral transduction method of GCaMP which avoids this artefact. The results show that commonly used Ca2+-indicator AAV transduction procedures can produce artefactual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-induced Ca2+ microwaves, and we provide a potential solution.


Assuntos
Cálcio , Dependovirus , Hipocampo , Sinapsinas , Animais , Dependovirus/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Cálcio/metabolismo , Hipocampo/metabolismo , Camundongos , Vetores Genéticos , Transdução Genética , Regiões Promotoras Genéticas , Camundongos Endogâmicos C57BL , Masculino
16.
Front Immunol ; 15: 1425892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035004

RESUMO

Microglia play a crucial role in maintaining homeostasis of the central nervous system and they are actively involved in shaping the brain's inflammatory response to stress. Among the multitude of involved molecules, purinergic receptors and enzymes are of special importance due to their ability to regulate microglia activation. By investigating the mechanisms underlying microglial responses and dysregulation, researchers can develop more precise interventions to modulate microglial behavior and alleviate neuroinflammatory processes. Studying gene function selectively in microglia, however, remains technically challenging. This review article provides an overview of adeno-associated virus (AAV)-based microglia targeting approaches, discussing potential prospects for refining these approaches to improve both specificity and effectiveness and encouraging future investigations aimed at connecting the potential of AAV-mediated microglial targeting for therapeutic benefit in neurological disorders.


Assuntos
Dependovirus , Vetores Genéticos , Microglia , Dependovirus/genética , Humanos , Microglia/metabolismo , Vetores Genéticos/genética , Animais , Terapia Genética/métodos
17.
Mol Ther Nucleic Acids ; 35(3): 102247, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39035791

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease. Although it leads to muscle weakness, affected individuals predominantly die from cardiomyopathy, which remains uncurable. Accumulating evidence suggests that an overexpression of utrophin may counteract some of the pathophysiological outcomes of DMD. The aim of this study was to investigate the role of utrophin in dystrophin-deficient human cardiomyocytes (CMs) and to test whether an overexpression of utrophin, implemented via the CRISPR-deadCas9-VP64 system, can improve their phenotype. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) lacking either dystrophin (DMD) or both dystrophin and utrophin (DMD KO/UTRN(+/-)). We carried out proteome analysis, which revealed considerable differences in the proteins related to muscle contraction, cell-cell adhesion, and extracellular matrix organization. Furthermore, we evaluated the role of utrophin in maintaining the physiological properties of DMD hiPSC-CMs using atomic force microscopy, patch-clamp, and Ca2+ oscillation analysis. Our results showed higher values of afterhyperpolarization and altered patterns of cytosolic Ca2+ oscillations in DMD; the latter was further disturbed in DMD KO/UTRN(+/-) hiPSC-CMs. Utrophin upregulation improved both parameters. Our findings demonstrate for the first time that utrophin maintains the physiological functions of DMD hiPSC-CMs, and that its upregulation can compensate for the loss of dystrophin.

18.
Regen Ther ; 26: 334-345, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39036442

RESUMO

Gene therapies, which include viral-vector gene delivery, genome editing, and genetically modified cell therapy, are innovative treatments with the potential to address the underlying genetic causes of disorders and to provide life-changing value in terms of curing disease. Although adeno-associated virus (AAV)-based gene therapy is one of the most advanced types of gene therapy, far fewer AAV-based gene therapy studies have been conducted in Asia than in North America and Europe. The 6th Asia Partnership Conference of Regenerative Medicine (APACRM) was held on April 20, 2023 in Tokyo, Japan. APACRM Working Group 3 comprehensively analyzed the regulatory processes that occur prior to the initiation of clinical trials as well as the regulatory requirements for AAV-based gene therapies for six Asian countries or regions (China, India, Japan, Singapore, South Korea, and Taiwan). In this article, we report the outcomes of this conference, summarizing the regulatory requirements for initiating clinical trials for AAV-based gene therapies in terms of the laws, regulations, and guidelines for gene therapy; consultations or reviews required by the health authorities; points to consider for scientific reviews by the health authorities; and specific challenges to address when developing gene therapy products in these locations. Finally, we present several policy recommendations, including simplifying the regulatory review system for multiple scientific review areas; simplifying the regulatory consultation system; and providing training programs and regulatory guidance to support the advancement of gene therapy development in Asia.

19.
ACS Synth Biol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991172

RESUMO

DNA shuffling is a powerful technique for generating synthetic DNA via recombination of homologous parental sequences. Resulting chimeras are often incorporated into complex libraries for functionality screenings that identify novel variants with improved characteristics. To survey shuffling efficiency, subsequences of chimeras can be computationally assigned to their corresponding parental counterpart, yielding insight into frequency of recombination events, diversity of shuffling libraries and actual composition of final variants. Whereas tools for parental assignment exist, they do not provide direct visualization of the results, making the analysis time-consuming and cumbersome. Here we present ShuffleAnalyzer, a comprehensive, user-friendly, Python-based analysis tool that directly generates graphical outputs of parental assignments and is freely available under a BSD-3 license (https://github.com/joerg-swg/ShuffleAnalyzer/releases). Besides DNA shuffling, peptide insertions can be simultaneously analyzed and visualized, which makes ShuffleAnalyzer a highly valuable tool for integrated approaches often used in synthetic biology, such as AAV capsid engineering in gene therapy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA