Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Biomedicines ; 12(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39200113

RESUMO

It is known that the presence of CAA codons in the CAG tract affects the nature and time of disease onset caused by the expansion of trinucleotide repeats. The mechanisms leading to the occurrence of these diseases should be sought not only at the level of the physiological role of the ATXN2 protein, but also at the DNA level. These mechanisms are associated with non-canonical configurations (hairpins) that can form in the CAG tract. The tendency of hairpins to slide along the corresponding threads is usually considered important to explain the expansion of the CAG tract. At the same time, hairpins occur in areas of open states. Previous studies on the role of CAA interruptions have suggested that, under certain conditions, they can stabilize the dynamics of the hairpin, preventing the expansion of the CAG tract. We calculated the probability of additional open state zones occurrence in the CAG tract using an angular mathematical model of DNA. The calculations made it possible to establish that CAA interruptions affect the stability of the CAG tract, and this influence, depending on the localization of the interruption, can both increase and decrease the stability of the CAG tract.

2.
Int J Biol Macromol ; 276(Pt 1): 133849, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004246

RESUMO

Hereditary ataxias are one of the «anticipation diseases¼ types. Spinocerebral ataxia type 2 occurs when the number of CAG repeats in the coding region of the ATXN2 gene exceeds 34 or more. In healthy people, the CAG repeat region in the ATXN2 gene usually consists of 22-23 CAG trinucleotides. Mutations that increase the length of CAG repeats can cause severe neurodegenerative and neuromuscular disorders known as trinucleotide repeat expansion diseases. The mechanisms causing such diseases are associated with non-canonical configurations that can be formed in the CAG repeat region during replication, transcription or repair. This makes it relevant to study the zones of open states that arise in the region of CAG repeats under torque. The purpose of this work is to study, using mathematical modeling, zones of open states in the region of CAG repeats of the ATXN2 gene, caused by torque. It has been established that the torque effect on the 1st exon of the ATXN2 gene, in addition to the formation of open states in the promoter region, can lead to the formation of additional various sizes open states zones in the CAG repeats region. Moreover, the frequency of additional large zones genesis increases with increasing number of CAG repeats. The inverse of this frequency correlates with the dependence of the disease onset average age on the CAG repeats length. The obtained results will allow us to get closer to understanding the genetic mechanisms that cause trinucleotide repeat diseases.


Assuntos
Ataxina-2 , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos , Ataxina-2/genética , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/genética , Sequência de Bases , Torque , Regiões Promotoras Genéticas/genética , Éxons/genética , DNA/genética
3.
Discov Oncol ; 15(1): 298, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039334

RESUMO

Ataxin-2 (ATXN2) was originally discovered in the context of spinocerebellar ataxia type 2 (SCA2), but it has become a key player in various neurodegenerative diseases. This review delves into the multifaceted roles of ATXN2 in human diseases, revealing its diverse molecular and cellular pathways. The impact of ATXN2 on diseases extends beyond functional outcomes; it mainly interacts with various RNA-binding proteins (RBPs) to regulate different stages of post-transcriptional gene expression in diseases. With the progress of research, ATXN2 has also been found to play an important role in the development of various cancers, including breast cancer, gastric cancer, pancreatic cancer, colon cancer, and esophageal cancer. This comprehensive exploration underscores the crucial role of ATXN2 in the pathogenesis of diseases and warrants further investigation by the scientific community. By reviewing the latest discoveries on the regulatory functions of ATXN2 in diseases, this article helps us understand the complex molecular mechanisms of a series of human diseases related to this intriguing protein.

4.
Am J Hum Genet ; 111(5): 913-926, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626762

RESUMO

Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.


Assuntos
Mosaicismo , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Humanos , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Cerebelo/metabolismo , Cerebelo/patologia , Idoso , Encéfalo/metabolismo , Encéfalo/patologia , Ataxina-1/genética
5.
Biomedicines ; 12(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38397958

RESUMO

Intermediate CAG expansions in the gene ataxin-2 (ATXN2) are a known risk factor for ALS, but little is known about their role in FTD risk. Moreover, their contribution to the risk and phenotype of patients might vary in populations with different genetic backgrounds. The aim of this study was to assess the relationship of intermediate CAG expansions in ATXN2 with the risk and phenotype of ALS and FTD in the Spanish population. Repeat-primed PCR was performed in 620 ALS and 137 FTD patients in three referral centers in Spain to determine the exact number of CAG repeats. In our cohort, ≥27 CAG repeats in ATXN2 were associated with a higher risk of developing ALS (odds ratio [OR] = 2.666 [1.471-4.882]; p = 0.0013) but not FTD (odds ratio [OR] = 1.446 [0.558-3.574]; p = 0.44). Moreover, ALS patients with ≥27 CAG repeats in ATXN2 showed a shorter survival rate compared to those with <27 repeats (hazard ratio [HR] 1.74 [1.18, 2.56], p = 0.005), more frequent limb onset (odds ratio [OR] = 2.34 [1.093-4.936]; p = 0.028) and a family history of ALS (odds ratio [OR] = 2.538 [1.375-4.634]; p = 0.002). Intermediate CAG expansions of ≥27 repeats in ATXN2 are associated with ALS risk but not with FTD in the Spanish population. ALS patients carrying an intermediate expansion in ATXN2 show more frequent limb onset but a worse prognosis than those without expansions. In patients carrying C9orf72 expansions, the intermediate ATXN2 expansion might increase the penetrance and modify the phenotype.

6.
Neurol Sci ; 45(7): 3191-3200, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38340219

RESUMO

BACKGROUND: Spinocerebellar ataxia 2 (SCA2) with a low range of CAG repeat expansion of ATXN2 gene can present with predominant or isolated parkinsonism that closely resembles Parkinson's disease (PD). This study is aimed at comparing clinical features, disease progression, and nuclear imaging between ATXN2-related parkinsonism (ATXN2-P) and PD. METHODS: Three hundred and seventy-seven clinically diagnosed PD with family history were screened by multiplex ligation-dependent probe amplification, whole-exome sequencing or target sequencing, and dynamic mutation testing of 10 SCA subtypes. The baseline and longitudinal clinical features as well as the dual-tracer positron emission tomography (PET) imaging were compared between ATXN2-P and genetically undefined familial PD (GU-fPD). RESULTS: Fifteen ATXN2-P patients from 7 families and 50 randomly selected GU-fPD patients were evaluated. Significantly less resting tremor and more symmetric signs were observed in ATXN2-P than GU-fPD. No significant difference was found in motor progression and duration from onset to occurrence of fluctuation, dyskinesia, and recurrent falls between the two groups. Cognitive impairment and rapid-eye-movement sleep behavior disorder were more common in ATXN2-P. During follow-up, olfaction was relatively spared, and no obvious progression of cognition dysfunction evaluated by Mini-Mental State Examination scores was found in ATXN2-P. PET results of ATXN2-P demonstrated a symmetric, diffuse, and homogenous dopamine transporter loss of bilateral striatum and a glucose metabolism pattern inconsistent with that in PD. CONCLUSIONS: Symmetric motor signs and unique nuclear imaging might be the clues to distinguish ATXN2-P from GU-fPD.


Assuntos
Ataxina-2 , Progressão da Doença , Transtornos Parkinsonianos , Tomografia por Emissão de Pósitrons , Humanos , Masculino , Feminino , Ataxina-2/genética , Pessoa de Meia-Idade , Estudos Longitudinais , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/diagnóstico por imagem , Adulto , Idoso , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Estudos de Coortes
7.
BMC Med Genomics ; 17(1): 30, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254109

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which is characterized by the loss of both upper and lower motor neurons in the central nervous system. In a significant fraction of ALS cases - irrespective of family history- a genetic background may be identified. The genetic background of ALS shows a high variability from one ethnicity to another. The most frequent genetic cause of ALS is the repeat expansion of the C9orf72 gene. With the emergence of next-generation sequencing techniques and copy number alteration calling tools the focus in ALS genetics has shifted from disease causing genes and mutations towards genetic susceptibility and risk factors.In this review we aimed to summarize the most widely recognized and studied ALS linked repeat expansions and copy number variations other than the hexanucleotide repeat expansion in the C9orf72 gene. We compare and contrast their involvement and phenotype modifying roles in ALS among different populations.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Humanos , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Variações do Número de Cópias de DNA , Genes Reguladores , Fatores de Risco
8.
Rinsho Shinkeigaku ; 64(1): 28-32, 2024 Jan 20.
Artigo em Japonês | MEDLINE | ID: mdl-38072442

