Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.865
Filtrar
1.
Front Chem ; 12: 1460224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39229000

RESUMO

By means of highly accurate ab initio and dynamical calculations, we identify a suitable laser cooling candidate that contains a transition metal element, namely zinc monohydride (ZnH). The internally contracted multireference configuration interaction method is employed to compute the five lowest-lying Λ-S states of ZnH with the spin-orbit coupling effects included, and very good agreement is obtained between our calculated and experimental spectroscopic data. Our findings show that the position of crossing point of the A2Π and B2Σ+ states of ZnH is above the v' = 2 vibrational level of the A2Π state indicating that the crossings with higher electronic states will have no effect on laser cooling. Hence, we construct a feasible laser-cooling scheme for ZnH using five lasers based on the A2Π1/2 → X2Σ+ 1/2 transition, which features a large vibrational branching ratio R 00 (0.8458), a large number of scattered photons (9.8 × 103) and an extremely short radiative lifetime (64 ns). The present work demonstrates the importance of electronic state crossings and spin-orbit couplings in the study of molecular laser cooling.

2.
J Colloid Interface Sci ; 678(Pt B): 50-66, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39241447

RESUMO

HYPOTHESIS: Water-soluble KDP (KH2PO4) crystals possess excellent optical properties and are employed as frequency converters in clean fusion energy. To improve their performances, there is an immediate necessity to lithograph surface nano-patterns on them. Although the Scanning Probe Microscope (SPM) provides a promising way to achieve this purpose through the water menisci, the driving mechanisms of the lithographic behaviors have not yet been revealed. SIMULATIONS AND EXPERIMENTS: Multi-scale investigations are constructed to explore the underlying driving mechanisms. The SPM probe-induced ion diffusion-transport behaviors are investigated by molecular dynamics. The ion adsorption-enrichment mechanisms are revealed by 18 adsorption models via the ab initio. The SPM probe-induced self-assembly experiments are performed to prove the local heavy concentration. A comprehensive model is developed to describe the lithography mechanisms of the probe-induced self-assembly nano-dots on water-soluble substrates. FINDINGS: It is interestingly found that the KDP growth units (H2PO4-) exhibit obvious adsorption-enrichment effect at 3.16 Å from the probe surface, causing local heavy concentration. The H2PO4- would spontaneously adsorb onto the probe surface, which is dominated by the Si-O bonding reactions. The nano-dots with the height of 27 âˆ¼ 48 nm and diameter of 2.0 âˆ¼ 2.7 µm are lithographed on the KDP substrate. The proposed model further confirms that the lithography processes are driven by the solution supersaturation, solute diffusion, and surface free energy.

3.
Molecules ; 29(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274931

RESUMO

We present a computational investigation on the structural arrangements and energetic stabilities of small-size protonated argon clusters, Ar nH +. Using high-level ab initio electronic structure computations, we determined that the linear symmetric triatomic ArH +Ar ion serves as the molecular core for all larger clusters studied. Through harmonic normal-mode analysis for clusters containing up to seven argon atoms, we observed that the proton-shared vibration shifts to lower frequencies, consistent with measurements in gas-phase IRPD and solid Ar-matrix isolation experiments. We explored the sum-of-potentials approach by employing kernel-based machine-learning potential models trained on CCSD(T)-F12 data. These models included expansions of up to two-body, three-body, and four-body terms to represent the underlying interactions as the number of Ar atoms increases. Our results indicate that the four-body contributions are crucial for accurately describing the potential surfaces in clusters with n> 3. Using these potential models and an evolutionary programming method, we analyzed the structural stability of clusters with up to 24 Ar atoms. The most energetically favored Ar nH + structures were identified for magic size clusters at n = 7, 13, and 19, corresponding to the formation of Ar-pentagon rings perpendicular to the ArH +Ar core ion axis. The sequential formation of such regular shell structures is compared to ion yield data from high-resolution mass spectrometry measurements. Our results demonstrate the effectiveness of the developed sum-of-potentials model in describing trends in the nature of bonding during the single proton microsolvation by Ar atoms, encouraging further quantum nuclear studies.

4.
Natl Sci Rev ; 11(9): nwae251, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39257434

RESUMO

Single-cluster catalysts (SCCs) representing structurally well-defined metal clusters anchored on support tend to exhibit tunable catalytic performance for complex redox reactions in heterogeneous catalysis. Here we report a theoretical study on an SCC of Ru3@Mo2CO2 MXene for N2-to-NH3 thermal conversion. Our results show that Ru3@Mo2CO2 can effectively activate N2 and promotes its conversion to NH3 through an association mechanism, in which the rate-determining step of NH2* + H* → NH3* has a low energy barrier of 1.29 eV. Notably, with the assistance of Mo2CO2 support, the positively charged Ru3 cluster active site can effectively adsorb and activate N2, leading to 0.74 |e| charge transfer from Ru3@Mo2CO2 to the adsorbed N2. The supported Ru3 also acts as an electron reservoir to regulate the charge transfer for various intermediate steps of ammonia synthesis. Microkinetic analysis shows that the turnover frequency of the N2-to-NH3 conversion on Ru3@Mo2CO2 is as high as 1.45 × 10-2 s-1 site-1 at a selected thermodynamic condition of 48 bar and 700 K, the performance of which even surpasses that of the Ru B5 site and Fe3/θ-Al2O3(010) reported before. Our work provides a theoretical understanding of the high stability and catalytic mechanism of Ru3@Mo2CO2 and guidance for further designing and fabricating MXene-based metal SCCs for ammonia synthesis under mild conditions.

5.
Philos Trans A Math Phys Eng Sci ; 382(2281): 20230313, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39246077

RESUMO

Solid-state ionic conductors find application across various domains in materials science, particularly showcasing their significance in energy storage and conversion technologies. To effectively utilize these materials in high-performance electrochemical devices, a comprehensive understanding and precise control of charge carriers' distribution and ionic mobility at interfaces are paramount. A major challenge lies in unravelling the atomic-level processes governing ion dynamics within intricate solid and interfacial structures, such as grain boundaries and heterophases. From a theoretical viewpoint, in this Perspective article, my focus is to offer an overview of the current comprehension of key aspects related to solid-state ionic interfaces, with a particular emphasis on solid electrolytes for batteries, while providing a personal critical assessment of recent research advancements. I begin by introducing fundamental concepts for understanding solid-state conductors, such as the classical diffusion model and chemical potential. Subsequently, I delve into the modelling of space-charge regions, which are pivotal for understanding the physicochemical origins of charge redistribution at electrified interfaces. Finally, I discuss modern computational methods, such as density functional theory and machine-learned potentials, which offer invaluable tools for gaining insights into the atomic-scale behaviour of solid-state ionic interfaces, including both ionic mobility and interfacial reactivity aspects. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.

6.
Chemphyschem ; : e202400372, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250431

RESUMO

Why are DNA bases stacked in a double helix structure? We combined three theoretical approaches to demonstrate how one core concept derived from quantum mechanics (Pauli repulsion) annihilates the contribution of dispersion to the π-π stacking. The helical architecture is governed by a combination of exchange and electrostatic forces, a result that is interpreted from both a computational and a biological perspective.

7.
J Comput Chem ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177429

RESUMO

Cationic species, previously detected from ion-induced desorption of solid methane by plasma desorption mass spectrometry (PDMS), and neutral species, are investigated using high-level ab-initio approaches. From a set of 25 cationic and 26 neutral structures belonging to CnH2 (n = 2-6) families, it was obtained the energy, rotational constants, harmonic vibrational frequency, charge distribution and excitation energies. The ZPVE-corrected energies, at CCSD(T)-F12; CCSD(T)-F12/RI/(cc-pVTZ-F12, cc-pVTZ-F12-CABS, cc-pVQZ/C) (n = 2-5) and CCSD(T)/cc-pVTZ (n = 6) levels, reveal that the topology of the most stable isomer vary with n and the charge. Out of 674 harmonic frequencies, those with maximum intensity are generally in the 3000-3500 cm-1 range. Analysis of 169 vertical transition energies calculated with the EOM-CCSD approach, suggest three C6H2 species as potential carriers of the diffuse interstellar bands (DIB). Systematic comparison of properties between neutral and cationic species can assist in the structural description of complex matrices.

8.
Chemistry ; : e202400819, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149838

RESUMO

Quantum information theory provides a powerful toolbox of descriptors that characterize many-electron systems based on quantum information patterns between open quantum systems. Despite the wealth of insights gained in the con- densed matter community, the use of these descriptors to study interactions between atoms in a molecule remains limited. In this study, we develop a quantum information framework for molecules that characterizes the quantum in- formation patterns between quantum atoms as defined in the Quantum Theory of Atoms in Molecules. We show that quantum information analyses capture key properties of quantum atoms and how they interact with their molec- ular environment. Additionally, we show that the presence of bond critical points can remain invariant despite large changes in the quantum information patterns between the quantum atoms. Our findings indicate that quantum infor- mation theory can shed a new light on molecular electronic structure.

9.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201404

RESUMO

Theoretical design of molecular superbases has been attracting researchers for more than twenty years. General approaches were developed to make the bases potentially stronger, but less attention was paid to the stability of the predicted structures. Hence, only a small fraction of the theoretical research has led to positive experimental results. Possible stability issues of extremely strong bases are extensively studied in this work using quantum chemical calculations on a high level of theory. Several step-by-step design examples are discussed in detail, and general recommendations are given to avoid the most common stability problems. New potentially stable structures are theoretically studied to demonstrate the future prospects of molecular superbases design.

10.
Open Res Eur ; 4: 165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39210980

RESUMO

Ab initio electronic structure applications are among the most widely used in High-Performance Computing (HPC), and the eigenvalue problem is often their main computational bottleneck. This article presents our initial efforts in porting these codes to a RISC-V prototype platform leveraging a wide Vector Processing Unit (VPU). Our software tester is based on a mini-app extracted from the ELPA eigensolver library. The user-space Vehave and a RISC-V vector architecture implemented on an FPGA were tested. Metrics from both systems and different vectorisation strategies were extracted, ranging from the most simple and portable one (using autovectorisation and assisting this by fusing loops in the code) to the more complex one (using intrinsics). We observed a progressive reduction in the number of vectorial instructions, executed instructions and computing cycles with the different methodologies, which will lead to a substantial speed-up in the calculations. The obtained outcomes are crucial in advancing the porting of computational materials and molecular science codes to (post)-exascale architectures using RISC-V-based technologies fully developed within the EU. Our evaluation also provides valuable feedback for hardware designers, engineers and compiler developers, making this use case pivotal for co-design efforts.

11.
Chemistry ; : e202401545, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136581

RESUMO

New cobalt(II)-based complexes with [N2O2] coordination formed by two bis-chelate ligands were synthesized and characterized by a multi-technique approach. The complexes possess an easy-axis anisotropy (D < 0) and magnetic measurements show a field-induced slow relaxation of magnetization. The spin-reversal barriers, i.e., the splitting of the two lowest Kramers doublets (UZFS), have been measured by THz-EPR spectroscopy, which allows to distinguish the two crystallographically independent species present in one of the complexes. Based on these experimental UZFS energies together with those for related complexes reported in literature, it was possible to establish magneto-structural correlations. UZFS linearly depends on the elongation parameter εT of the (pseudo-)tetrahedral coordination, which is given by the ratio between the average obtuse and acute angles at the cobalt(II) ion, while UZFS was found to be virtually independent of the twist angle of the chelate planes. With increasing deviation from the orthogonality of the latter, the rhombicity (|E/D|) increases.

12.
Small ; : e2403520, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109564

RESUMO

The hetero and homo metal exchange of Au25(SR)18 - and Ag25(SR)18 - nanoclusters with metal-thiolate (M-SR) complexes (AuI(SR), AgI(SR), CuI(SR), and CuII(SR)2) are studied using ab initio molecular dynamics (AIMD) simulations. The AIMD simulation results unveil that the M-SR complexes directly displace Au(SR) or Ag(SR) units on the gold or silver core surface through an "anchoring effect". The whole process of metal-exchange reactions can be divided into three steps, including the adsorption of M-SR complexes on clusters, the formation of new staple motif, and the displacement of Au(SR) or Ag(SR) units by M-SR complexes. The key role of sulfur atoms in metal exchange reactions in M-SR complexes is revealed, which facilitates formation of new staple motifs and doping of M-SR complexes into gold and silver cores. This work provides a theoretical basis for further exploring the metal exchange reaction between noble metal nanoclusters and metal-thiolate complexes, as well as the isotope exchange reactions.

13.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125851

RESUMO

Extensive ab initio density functional theory molecular dynamics calculations were used to evaluate stability conditions for relevant phases of InN. In particular, the p-T conditions of the thermal decomposition of InN and pressure-induced wurtzite-rocksalt solid-solid phase transition were established. The comparison of the simulation results with the available experimental data allowed for a critical evaluation of the capabilities and limitations of the proposed simulation method. It is shown that ab initio molecular dynamics can be used as an efficient tool for simulations of phase transformations of InN, including solid-solid structural transition and thermal decomposition with formation of N2 molecules. It is of high interest, because InN is an important component of epitaxial quantum structures, but it has not been obtained as a bulk single crystal. This makes it difficult to determine its basic physical properties to develop new applications.


Assuntos
Simulação de Dinâmica Molecular , Transição de Fase , Temperatura , Teoria Quântica
14.
Chem Asian J ; : e202400674, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135419

RESUMO

The efficiency of catalysts relies on comprehending the underlying kinetics that govern their performance. Under the steady-state regime, the "rate" is referred to as the turnover frequency, where the reaction rate is first order with respect to catalysts. Here, we introduce the Maximum Kinetic Efficiency (MaxKinEff ) model, grounded in collision theory, to predict efficiency based on maximum turnover frequency, 𝛤max TOF0 and maximum turnover number, 𝜏max TON0. The model was applied to molecular water oxidation using twenty-six transition metal catalysts from the first (3d), second (4d), and third (5d) rows. A thorough investigation reveals that [Ru(pda)(Br-py)2] (pda = 1,10-phenanthroline-2,9-dicarboxylate; Py = pyridinophane) exhibits a notable 𝛤max TOF0 of 1176.87 × 10-5 s-1 due to its larger collision diameter (σ𝑅𝐶) and lower activation energy (E𝑎). Importantly, the trend in the computed 𝜏max TON0 values aligns with experimental TON, 𝜏experimental TON validating the model's accuracy. For instance, [Cp∗Ir(κ2-N,O)NO3] is identified by MaxKinEff as a standout performer, with the normalized maximum computed TON, 𝜏max TON0 resembling the experimental TON, 𝜏experimental TON = 2000.

15.
ACS Nano ; 18(35): 24118-24127, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39172927

RESUMO

We investigate the interfacial transport of water and hydrophobic solutes on van der Waals bilayers and heterostructures formed by stacking graphene, hBN, and MoS2 using extensive ab initio molecular dynamics simulations. We compute water slippage and the diffusio-osmotic transport coefficient of hydrophobic particles at the interface by combining hydrodynamics and the theory of the hydrophobic effect. We find that slippage is dominated by the layer that is in direct contact with water and only marginally altered by the second layer, leading to a so-called "slip opacity". The screening of the lateral forces, where the liquid does not feel the forces coming from the second nearest layer, is one of the factors leading to the "slip opacity" in our systems. The diffusio-osmotic transport of small hydrophobes (with a radius below 2.5 Å) is also affected by the slip opacity, being dramatically enhanced by slippage. Furthermore, the direction of diffusio-osmotic flow is controlled by the solute size, with the flow in the opposite direction of the concentration gradient for smaller hydrophobes, and vice versa for larger ones. We connect our findings to the wetting properties of two-dimensional materials, and we propose that slippage and wetting can be controlled separately: whereas the slippage is mostly determined by the layer in closer proximity to water, wetting can be finely tuned by stacking different two-dimensional materials. Our study advances the computational design of two-dimensional materials and van der Waals heterostructures, enabling precise control over wetting and slippage properties for applications in coatings and water purification membranes.

16.
ACS Nano ; 18(32): 21052-21060, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39086092

RESUMO

The emergence of correlated phenomena arising from the combination of 1T and 1H van der Waals layers is the focus of intense research. Here, we synthesize a self-stacked 6R phase in NbSeTe, showing perfect alternating 1T and 1H layers that grow coherently along the c-direction, as revealed by scanning transmission electron microscopy. Angle-resolved photoemission spectroscopy shows a mixed contribution of the trigonal and octahedral Nb bands to the Fermi level. Diffuse scattering reveals temperature-independent short-range charge fluctuations with propagation vector qCO = (0.25 0), derived from the condensation of a longitudinal mode in the 1T layer, while the long-range charge density wave is quenched by ligand disorder. Magnetization measurements suggest the presence of an inhomogeneous, short-range magnetic order, further supported by the absence of a clear phase transition in the specific heat. These experimental analyses in combination with ab initio calculations indicate that the ground state of 6R-NbSeTe is described by a statistical distribution of short-range charge-modulated and spin-correlated regions driven by ligand disorder. Our results demonstrate how natural 1T-1H self-stacked bulk heterostructures can be used to engineer emergent phases of matter.

17.
J Synchrotron Radiat ; 31(Pt 5): 1078-1083, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39042581

RESUMO

The simulation of EXAFS spectra of thin films via ab initio methods is discussed. The procedure for producing the spectra is presented as well as an application to a two-dimensional material (WSe2) where the effectiveness of this method in reproducing the spectrum and the linear dichroic response is shown. A series of further examples in which the method has been employed for the structural determination of materials are given.

18.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999053

RESUMO

The equilibrium structures of silyl iodide, SiH3I, and silylene halides, SiHX (X = F, Cl, Br, I), were determined by using the mixed regression method, where approximate values of the rotational constants are supplemented by the structural parameters of a different origin. For this goal, it is shown that the r(Si-H) bond length can be determined by using the isolated SiH stretching frequency and that an accurate estimation of the bond angles is obtained by an MP2 calculation with a basis set of triple zeta quality. To check the accuracy of the experimental structures, they were also optimized by means of all electron CCSD(T) calculations using basis sets of quadruple zeta quality.

19.
Molecules ; 29(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999190

RESUMO

This paper systematically investigates the structure, stability, and electronic properties of niobium carbide clusters, NbmCn (m = 5, 6; n = 1-7), using density functional theory. Nb5C2 and Nb5C6 possess higher dissociation energies and second-order difference energies, indicating that they have higher thermodynamic stability. Moreover, ab initio molecular dynamics (AIMD) simulations are used to demonstrate the thermal stability of these structures. The analysis of the density of states indicates that the molecular orbitals of NbmCn (m = 5, 6; n = 1-7) are primarily contributed by niobium atoms, with carbon atoms having a smaller contribution. The composition of the frontier molecular orbitals reveals that niobium atoms contribute approximately 73.1% to 99.8% to NbmCn clusters, while carbon atoms contribute about 0.2% to 26.9%.

20.
Heliyon ; 10(11): e32573, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961942

RESUMO

In this study, a novel 3,3'-bipyrazolo [3,4-b]pyridine-type structure was synthesized from 5-acetylamino-3-methyl-1-phenylpyrazole using the Vilsmeier-Haack reaction as a key step. The spectroscopic properties and structural elucidation of the compound were determined with the use of FT-IR, HRMS, 1H NMR, and 13C NMR. Likewise, the theoretical analysis of the IR and NMR spectra allowed peaks to be assigned and a solid correlation was demonstrated between the experimental and theoretical results. Finally, ab initio calculations based on the density functional theory method at the B3LYP/6-311G (d,p) level of theory were used to determine the conformational energy barrier, facilitating the identification of the most probable conformers of the synthesized compound. Overall, our findings contribute to the understanding of bipyrazolo [3,4-b]pyridine derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA