Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.840
Filtrar
1.
Environ Pollut ; 351: 124111, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710360

RESUMO

Pesticides are substances used for controlling, preventing, and repelling pests in agriculture. Among them, neonicotinoids have become the fastest-growing class of insecticides because of their efficiency in targeting pests. They work by strongly binding to nicotinic acetylcholine receptors (nAChRs) in the central nervous system of insects, leading to receptor blockage, paralysis, and death. Despite their selectivity for insects, these substances may be hazardous to non-target creatures, including earthworms. Although earthworms may be invasive in some regions like north America, they contribute to the development of soil structure, water management, nutrient cycling, pollution remediation, and cultural services, positively impacting the environment, particularly in the soil ecosystem. Thus, this study aimed to develop a novel earthworm behavior assay since behavior is a sensitive marker for toxicity assay, and demonstrated its application in evaluating the toxicity of various neonicotinoids. Here, we exposed Eisenia fetida to 1 and 10 ppb of eight neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram pestanal, thiacloprid, thiametoxam, and sulfoxaflor) for 3 days to observe their behavior toxicities. Overall, all of the neonicotinoids decreased their locomotion, showed by a reduction of average speed by 24.94-68.63% and increment in freezing time movement ratio by 1.51-4.25 times, and altered their movement orientation and complexity, indicated by the decrement in the fractal dimension value by 24-70%. Moreover, some of the neonicotinoids, which were acetamiprid, dinotefuran, imidacloprid, nitenpyram, and sulfoxaflor, could even alter their exploratory behaviors, which was shown by the increment in the time spent in the center area value by 6.94-12.99 times. Furthermore, based on the PCA and heatmap clustering results, thiametoxam was found as the neonicotinoid that possessed the least pronounced behavior toxicity effects among the tested pesticides since these neonicotinoid-treated groups in both concentrations were grouped in the same major cluster with the control group. Finally, molecular docking was also conducted to examine neonicotinoids' possible binding mechanism to Acetylcholine Binding Protein (AChBP), which is responsible for neurotransmission. The molecular docking result confirmed that each of the neonicotinoids has a relatively high binding energy with AChBP, with the lowest binding energy was possessed by thiametoxam, which consistent with its relatively low behavior toxicities. Thus, these molecular docking results might hint at the possible mechanism behind the observed behavior alterations. To sum up, the present study demonstrated that all of the neonicotinoids altered the earthworm behaviors which might be due to their ability to bind with some specific neurotransmitters and the current findings give insights into the toxicities of neonicotinoids to the environment, especially animals in a soil ecosystem.

2.
Hear Res ; 447: 109025, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38733712

RESUMO

Cortical acetylcholine (ACh) release has been linked to various cognitive functions, including perceptual learning. We have previously shown that cortical cholinergic innervation is necessary for accurate sound localization in ferrets, as well as for their ability to adapt with training to altered spatial cues. To explore whether these behavioral deficits are associated with changes in the response properties of cortical neurons, we recorded neural activity in the primary auditory cortex (A1) of anesthetized ferrets in which cholinergic inputs had been reduced by making bilateral injections of the immunotoxin ME20.4-SAP in the nucleus basalis (NB) prior to training the animals. The pattern of spontaneous activity of A1 units recorded in the ferrets with cholinergic lesions (NB ACh-) was similar to that in controls, although the proportion of burst-type units was significantly lower. Depletion of ACh also resulted in more synchronous activity in A1. No changes in thresholds, frequency tuning or in the distribution of characteristic frequencies were found in these animals. When tested with normal acoustic inputs, the spatial sensitivity of A1 neurons in the NB ACh- ferrets and the distribution of their preferred interaural level differences also closely resembled those found in control animals, indicating that these properties had not been altered by sound localization training with one ear occluded. Simulating the animals' previous experience with a virtual earplug in one ear reduced the contralateral preference of A1 units in both groups, but caused azimuth sensitivity to change in slightly different ways, which may reflect the modest adaptation observed in the NB ACh- group. These results show that while ACh is required for behavioral adaptation to altered spatial cues, it is not required for maintenance of the spectral and spatial response properties of A1 neurons.

3.
Immunity ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38744291

RESUMO

Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.

4.
Immunity ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38744292

RESUMO

Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.

5.
ACS Chem Neurosci ; 15(10): 2070-2079, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691676

RESUMO

PDZ domains are modular domains that conventionally bind to C terminal or internal motifs of target proteins to control cellular functions through the regulation of protein complex assemblies. Almost all reported structures of PDZ-target protein complexes rely on fragments or peptides as target proteins. No intact target protein complexed with PDZ was structurally characterized. In this study, we used NMR spectroscopy and other biochemistry and biophysics tools to uncover insights into structural coupling between the PDZ domain of protein interacting with C-kinase 1 (PICK1) and α7 nicotinic acetylcholine receptors (α7 nAChR). Notably, the intracellular domains of both α7 nAChR and PICK1 PDZ exhibit a high degree of plasticity in their coupling. Specifically, the MA helix of α7 nAChR interacts with residues lining the canonical binding site of the PICK1 PDZ, while flexible loops also engage in protein-protein interactions. Both hydrophobic and electrostatic interactions mediate the coupling. Overall, the resulting structure of the α7 nAChR-PICK1 complex reveals an unconventional PDZ binding mode, significantly expanding the repertoire of functionally important PDZ interactions.


Assuntos
Proteínas de Transporte , Domínios PDZ , Ligação Proteica , Receptor Nicotínico de Acetilcolina alfa7 , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteínas de Transporte/metabolismo , Ligação Proteica/fisiologia , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Sítios de Ligação/fisiologia
6.
Pharmacol Res ; 204: 107190, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704107

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.

7.
Methods Cell Biol ; 187: 139-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705623

RESUMO

Array tomography (AT) allows one to localize sub-cellular components within the structural context of cells in 3D through the imaging of serial sections. Using this technique, the z-resolution can be improved physically by cutting ultra-thin sections. Nevertheless, conventional immunofluorescence staining of those sections is time consuming and requires relatively large amounts of costly antibody solutions. Moreover, epitopes are only readily accessible at the section's surface, leaving the volume of the serial sections unlabeled. Localization of receptors at neuronal synapses in 3D in their native cellular ultrastructural context is important for understanding signaling processes. Here, we present in vivo labeling of receptors via fluorophore-coupled tags in combination with super-resolution AT. We present two workflows where we label receptors at the plasma membrane: first, in vivo labeling via microinjection with a setup consisting of readily available components and self-manufactured microscope table equipment and second, live receptor labeling by using a cell-permeable tag. To take advantage of a near-to-native preservation of tissues for subsequent scanning electron microscopy (SEM), we also apply high-pressure freezing and freeze substitution. The advantages and disadvantages of our workflows are discussed.


Assuntos
Sinapses , Tomografia , Animais , Sinapses/metabolismo , Sinapses/ultraestrutura , Tomografia/métodos , Imageamento Tridimensional/métodos , Coloração e Rotulagem/métodos , Camundongos , Microscopia Eletrônica de Varredura/métodos , Corantes Fluorescentes/química , Microinjeções/métodos , Neurônios/metabolismo , Ratos
8.
Mol Cell Neurosci ; : 103935, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703973

RESUMO

Muscarinic neurotransmission is fundamentally involved in supporting several brain functions by modulating flow of information in brain neural circuits including the hippocampus which displays a remarkable functional segregation along its longitudinal axis. However, how muscarinic neuromodulation contributes to the functional segregation along the hippocampus remains unclear. In this study we show that the nonselective muscarinic receptor agonist carbachol similarly suppresses basal synaptic transmission in the dorsal and ventral CA1 hippocampal field, in a concentration-depended manner. Furthermore, using a ten-pulse stimulation train of varying frequency we found that carbachol changes the frequency filtering properties more in ventral than dorsal hippocampus by facilitating synaptic inputs at a wide range of input frequencies in the ventral compared with dorsal hippocampus. Using the M2 receptor antagonist gallamine and the M4 receptor antagonist tropicamide, we found that M2 receptors are involved in controlling basal synaptic transmission and short-term synaptic plasticity (STSP) in the ventral but not the dorsal hippocampus, while M4 receptors participate in modulating basal synaptic transmission and STSP in both segments of the hippocampus. These results were corroborated by the higher protein expression levels of M2 receptors in the ventral compared with dorsal hippocampus. We conclude that muscarinic transmission modulates excitatory synaptic transmission and short-term synaptic plasticity along the entire rat hippocampus by acting through M4 receptors and recruiting M2 receptors only in the ventral hippocampus. Furthermore, M4 receptors appear to exert a permissive role on the actions of M2 receptors on STSP in the ventral hippocampus. This dorsoventral differentiation of muscarinic modulation is expected to have important implications in information processing along the endogenous hippocampal circuitry.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38700468

RESUMO

BACKGROUND: Activation of the vagus nerve mediates cardioprotection and attenuates myocardial ischemia/reperfusion (I/R) injury. In response to vagal activation, acetylcholine (ACh) is released from the intracardiac nervous system (ICNS) and activates intracellular cardioprotective signaling cascades. Recently, however, a non-neuronal cholinergic cardiac system (NNCCS) in cardiomyocytes has been described as an additional source of ACh. AIM: To investigate whether the NNCCS mediates cardioprotection in absence of vagal and ICNS activation. For that, we used a reductionist approach of isolated adult rat ventricular cardiomyocytes in absence of neuronal cells with hypoxic preconditioning (HPC) as protective stimulus. METHODS: Adult rat ventricular cardiomyocytes were isolated, absence of neuronal cells was confirmed, HPC was induced by 10/20 min hypoxia/reoxygenation (H/R) before subjection to 30/5 min H/R to simulate I/R injury. Cardiomyocyte viability was assessed by trypan blue staining. Intra- and extracellular ACh was quantified using liquid chromatography-coupled mass spectrometry at baseline, after HPC, after hypoxia, and after reoxygenation, respectively. In a subset of experiments, muscarinic/nicotinic ACh receptor (mAChR/nAChR) antagonists were added during HPC or during H/R. RESULTS: Cardiomyocyte viability at baseline (69±4%) was reduced by H/R (10±3%). With HPC cardiomyocyte viability was preserved after H/R (25±6%). Intra- and extracellular ACh increased during hypoxia, HPC further increased both intra- and extracellular ACh (from 0.9±0.7 to 1.5±1.0 nmol/mg; from 0.7±0.6 to 1.1±0.7 nmol/mg). Addition of mAChR and nAChR antagonists during HPC had no impact on HPC´s protection, however protection was abrogated when antagonists were added during H/R (cardiomyocyte viability after H/R: 23±5%; 13±4%). CONCLUSION: Activation of the NNCCS is involved in cardiomyocyte protection: HPC increases intra- and extracellular ACh during H/R, and m-/nAChRs are causally involved in HPC´s cardiomyocyte protection during H/R. The interplay between upstream ICNS activation and the NNCCS activation to myocardial cholinergic metabolism and cardioprotection needs to be investigated in future studies.

10.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732252

RESUMO

Several studies have shown an inverse correlation between the likelihood of developing a neurodegenerative disorder and cancer. We previously reported that the levels of amyloid beta (Aß), at the center of Alzheimer's disease pathophysiology, are regulated by acetylcholinesterase (AChE) in non-small cell lung cancer (NSCLC). Here, we examined the effect of Aß or its fragments on the levels of ACh in A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell media. ACh levels were reduced by cell treatment with Aß 1-42, Aß 1-40, Aß 1-28, and Aß 25-35. AChE and p53 activities increased upon A549 cell treatment with Aß, while knockdown of p53 in A549 cells increased ACh levels, decreased AChE activity, and diminished the Aß effects. Aß increased the ratio of phospho/total p38 MAPK and decreased the activity of PKC. Inhibiting p38 MAPK reduced the activity of p53 in A549 cells and increased ACh levels in the media of both cell lines, while opposite effects were found upon inhibiting PKC. ACh decreased the activity of p53 in A549 cells, decreased p38 MAPK activity, increased PKC activity, and diminished the effect of Aß on those activities. Moreover, the negative effect of Aß on cell viability was diminished by cell co-treatment with ACh.


Assuntos
Acetilcolina , Acetilcolinesterase , Peptídeos beta-Amiloides , Carcinoma Pulmonar de Células não Pequenas , Sobrevivência Celular , Neoplasias Pulmonares , Proteína Quinase C , Proteína Supressora de Tumor p53 , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Sobrevivência Celular/efeitos dos fármacos , Proteína Quinase C/metabolismo , Acetilcolinesterase/metabolismo , Linhagem Celular Tumoral , Células A549
11.
Neurochem Int ; 176: 105739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604443

RESUMO

Corticoptropin releasing factor (CRF) is implicated in stress-related physiological and behavioral changes. The septohippocampal pathway regulates hippocampal-dependent mnemonic processes, which are affected in stress-related disorders, and given the abundance of CRF receptors in the medial septum (MS), this pathway is influenced by CRF. Moreover, there are sex differences in the MS sensitivity to CRF and its impact on hippocampal function. However, the mechanisms underlying these associations remain elusive. In the present study, we utilized an in vivo biosensor-based electrochemistry approach to examine the impact of MS CRF infusions on hippocampal cholinergic signaling dynamics in male and female rats. Our results show increased amplitudes of depolarization-evoked phasic cholinergic signals in the hippocampus following MS infusion of CRF at the 3 ng dose as compared to the infusion involving artificial cerebrospinal fluid (aCSF). Moreover, a trend for a sex × infusion interaction indicated larger cholinergic transients in females. On the contrary, intraseptal infusion of a physiologically high dose (100 ng) of CRF produced a subsequent reduction in phasic cholinergic transients in both males and females. The assessment of tonic cholinergic activity over 30 min post-infusion revealed no changes at the 3 ng CRF dose in either sex, but a significant infusion × sex interaction indicated a reduction in females at the 100 ng dose of CRF as compared to the aCSF. Taken together, our results show differential, dose-dependent modulatory effects of MS CRF on the dynamics of phasic and tonic modes of cholinergic signaling in the hippocampus of male and female rats. These cholinergic signaling modes are critical for memory encoding and maintaining arousal states, and may underlie sex differences in cognitive vulnerability to stress and stress-related psychiatric disorders.


Assuntos
Hormônio Liberador da Corticotropina , Hipocampo , Animais , Feminino , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ratos , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/administração & dosagem , Ratos Sprague-Dawley , Núcleos Septais/metabolismo , Núcleos Septais/efeitos dos fármacos , Caracteres Sexuais , Acetilcolina/metabolismo
12.
J Nucl Med ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604762

RESUMO

Molecular imaging of brain vesicular acetylcholine transporter provides a biomarker to explore cholinergic systems in humans. We aimed to characterize the distribution of, and optimize methods to quantify, the vesicular acetylcholine transporter-specific tracer (-)-(1-(8-(2-[18F]fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)-piperidin-4-yl)(4-fluorophenyl)methanone ([18F]VAT) in the brain using PET. Methods: Fifty-two healthy participants aged 21-97 y had brain PET with [18F]VAT. [3H]VAT autoradiography identified brain areas devoid of specific binding in cortical white matter. PET image-based white matter reference region size, model start time, and duration were optimized for calculations of Logan nondisplaceable binding potential (BPND). Ten participants had 2 scans to determine test-retest variability. Finally, we analyzed age-dependent differences in participants. Results: [18F]VAT was widely distributed in the brain, with high striatal, thalamic, amygdala, hippocampal, cerebellar vermis, and regionally specific uptake in the cerebral cortex. [3H]VAT autoradiography-specific binding and PET [18F]VAT uptake were low in white matter. [18F]VAT SUVs in the white matter reference region correlated with age, requiring stringent erosion parameters. Logan BPND estimates stabilized using at least 40 min of data starting 25 min after injection. Test-retest variability had excellent reproducibility and reliability in repeat BPND calculations for 10 participants (putamen, 6.8%; r > 0.93). We observed age-dependent decreases in the caudate and putamen (multiple comparisons corrected) and in numerous cortical regions. Finally, we provide power tables to indicate potential mean differences that can be detected between 2 groups of participants. Conclusion: These results validate a reference region for BPND calculations and demonstrate the viability, reproducibility, and utility of using the [18F]VAT tracer in humans to quantify cholinergic pathways.

13.
Mar Drugs ; 22(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667758

RESUMO

Nemertean worms contain toxins that are used to paralyze their prey and to deter potential predators. Hoplonemerteans often contain pyridyl alkaloids like anabaseine that act through nicotinic acetylcholine receptors and crustacean chemoreceptors. The chemical reactivity of anabaseine, the first nemertean alkaloid to be identified, has been exploited to make drug candidates selective for alpha7 subtype nAChRs. GTS-21, a drug candidate based on the anabaseine scaffold, has pro-cognitive and anti-inflammatory actions in animal models. The circumpolar chevron hoplonemertean Amphiporus angulatus contains a multitude of pyridyl compounds with neurotoxic, anti-feeding, and anti-fouling activities. Here, we report the isolation and structural identification of five new compounds, doubling the number of pyridyl alkaloids known to occur in this species. One compound is an isomer of the tobacco alkaloid anatabine, another is a unique dihydroisoquinoline, and three are analogs of the tetrapyridyl nemertelline. The structural characteristics of these ten compounds suggest several possible pathways for their biosynthesis.


Assuntos
Alcaloides , Isoquinolinas , Animais , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Isoquinolinas/farmacologia , Isoquinolinas/química , Isoquinolinas/isolamento & purificação , Invertebrados/química , Piridinas/farmacologia , Piridinas/química , Piridinas/isolamento & purificação , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Estrutura Molecular
14.
Mar Drugs ; 22(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667764

RESUMO

Nicotine binds to nicotinic acetylcholine receptors (nAChRs) that are overexpressed in different cancer cells, promoting tumor growth and resistance to chemotherapy. In this study, we aimed to investigate the potential of APS7-2 and APS8-2, synthetic analogs of a marine sponge toxin, to inhibit nicotine-mediated effects on A549 human lung cancer cells. Our electrophysiological measurements confirmed that APS7-2 and APS8-2 act as α7 nAChR antagonists. APS8-2 showed no cytotoxicity in A549 cells, while APS7-2 showed concentration-dependent cytotoxicity in A549 cells. The different cytotoxic responses of APS7-2 and APS8-2 emphasize the importance of the chemical structure in determining their cytotoxicity on cancer cells. Nicotine-mediated effects include increased cell viability and proliferation, elevated intracellular calcium levels, and reduced cisplatin-induced cytotoxicity and reactive oxygen species production (ROS) in A549 cells. These effects of nicotine were effectively attenuated by APS8-2, whereas APS7-2 was less effective. Our results suggest that APS8-2 is a promising new therapeutic agent in the chemotherapy of lung cancer.


Assuntos
Antineoplásicos , Sobrevivência Celular , Neoplasias Pulmonares , Nicotina , Espécies Reativas de Oxigênio , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Células A549 , Nicotina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Animais , Antagonistas Nicotínicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cálcio/metabolismo , Poríferos/química
15.
Mar Drugs ; 22(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667766

RESUMO

Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.


Assuntos
Iminas , Toxinas Marinhas , Antagonistas Nicotínicos , Receptores Nicotínicos , Toxinas Marinhas/química , Toxinas Marinhas/farmacologia , Toxinas Marinhas/toxicidade , Iminas/química , Iminas/farmacologia , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Animais , Compostos Macrocíclicos/farmacologia , Compostos Macrocíclicos/química , Relação Estrutura-Atividade
16.
Toxics ; 12(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38668486

RESUMO

Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can produce seizures that rapidly progress to life-threatening status epilepticus. Significant research effort has been focused on investigating the involvement of muscarinic acetylcholine receptors (mAChRs) in OP-induced seizure activity. In contrast, there has been far less attention on nicotinic AChRs (nAChRs) in this context. Here, we address this data gap using a combination of in vitro and in vivo models. Pharmacological antagonism and genetic deletion of α4, but not α7, nAChR subunits prevented or significantly attenuated OP-induced electrical spike activity in acute hippocampal slices and seizure activity in mice, indicating that α4 nAChR activation is necessary for neuronal hyperexcitability triggered by acute OP exposures. These findings not only suggest that therapeutic strategies for inhibiting the α4 nAChR subunit warrant further investigation as prophylactic and immediate treatments for acute OP-induced seizures, but also provide mechanistic insight into the role of the nicotinic cholinergic system in seizure generation.

17.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674000

RESUMO

Stimulation of the alpha 7 nicotinic acetylcholine receptor (α7nAChR) has shown beneficial effects in several acute inflammatory disease models. This study aims to examine whether treatment with the selective α7nAChR agonist PHA 568487 can dampen inflammation and thereby improve cardiac function after myocardial infarction in mice. The possible anti-inflammatory properties of α7nAChR agonist PHA 568487 were tested in vivo using the air pouch model and in a permanent occlusion model of acute myocardial infarction in mice. Hematologic parameters and cytokine levels were determined. Infarct size and cardiac function were assessed via echocardiography 24 h and one week after the infarction. Treatment with α7nAChR agonist PHA 568487 decreased 12 (CCL27, CXCL5, IL6, CXCL10, CXCL11, CXCL1, CCL2, MIP1a, MIP2, CXCL16, CXCL12 and CCL25) out of 33 cytokines in the air pouch model of acute inflammation. However, α7nAChR agonist PHA 568487 did not alter infarct size, ejection fraction, cardiac output or stroke volume at 24 h or at 7 days after the myocardial infarction compared with control mice. In conclusion, despite promising immunomodulatory effects in the acute inflammatory air pouch model, α7nAChR agonist PHA 568487 did not affect infarct size or cardiac function after a permanent occlusion model of acute myocardial infarction in mice. Consequently, this study does not strengthen the hypothesis that stimulation of the α7nAChR is a future treatment strategy for acute myocardial infarction when reperfusion is lacking. However, whether other agonists of the α7nAChR can have different effects remains to be investigated.


Assuntos
Modelos Animais de Doenças , Inflamação , Infarto do Miocárdio , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Camundongos , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Masculino , Citocinas/metabolismo , Agonistas Nicotínicos/farmacologia , Agonistas Nicotínicos/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Camundongos Endogâmicos C57BL , Quinuclidinas/farmacologia , Quinuclidinas/uso terapêutico , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Compostos de Benzilideno/farmacologia
18.
J Neuromuscul Dis ; 11(3): 613-623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578899

RESUMO

Background/Objective: Myasthenia Gravis (MG) is an autoimmune disorder characterized by pathogenic autoantibodies (AAbs) targeting nicotinic acetylcholine receptors (AChR), disrupting neuromuscular communication. RadioImmunoPrecipitation Assay (RIPA) is recommended to detect AChR AAbs, but its complexity and radioactive requirements limit widespread use. We compare non-RIPA anti-AChR immunoassays, including Cell-Based Assay (CBA) and two ELISA kits, against the gold standard RIPA. Methods/Results: 145 samples were included with medical indication for anti-AChR testing. By the RIPA method, 63 were negative (RIPA-Neg < 0.02 nmol/L), 18 were classified as Borderline (≥0.02 -1 nmol/L), and 64 were positive (RIPA-Pos > 1 nmol/L). The competitive ELISA showed poor agreement with RIPA (Kappa = 0.216). The indirect ELISA demonstrated substantial agreement with RIPA (Kappa = 0.652), with ∼76% sensitivity and ∼94% specificity for MG diagnostic. The CBA, where fixed cells expressing clustered AChR were used as substrate, exhibited almost perfect agreement with RIPA (Kappa = 0.984), yielding ∼98% sensitivity and 96% specificity for MG. In addition, a semiquantitative analysis showed a strong correlation between CBA titration, indirect ELISA, and RIPA levels (r = 0.793 and r = 0.789, respectively). Conclusions: The CBA displayed excellent analytical performance for MG diagnostic when compared to RIPA, making it a potential replacement for RIPA in clinical laboratories. Some solid-phase assays (such as the indirect ELISA applied here), as well as CBA titration, offer reliable options to estimate anti-AChR AAb levels after confirming positivity by the CBA.∥.


Assuntos
Autoanticorpos , Ensaio de Imunoadsorção Enzimática , Miastenia Gravis , Ensaio de Radioimunoprecipitação , Humanos , Ensaio de Imunoadsorção Enzimática/métodos , Miastenia Gravis/imunologia , Miastenia Gravis/diagnóstico , Sensibilidade e Especificidade , Receptores Colinérgicos/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Adulto Jovem
19.
Biochem Pharmacol ; 223: 116183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580167

RESUMO

In this study, we have investigated the pharmacological activity and structural interaction of two novel psychoplastogens, tabernanthalog (TBG) and ibogainalog (IBG) at heterologously-expressed rat (r) and human (h) nicotinic acetylcholine receptors (nAChRs), the rα1ß2γ2L γ-aminobutyric acid type A receptor (GABAAR), and the human voltage-gated N-type calcium channel (CaV2.2 channel). Both compounds inhibited the nAChRs with the following receptor selectivity: α9α10 > α7 > α3ß2 â‰… α3ß4, indicating that ß2/ß4 subunits are relatively less important for their activity. The potencies of TBG and IBG were comparable at hα7 and hα9α10 subtypes, and comparable to their rat counterparts. TBG- and IBG-induced inhibition of rα7 was ACh concentration-independent and voltage-dependent, whereas rα9α10 inhibition was ACh concentration-dependent and voltage-independent, suggesting that they interact with the α7 ion channel pore and α9α10 orthosteric ligand binding site, respectively. These results were supported by molecular docking studies showing that at the α7 model TBG forms stable interactions with luminal rings at 9', 13', and 16', whereas IBG mostly interacts with the extracellular-transmembrane junction. In the α9α10 model, however, these compounds interacted with several residues from the principal (+) and complementary (-) sides in the transmitter binding site. Ibogaminalog (DM506) also interacted with a non-luminal site at α7, and one α9α10 orthosteric site. TBG and IBG inhibited the GABAAR and CaV2.2 channels with 10 to 30-fold lower potencies. In sum, we show that TBG and IBG inhibit the α7 and α9α10 nAChRs by noncompetitive and competitive mechanisms, respectively, and with higher potency than the GABAAR and CaV2.2 channel.


Assuntos
Receptores Nicotínicos , Ratos , Animais , Humanos , Receptores Nicotínicos/metabolismo , Receptores de GABA-A/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Simulação de Acoplamento Molecular , Ácido gama-Aminobutírico
20.
Eur J Med Chem ; 271: 116409, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663285

RESUMO

Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), ß secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aß aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 µM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 µM) along with good anti-Aß aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 µM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aß-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Inibidores da Colinesterase , Desenho de Fármacos , Triazinas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Ratos , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Triazinas/química , Triazinas/farmacologia , Triazinas/síntese química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Estrutura Molecular , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Simulação de Acoplamento Molecular , Quinases Dyrk , Relação Dose-Resposta a Droga , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Masculino , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Butirilcolinesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...