RESUMO

A 36-year-old man has developed weakness of left thumb and atrophy of left thenar muscle and left first dorsal interosseous muscle without sensory disturbance for a year. A nerve conduction study revealed decreases in the amplitude of compound muscle action potentials and occurrence of F-waves on left medial nerve. Needle electromyography examination revealed positive sharp waves and later recruited motor units on left abductor pollicis brevis muscle. Brain MRI showed atrophy of bilateral cerebellar hemisphere. His grandmother and his two uncles have been diagnosed as spinocerebellar degeneration. After discharge, he developed bilateral lower limb ataxia. Genetic analysis showed heterozygous CAG repeat expansion (19/39) in ATXN2 gene, being diagnosed as spinocerebellar ataxia 2 (SCA2). A previous report has shown that motor neuron involvement is recognized as part of SCA2 in the same pedigree with full CAG repeat expansions in ATXN2 gene. We here report the patient with lower motor neuron involvement as an initial symptom of SCA2.


Assuntos
Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Masculino , Humanos , Adulto , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxia , Neurônios Motores , Atrofia
9.
Cerebellum ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715888

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is a dominantly inherited ataxia primarily characterised by progressive cerebellar syndrome, which is developed due to the expansion of the CAG trinucleotide repeat within the first exon of the ATXN2 gene. We report a rare case of a 41-year-old woman with coexistent genetically verified SCA2 and primary progressive multiple sclerosis (MS). Considering our case and a few others reported in the literature, as well as a possible genetic association between ATXN2 and MS susceptibility, we suggest that the coexistence of SCA and MS may not be coincidental, especially in patients with a progressive MS course.

10.
Cell ; 186(15): 3245-3260.e23, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369203

RESUMO

Terrestrial organisms developed circadian rhythms for adaptation to Earth's quasi-24-h rotation. Achieving precise rhythms requires diurnal oscillation of fundamental biological processes, such as rhythmic shifts in the cellular translational landscape; however, regulatory mechanisms underlying rhythmic translation remain elusive. Here, we identified mammalian ATXN2 and ATXN2L as cooperating master regulators of rhythmic translation, through oscillating phase separation in the suprachiasmatic nucleus along circadian cycles. The spatiotemporal oscillating condensates facilitate sequential initiation of multiple cycling processes, from mRNA processing to protein translation, for selective genes including core clock genes. Depleting ATXN2 or 2L induces opposite alterations to the circadian period, whereas the absence of both disrupts translational activation cycles and weakens circadian rhythmicity in mice. Such cellular defect can be rescued by wild type, but not phase-separation-defective ATXN2. Together, we revealed that oscillating translation is regulated by spatiotemporal condensation of two master regulators to achieve precise circadian rhythm in mammals.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Processamento de Proteína Pós-Traducional , Mamíferos
11.
Mol Cell ; 83(12): 2020-2034.e6, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295429

RESUMO

Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.


Assuntos
Ataxina-2 , Doenças Neurodegenerativas , Humanos , Ataxina-2/genética , Proteína I de Ligação a Poli(A) , Doenças Neurodegenerativas/metabolismo , Condensados Biomoleculares
12.
Front Oncol ; 13: 1048419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139155

RESUMO

Clear cell renal cell carcinomas (ccRCC) are characterized by arm-wide chromosomal alterations. Loss at 14q is associated with disease aggressiveness in ccRCC, which responds poorly to chemotherapeutics. The 14q locus contains one of the largest miRNA clusters in the human genome; however, little is known about the contribution of these miRNAs to ccRCC pathogenesis. In this regard, we investigated the expression pattern of selected miRNAs at the 14q32 locus in TCGA kidney tumors and in ccRCC cell lines. We demonstrated that the miRNA cluster is downregulated in ccRCC (and cell lines) as well as in papillary kidney tumors relative to normal kidney tissues (and primary renal proximal tubule epithelial (RPTEC) cells). We demonstrated that agents modulating expression of DNMT1 (e.g., 5-Aza-deoxycytidine) could modulate 14q32 miRNA expression in ccRCC cell lines. Lysophosphatidic acid (LPA, a lysophospholipid mediator elevated in ccRCC) not only increased labile iron content but also modulated expression of a 14q32 miRNA. Through an overexpression approach targeting a subset of 14q32 miRNAs (specifically at subcluster A: miR-431-5p, miR-432-5p, miR-127-3p, and miR-433-3p) in 769-P cells, we uncovered changes in cellular viability and claudin-1, a tight junction marker. A global proteomic approach was implemented using these miRNA overexpressing cell lines which uncovered ATXN2 as a highly downregulated target. Collectively, these findings support a contribution of miRNAs at 14q32 in ccRCC pathogenesis.

13.
Brain Behav ; 13(6): e3013, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37072935

RESUMO

INTRODUCTION: Regulation of brain-derived neurotrophic factor (BDNF) in the basal forebrain ameliorates sleep deprivation-induced fear memory impairments in rodents. Antisense oligonucleotides (ASOs) targeting ATXN2 was a potential therapy for spinocerebellar ataxia, whose pathogenic mechanism associates with reduced BDNF expression. We tested the hypothesis that ASO7 targeting ATXN2 could affect BDNF levels in mouse basal forebrain and ameliorate sleep deprivation-induced fear memory impairments. METHODS: Adult male C57BL/6 mice were used to evaluate the effects of ASO7 targeting ATXN2 microinjected into the bilateral basal forebrain (1 µg, 0.5 µL, each side) on spatial memory, fear memory and sleep deprivation-induced fear memory impairments. Spatial memory and fear memory were detected by the Morris water maze and step-down inhibitory avoidance test, respectively. Immunohistochemistry, RT-PCR, and Western blot were used to evaluate the changes of levels of BDNF, ATXN2, and postsynaptic density 95 (PSD95) protein as well as ATXN2 mRNA. The morphological changes in neurons in the hippocampal CA1 region were detected by HE staining and Nissl staining. RESULTS: ASO7 targeting ATXN2 microinjected into the basal forebrain could suppress ATXN2 mRNA and protein expression for more than 1 month and enhance spatial memory but not fear memory in mice. BDNF mRNA and protein expression in basal forebrain and hippocampus was increased by ASO7. Moreover, PSD95 expression and synapse formation were increased in the hippocampus. Furthermore, ASO7 microinjected into the basal forebrain increased BDNF and PSD95 protein expression in the basal forebrain of sleep-deprived mice and counteracted sleep deprivation-induced fear memory impairments. CONCLUSION: ASOs targeting ATXN2 may provide effective interventions for sleep deprivation-induced cognitive impairments.


Assuntos
Prosencéfalo Basal , Privação do Sono , Camundongos , Masculino , Animais , Privação do Sono/complicações , Privação do Sono/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Memória Espacial , Prosencéfalo Basal/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/metabolismo , Camundongos Endogâmicos C57BL , Transtornos da Memória/etiologia , Transtornos da Memória/complicações , RNA Mensageiro/metabolismo
14.
Mov Disord Clin Pract ; 10(4): 664-669, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37070044

RESUMO

Background: CAG-repeat expansions in Ataxin 2 (ATXN2) are known to cause spinocerebellar ataxia type 2 (SCA2), but CAA interrupted expansions may also result in autosomal dominant Parkinson's disease (AD PD). However, because of technical limitations, such expansions are not explored in whole exome sequencing (WES) data. Objectives: To identify ATXN2 expansions using WES data from PD cases. Methods: We explored WES data from a cohort of 477 index cases with PD using ExpansionHunter (Illumina DRAGEN Bio-IT Platform, San Diego, CA). Putative expansions were confirmed by combining polymerase chain reaction and fragment length analysis followed by sub-cloning and sequencing methods. Results: Using ExpansionHunter, we identified three patients from two families with AD PD carrying either ATXN2 22/39 or 22/37 repeats, both interrupted by four CAA repeats. Conclusion: These findings demonstrate the usefulness of WES to detect pathogenic CAG repeat expansions, which were found in 1.7% of AD PD in the ATXN2 gene in our exome dataset.

15.
Cell Rep ; 42(5): 112419, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37074914

RESUMO

Potent T cell responses against infections and malignancies require a rapid yet tightly regulated production of toxic effector molecules. Their production level is defined by post-transcriptional events at 3' untranslated regions (3' UTRs). RNA binding proteins (RBPs) are key regulators in this process. With an RNA aptamer-based capture assay, we identify >130 RBPs interacting with IFNG, TNF, and IL2 3' UTRs in human T cells. RBP-RNA interactions show plasticity upon T cell activation. Furthermore, we uncover the intricate and time-dependent regulation of cytokine production by RBPs: whereas HuR supports early cytokine production, ZFP36L1, ATXN2L, and ZC3HAV1 dampen and shorten the production duration, each at different time points. Strikingly, even though ZFP36L1 deletion does not rescue the dysfunctional phenotype, tumor-infiltrating T cells produce more cytokines and cytotoxic molecules, resulting in superior anti-tumoral T cell responses. Our findings thus show that identifying RBP-RNA interactions reveals key modulators of T cell responses in health and disease.


Assuntos
Citocinas , Linfócitos T , Humanos , Linfócitos T/metabolismo , Regiões 3' não Traduzidas , Citocinas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator 1 de Resposta a Butirato/genética , Fator 1 de Resposta a Butirato/metabolismo
16.
Ophthalmic Genet ; 44(3): 246-252, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994723

RESUMO

BACKGROUND: Primary open-angle glaucoma (POAG), the world's main cause of irreversible blindness, is an asymptomatic and neurodegenerative disease of multifactorial etiology with ethnic and geographic disparities. Multiethnic genome-wide association studies (GWAS) identified single nucleotide variants (SNVs) in ATXN2, FOXC1, and TXNRD2 loci as risk factors for POAG pathophysiology and/or endophenotypes. The aim of this case-control study was to investigate the association of the variants rs7137828 (ATXN2), rs2745572 (FOXC1), and rs35934224 (TXNRD2), as risk factors for POAG development, additionally to rs7137828 association with glaucoma clinical parameters in a Brazilian cohort from the Southeast and South regions. METHODS: This investigation comprised 506 cases and 501 controls. Variants rs2745572 and rs35934224 were genotyped through TaqMan® assays and validated by Sanger sequencing. Variant rs7137828 was genotyped exclusively by Sanger sequencing. RESULTS: The primary research outcome revealed that the variant rs7137828 (ATXN2) was associated with an increased risk for the development of POAG in the presence of the TT genotype compared to the CC genotype (p = 0.006; Odds Ratio [OR] = 1.717; Confidence Interval [CI] 95% = 1.169-2.535). There was no significant association of rs2745572 and rs35934224 genotypes with POAG. The CT genotype of the rs7137828 was associated with the vertical cup-to-disk ratio (VCDR) (p = .023) but not with the age at diagnosis or the mean deviation. CONCLUSION: Our data indicate the rs7137828 associated with increased risk for the development of POAG and VCDR in a Brazilian cohort. If validated in additional populations, these findings may enable the development of relevant strategies for early diagnosis of glaucoma in the future.


Assuntos
Glaucoma de Ângulo Aberto , Doenças Neurodegenerativas , Humanos , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/diagnóstico , Estudo de Associação Genômica Ampla , Estudos de Casos e Controles , Brasil/epidemiologia , Genótipo , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Transcrição Forkhead/genética , Ataxina-2/genética , Tiorredoxina Redutase 2/genética
17.
Mol Ther ; 31(3): 760-773, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36617193

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing is an emerging therapeutic modality that shows promise in Huntington's disease and spinocerebellar ataxia (SCA) mouse models. However, advancing CRISPR-based therapies requires methods to fully define in vivo editing outcomes. Here, we use polymerase-free, targeted long-read nanopore sequencing and evaluate single- and dual-gRNA AAV-CRISPR editing of human ATXN2 in transgenic mouse models of SCA type 2 (SCA2). Unbiased high sequencing coverage showed 10%-25% editing. Along with intended edits there was AAV integration, 1%-2% of which contained the entire AAV genome and were largely unmethylated. More than 150 kb deletions at target loci and rearrangements of the transgenic allele (1%) were also found. In contrast, PCR-based nanopore sequencing showed bias for partial AAV fragments and inverted terminal repeats (ITRs) and failed to detect full-length AAV. Cumulatively this work defines the spectrum of outcomes of CRISPR editing in mouse brain after AAV gene transfer using an unbiased long-read sequencing approach.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Humanos , Camundongos Transgênicos , Genoma , Encéfalo
18.
Front Neurol ; 13: 939775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35989899

RESUMO

Objective: To explore whether the repeat lengths of the chromosome 9 open reading frame 72 (C9orf72) gene and the ataxin-2 (ATXN2) gene in amyotrophic lateral sclerosis (ALS) patients without C9orf72 repeat expansions confer a risk of ALS or survival disadvantages in ALS. Methods: We screened a hospital-based cohort of Chinese patients with sporadic ALS without C9orf72 repeat expansions and neurologically healthy controls for C9orf72 GGGGCC and AXTN2 CAG repeat length to compare the frequency of possible detrimental length alleles using several thresholds. Furthermore, the clinical features of ALS were compared between patients with ALS subgroups using different length thresholds of maximum C9orf72 and ATXN2 repeat alleles, such as sex, age of onset, diagnostic delay, and survival. Results: Overall, 879 sporadic patients with ALS and 535 controls were included and the repeat lengths of the C9orf72 and ATXN2 were both detected. We found significant survival differences in patients using a series of C9orf72 repeat length thresholds from 2 to 5, among which the most significant difference was at the cutoff value of 2 (repeats 2 vs. >2: median survival 67 vs. 55 months, log-rank p = 0.032). Furthermore, Cox regression analysis revealed the role of age of onset [hazard ratio (HR) 1.04, 95% CI 1.03-1.05, p < 0.001], diagnostic delay (0.95, 0.94-0.96, p < 0.001), and carrying C9orf72 repeat length of 2 (0.72, 0.59-0.89, p = 0.002) in the survival of patients without C9orf72 repeat expansions. In addition, bulbar onset was associated with poorer survival when the patients carried the maximum C9orf72 repeat allele over 2 (1.81, 1.32-2.48, p < 0.001). However, no survival difference was found when applying a series of continuous cutoff values of ATXN2 or stratified by C9orf72 repeats of 2. Conclusion: The length of 2 in the maximum C9orf72 repeat allele was identified to be associated with favorable survival in ALS patients without C9orf72 repeat expansions. Our findings from the clinical setting implicated the possible cutoff definition of detrimental C9orf72 repeats, which should be helpful in the understanding of genetics in ALS and in clinical genetic counseling.

19.
Neurol Sci ; 43(10): 6087-6090, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35731316

RESUMO

BACKGROUND: ALS symptoms have been previously described only in the context of ATXN2 CAG expansions, whereas missense mutations of the gene have never been described in ALS patients. CASE PRESENTATION: We identified a novel missense mutation (c.2860C > T) of ATXN2, for which in silico analysis showed a possible pathogenic effect on protein expression, in a patient presenting an aggressive disease phenotype. DISCUSSION: Our findings raise the possibility for unknown genetic factors interacting with ATXN2 mutations, or for an autonomous pathogenic role for this specific point mutation in ATXN2 gene in driving the clinical phenotype toward ALS. We also found that stress granules in the fibroblasts from the patient entrapped higher amounts of defective ribosomal products compared to fibroblasts from three healthy subjects, suggesting that ATXN2 mutation-related toxicity may have implication in protein quality control.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Ataxina-2/genética , Humanos , Mutação , Mutação de Sentido Incorreto , Fenótipo , Proteínas/genética , Expansão das Repetições de Trinucleotídeos
20.
Front Neurol ; 13: 811202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599735

RESUMO

Background: Repeat expansions, including those in C9orf72 and ATXN2, have been implicated in amyotrophic lateral sclerosis (ALS). However, there have been few studies on the association of AR and NOP56 repeat expansion with ALS, especially in China. Accordingly, we aimed to evaluate the frequency of C9orf72 and ATXN2 repeat mutations and investigate whether NOP56 and AR repeat expansion are risk factors for ALS. Methods: In this study, 736 ALS patients and several hundred healthy controls were recruited. Polymerase chain reaction (PCR) and repeat-primed PCR (RP-PCR) were performed to determine the repeat lengths in C9orf72, ATXN2, AR, and NOP56. Results: GGGGCC repeats in C9orf72 were observed in six ALS patients (0.8%, 6/736) but not in any of the controls (0/365). The patients with pathogenic GGGGCC repeats showed shorter median survival times than those with a normal genotype (p = 0.006). Regarding ATXN2 CAG repeats, we identified that intermediate repeat lengths (29-34 copies) were associated with ALS (p = 0.033), and there was no difference in clinical characteristics between the groups with and without intermediate repeats (p > 0.05). Meanwhile, we observed that there was no association between the repeat size in AR and NOP56 and ALS (p > 0.05). Conclusions: Our results demonstrated that pathogenetic repeats in C9orf72 are rare in China, while intermediate CAG repeats in ATXN2 are more frequent but have no effect on disease phenotypes; the repeat size in AR and NOP56 may not be a risk factor for ALS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA