Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 136(1): 13-19, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100649

RESUMO

Acetogens grow autotrophically and use hydrogen (H2) as the energy source to fix carbon dioxide (CO2). This feature can be applied to gas fermentation, contributing to a circular economy. A challenge is the gain of cellular energy from H2 oxidation, which is substantially low, especially when acetate formation coupled with ATP production is diverted to other chemicals in engineered strains. Indeed, an engineered strain of the thermophilic acetogen Moorella thermoacetica that produces acetone lost autotrophic growth on H2 and CO2. We aimed to recover autotrophic growth and enhance acetone production, in which ATP production was assumed to be a limiting factor, by supplementing with electron acceptors. Among the four selected electron acceptors, thiosulfate and dimethyl sulfoxide (DMSO) enhanced both bacterial growth and acetone titers. DMSO was the most effective and was further analyzed. We showed that DMSO supplementation enhanced intracellular ATP levels, leading to increased acetone production. Although DMSO is an organic compound, it functions as an electron acceptor, not a carbon source. Thus, supplying electron acceptors is a potential strategy to complement the low ATP production caused by metabolic engineering and to improve chemical production from H2 and CO2.


Assuntos
Dióxido de Carbono , Moorella , Dióxido de Carbono/metabolismo , Acetona/metabolismo , Elétrons , Dimetil Sulfóxido/metabolismo , Hidrogênio/metabolismo , Moorella/genética , Moorella/metabolismo , Oxidantes/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Environ Sci Pollut Res Int ; 30(8): 20736-20745, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36255577

RESUMO

In the present work, for the first time, green chemically synthesized and stabilized Co3O4 nanoparticles were employed for catalytic conversion of isopropyl alcohol to acetone by dehydrogenation of IPA. Plant extract of Rosmarinus officinalis was used as a reducing and stabilizing agent for this synthesis. The biosynthesized Co3O4 nanoparticles were annealed at 450℃ followed by their physiochemical characterizations through XRD, SEM, AFM, and FTIR. Size distribution information collected through XRD and AFM back each other, and it was found to be 6.5 nm, having the highest number of nanoparticles in this size range. While SEM confirms the self-arranging property of synthesized nanoparticles due to their magnetic nature, furthermore, the biogenic Co3O4 nanoparticles were studied for their catalytic potential to convert isopropyl alcohol to acetone with the help of a UV-Visible spectrophotometer. The highest photocatalytic conversion of 99% was obtained in time period of 48 s. For the first time ever, nanoparticles were used for 5 cycles to evaluate their recyclable nature and conversion fell from 99 to 86% and the end of the 5th cycle. Later anti-bacterial activity against 3 Gram-positive and 3 Gram-negative strains gave the highest inhibition value of 99% against Streptococcus pneumoniae at 500 µg/mL. Finally, a cytotoxicity study on synthesized nanomaterials was carried out by exposing freshly drawn human macrophages to them. It was found that even at the highest concentration of 500 µg/mL, the nanoparticles showed only 28% lysis.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Humanos , Antibacterianos/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , 2-Propanol , Acetona , Química Verde
3.
AMB Express ; 11(1): 59, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33891189

RESUMO

Gas fermentation is one of the promising bioprocesses to convert CO2 or syngas to important chemicals. Thermophilic gas fermentation of volatile chemicals has the potential for the development of consolidated bioprocesses that can simultaneously separate products during fermentation. This study reports the production of acetone from CO2 and H2, CO, or syngas by introducing the acetone production pathway using acetyl-coenzyme A (Ac-CoA) and acetate produced via the Wood-Ljungdahl pathway in Moorella thermoacetica. Reducing the carbon flux from Ac-CoA to acetate through genetic engineering successfully enhanced acetone productivity, which varied on the basis of the gas composition. The highest acetone productivity was obtained with CO-H2, while autotrophic growth collapsed with CO2-H2. By adding H2 to CO, the acetone productivity from the same amount of carbon source increased compared to CO gas only, and the maximum specific acetone production rate also increased from 0.04 to 0.09 g-acetone/g-dry cell/h. Our development of the engineered thermophilic acetogen M. thermoacetica, which grows at a temperature higher than the boiling point of acetone (58 °C), would pave the way for developing a consolidated process with simplified and cost-effective recovery via condensation following gas fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA