Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.398
Filtrar
1.
Hear Res ; 448: 109020, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38763034

RESUMO

Combining cochlear implants with binaural acoustic hearing via preserved hearing in the implanted ear(s) is commonly referred to as combined electric and acoustic stimulation (EAS). EAS fittings can provide patients with significant benefit for speech recognition in complex noise, perceived listening difficulty, and horizontal-plane localization as compared to traditional bimodal hearing conditions with contralateral and monaural acoustic hearing. However, EAS benefit varies across patients and the degree of benefit is not reliably related to the underlying audiogram. Previous research has indicated that EAS benefit for speech recognition in complex listening scenarios and localization is significantly correlated with the patients' binaural cue sensitivity, namely interaural time differences (ITD). In the context of pure tones, interaural phase differences (IPD) and ITD can be understood as two perspectives on the same phenomenon. Through simple mathematical conversion, one can be transformed into the other, illustrating their inherent interrelation for spatial hearing abilities. However, assessing binaural cue sensitivity is not part of a clinical assessment battery as psychophysical tasks are time consuming, require training to achieve performance asymptote, and specialized programming and software all of which render this clinically unfeasible. In this study, we investigated the possibility of using an objective measure of binaural cue sensitivity by the acoustic change complex (ACC) via imposition of an IPD of varying degrees at stimulus midpoint. Ten adult listeners with normal hearing were assessed on tasks of behavioral and objective binaural cue sensitivity for carrier frequencies of 250 and 1000 Hz. Results suggest that 1) ACC amplitude increases with IPD; 2) ACC-based IPD sensitivity for 250 Hz is significantly correlated with behavioral ITD sensitivity; 3) Participants were more sensitive to IPDs at 250 Hz as compared to 1000 Hz. Thus, this objective measure of IPD sensitivity may hold clinical application for pre- and post-operative assessment for individuals meeting candidacy indications for cochlear implantation with low-frequency acoustic hearing preservation as this relatively quick and objective measure may provide clinicians with information identifying patients most likely to derive benefit from EAS technology.

2.
Clin Ter ; 175(3): 137-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38767070

RESUMO

Background: Various non-invasive methods have been studied for assessing the fibrosis stage in patients with chronic hepatitis B. However, the performance of APGA, Fibrosis index in diagnosing liver fibrosis remains unclear globally and specifically in Vietnam. Methods: An analytical cross-sectional study was performed among 242 patients treated at Thong Nhat Hospital. Results: Both the APGA index and Fibrosis index showed good accuracy in diagnosing significant fibrosis (≥ F2), advanced liver fibro-sis (≥ F3), and cirrhosis (F4) with an area under the curve (AUROC) greater than 0.7. AUROC value of APGA index, Fibrosis index for diagnosing signifcant fibrosis (≥ F2) were 0.828, 0.767 respectively. AUROC value of APGA index, Fibrosis index for diagnosing advanced liver fibrosis (≥ F3) were 0.784, 0.755 respectively. AUROC value of APGA index, Fibrosis index for diagnosing cirrhosis (F4) were 0.736, 0.782 respectively. APGA index and the Fibrosis index were significantly positively correlated with the fibrosis stage (p < 0.001), with the APGA index showing the strongest correlation (r = 0.51, p < 0.001). Conclusions: The APGA values of 6.23, 7.88, and 8.99 can serve as cutoff points for the diagnosis of significant fibrosis (≥F2), advanced fibrosis (≥F3), and cirrhosis (F4) when combined with ARFI data.


Assuntos
Hepatite B Crônica , Cirrose Hepática , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Estudos Transversais , Hepatite B Crônica/complicações , Hepatite B Crônica/patologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Vietnã
3.
Ecol Evol ; 14(5): e11389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774133

RESUMO

Conservation decisions for bird diversity in the Afrotropics are often based on ecological studies utilizing diurnal bird species likely owing to difficulties associated with sampling nocturnal birds. It is therefore important to compare the sampling effectiveness of some of the available techniques that can be used in nocturnal bird surveys to guide future long-term survey efforts. Thus, we compared the sampling effectiveness of point count, acoustic recorder and camera trap for estimating nocturnal bird species richness and also across habitat types. We surveyed 20 points that were spaced at least 500 m apart in November and December 2021 in the Amurum Forest Reserve and its surroundings in Jos-Nigeria. At each point, we used two camera traps, one at the ground and the other at 2.0 m. We also used one acoustic recorder as well as a 15-min point count during each survey at each point. We encountered 11 nocturnal bird species, primarily nightjars but also owls. While we did not encounter any species with the camera traps, all 11 species were recorded using the acoustic recorder. All species except for Ketupa lacteaus were recorded in point count. Eight species were recorded in the gallery, seven in rocky and nine in savannah. Species richness and estimation using the acoustic recorder and point count were similar across habitat types. We conclude that either point count or acoustic recorders are useful for nocturnal bird surveys in Afrotropical environments. However, the choice of methods should be based on the research questions as some questions may be better answered by a specific method or even a combination of both.

4.
Heliyon ; 10(10): e30660, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38774334

RESUMO

Understanding the precursors leading to rock fracture is crucial for ensuring safety in mining and geotechnical engineering projects. To effectively discern these precursors, a collaborative monitoring approach that integrates multiple sources of information is imperative. This paper considered a rock multi-parameter monitoring loading system, incorporating infrared radiation and acoustic emission monitoring technologies to simultaneously track the rock fracture process. The study delves into the spatiotemporal evolution patterns of infrared radiation and acoustic emission in rock under loading. Utilizing stress, cumulative acoustic emission count, and average infrared radiation temperature (AIRT), the paper establishes a comprehensive evaluation model termed "acoustic-thermal-stress" fusion information, employing principal component analysis (PCA). The research reveals that the sensitivity to rock sample damage response follows the sequence of cumulative acoustic emission count, AIRT, and stress. Furthermore, a novel method for identifying rock fracture precursors is proposed, based on the first derivative of the comprehensive evaluation model. This method addresses the limitations of single physical field information, enhancing the robustness of monitoring data. It determines the average stress level of fracture precursors to be 0.77σmax. Subsequently, the study defines the probability function of rock damage during loading and fracture, enabling the realization of probability-based warnings for rock fracture. This approach introduces a new perspective on rock fracture prediction, significantly contributing to safety monitoring and warning systems in mine safety and geotechnical engineering. The findings of this research hold paramount engineering significance, offering valuable insights for enhancing safety measures in such projects.

5.
J Magn Reson Imaging ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777575

RESUMO

BACKGROUND: Neonates with immature auditory function (eg, weak/absent middle ear muscle reflex) could conceivably be vulnerable to noise-induced hearing loss; however, it is unclear if neonates show evidence of hearing loss following MRI acoustic noise exposure. PURPOSE: To explore the auditory effects of MRI acoustic noise in neonates. STUDY TYPE: Prospective. SUBJECTS: Two independent cohorts of neonates (N = 19 and N = 18; mean gestational-age, 38.75 ± 2.18 and 39.01 ± 1.83 weeks). FIELD STRENGTH/SEQUENCE: T1-weighted three-dimensional gradient-echo sequence, T2-weighted fast spin-echo sequence, single-shot echo-planar imaging-based diffusion-tensor imaging, single-shot echo-planar imaging-based diffusion-kurtosis imaging and T2-weighted fluid-attenuated inversion recovery sequence at 3.0 T. ASSESSMENT: All neonates wore ear protection during scan protocols lasted ~40 minutes. Equivalent sound pressure levels (SPLs) were measured for both cohorts. In cohort1, left- and right-ear auditory brainstem response (ABR) was measured before (baseline) and after (follow-up) MRI, included assessment of ABR threshold, wave I, III and V latencies and interpeak interval to determine the functional status of auditory nerve and brainstem. In cohort2, baseline and follow-up left- and right-ear distortion product otoacoustic emission (DPOAE) amplitudes were assessed at 1.2 to 7.0 kHz to determine cochlear function. STATISTICAL TEST: Wilcoxon signed-rank or paired t-tests with Bonferroni's correction were used to compare the differences between baseline and follow-up ABR and DPOAE measures. RESULTS: Equivalent SPLs ranged from 103.5 to 113.6 dBA. No significant differences between baseline and follow-up were detected in left- or right-ear ABR measures (P > 0.999, Bonferroni corrected) in cohort1, or in DPOAE levels at 1.2 to 7.0 kHz in cohort2 (all P > 0.999 Bonferroni corrected except for left-ear levels at 3.5 and 7.0 kHz with corrected P = 0.138 and P = 0.533). DATA CONCLUSION: A single 40-minute 3-T MRI with equivalent SPLs of 103.5-113.6 dBA did not result in significant transient disruption of auditory function, as measured by ABR and DPOAE, in neonates with adequate hearing protection. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 5.

6.
Ultrasonics ; 141: 107322, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38749388

RESUMO

Various types of defects can be induced during the manufacturing or operation of engineering structures. For effective detection and characterization of the defects in large engineering structures, this paper proposes a large-area inspection technique that combines multi-mode guided acoustic waves with sparse sensor networks. The basic sparse sensor network employed in this study is composed of one transmitter and three receivers, distributed in a square lattice on the test plates. Multi-mode guided waves were excited and acquired by means of commercial single-element sensors of the network. To experimentally demonstrate the proposed technique, four different types of defects were simulated in aluminum test plates, including aluminum tape-based material addition, drilled material loss, indented deformation, and thermal embrittlement. For the evaluation of defects, acoustic response of each defect was analyzed based on the combination of linear vs. nonlinear acoustic characteristics, dependence on the type of the guided acoustic mode, and the directionality of the acoustic response on the network. Results indicate that each of the four representative defects can be uniquely identified (classified) and quantified using the proposed technique.

7.
Ultrasound Med Biol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38760280

RESUMO

BACKGROUND: Acoustically activated perfluoropropane droplets (PD) formulated from lipid encapsulated microbubble preparations produce a delayed myocardial contrast enhancement that preferentially highlights the infarct zones (IZ). Since activation of PDs may be temperature sensitive, it is unclear what effect body temperature (BT) has on acoustic activation (AA). OBJECTIVE: We sought to determine whether the microvascular retention and degree of myocardial contrast intensity (MCI) would be affected by BT at the time of intravenous injection. METHODS: We administered intravenous (IV) PD in nine rats following 60 min of ischemia followed by reperfusion. Injections in these rats were given at temperatures above and below 36.5°C, with high MI activation in both groups at 3 or 6 min following IV injection (IVI). In six additional rats (three in each group), IV PDs were given only at one temperature (<36.5°C or ≥36.5°C), permitting a total of 12 comparisons of different BT. Differences in background subtracted MCI at 3-6 min post-injection were compared in the infarct zone (IZ) and remote zone (RZ). Post-mortem lung hematoxylin and eosin (H&E) staining was performed to assess the effect potential thermal activation on lung tissue. RESULTS: Selective MCI within the IZ was observed in 8 of 12 rats who received IVI of PDs at <36.5°C, but none of the 12 rats who had IVI at the higher temperature (p < 0.0001). Absolute MCI following droplet activation was significantly higher in both the IZ and RZ when given at the lower BT. H&E indicated significant red blood extravasation in 5/7 rats who had had IV injections at higher BT, and 0/7 rats who had IV PDs at <36.5°C. CONCLUSIONS: Selective IZ enhancement with AA of intravenous PDs is possible, but temperature sensitive. Thermal activation appears to occur when PDs are given at higher temperatures, preventing AA, and increasing unwanted bioeffects.

8.
ACS Sens ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753893

RESUMO

Rapid detection of microbes is a key feature for monitoring food quality. Unfortunately, current detection systems rely on labor-intensive and time-consuming lab-based processes that are not suitable for point-of-interest applications and typically require several days before results are available. Here, we demonstrate a microfluidic system capable of rapidly concentrating, fluorescent staining, and detecting bacteria in unprocessed complex biological media such as milk. This concentration is done using a surface acoustic wave-driven microfluidic device which operates based on the Bjerknes force, a force generated on one particle by another in its close proximity. We exploit this effect by exciting a tightly packed bed of 50 µm polystyrene microparticles temporarily with surface acoustic waves within a microfluidic device to capture and release bacterial cells on demand. The bacterial cells are fluorescently stained during capture and then detected using fluorescence microscopy upon release. This device offers a high capturing efficiency (>80%) and a 34 Colony Forming Units (CFU)/mL limit of detection, which is 1 order of magnitude below that of plate counting at 30 CFU per standard 100 µL plate (or 300 CFU/mL). This can be attained in just 1 h of processing at 10 µL/min. With this system, we demonstrate that bacterial detection from extremely low concentration samples down to the order of ∼10 CFU/mL is possible without requiring any additional external pre- or postprocessing.

9.
Sensors (Basel) ; 24(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793831

RESUMO

This paper presents an extended work on the Finite Element Method (FEM) simulation of Love Wave (LW) sensors in a liquid medium. Two models are proposed to simulate the multiphysical response of the sensor. Both are extensively described in terms of principle, composition and behavior, making their applications easily reproducible by the sensor community. The first model is a Representative Volume Element (RVE) simulating the transducer and the second focuses on the sensor's longitudinal (OXZ) cut which simulates the multiphysical responses of the device. Sensitivity of the LW device to variations in the rheological and dielectric properties of liquids is estimated and then compared to a large set of measurements issued from LW sensors presenting different technological characteristics. This integral approach allows for a deeper insight into the multiphysical behavior of the LW sensor. This article also explores the advantages and drawbacks of each model. Both are in good accordance with the measurements and could be used for various applications, for which a non-exhaustive list is proposed in the conclusion.

10.
Sensors (Basel) ; 24(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38793881

RESUMO

The advancement of underwater cognitive acoustic network (UCAN) technology aims to improve spectral efficiency and ensure coexistence with the underwater ecosystem. As the demand for short-term underwater applications operated under distributed topologies, like autonomous underwater vehicle cluster operations, continues to grow, this paper presents Underwater Multi-channel Medium Access Control with Cognitive Acoustics (UMMAC-CA) as a suitable channel access protocol for distributed UCANs. UMMAC-CA operates on a per-frame basis, similar to the Multi-channel Medium Access Control with Cognitive Radios (MMAC-CR) designed for distributed cognitive radio networks, but with notable differences. It employs a pre-determined data transmission matrix to allow all nodes to access the channel without contention, thus reducing the channel access overhead. In addition, to mitigate the communication failures caused by randomly occurring interferers, UMMAC-CA allocates at least 50% of frame time for interferer sensing. This is possible because of the fixed data transmission scheduling, which allows other nodes to sense for interferers simultaneously while a specific node is transmitting data. Simulation results demonstrate that UMMAC-CA outperforms MMAC-CR across various metrics, including those of the sensing time rate, controlling time rate, and throughput. In addition, except for in the case where the data transmission time coefficient equals 1, the message overhead performance of UMMAC-CA is also superior to that of MMAC-CR. These results underscore the suitability of UMMAC-CA for use in challenging underwater applications requiring multi-channel cognitive communication within a distributed network architecture.

11.
Sensors (Basel) ; 24(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793898

RESUMO

A 3D vertical seismic profiling (VSP) survey was acquired using a distributed acoustic sensing (DAS) system in the Permian Basin, West Texas. In total, 682 shot points from a pair of vibroseis units were recorded using optical fibers installed in a 9000 ft (2743 m) vertical part and 5000 ft (1524 m) horizontal reach of a well. Transmitted and reflected P, S, and converted waves were evident in the DAS data. From first-break P and S arrivals, we found average P-wave velocities of approximately 14,000 ft/s (4570 m/s) and S-wave velocities of 8800 ft/s (3000 m/s) in the deep section. We modified the conventional geophone VSP processing workflow and produced P-P reflection and P-S volumes derived from the well's vertical section. The Wolfcamp formation can be seen in two 3D volumes (P-P and P-S) from the vertical section of the well. They cover an area of 3000 ft (914 m) in the north-south direction and 1500 ft (460 m) in the west-east direction. Time slices showed coherent reflections, especially at 1.7 s (~11,000 ft), which was interpreted as the bottom of the Wolfcamp formation. Vp/Vs values from 2300 ft (701 m) -8800 ft (2682 m) interval range were between 1.7 and 2.0. These first data provide baseline images to compare to follow-up surveys after hydraulic fracturing as well as potential usefulness in extracting elastic properties and providing further indications of fractured volumes.

12.
Sensors (Basel) ; 24(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793905

RESUMO

This paper presents an acoustic emission (AE) detection method for refined oil storage tanks which is aimed towards specialized places such as oil storage tanks with high explosion-proof requirements, such as cave oil tanks and buried oil tanks. The method utilizes an explosion-proof acoustic emission instrument to detect the floor of a refined oil storage tank. By calculating the time difference between the defective acoustic signal and the speed of acoustic wave transmission, a mathematical model is constructed to analyze the detected signals. An independent channel AE detection system is designed, which can store the collected data in a piece of independent explosion-proof equipment, and can analyze and process the data in a safe area after the detection, solving the problems of a short signal acquisition distance and the weak safety protection applied to traditional AE instruments. A location analysis of the AE sources is conducted on the bottom plate of the tank, evaluating its corrosion condition accurately. The consistency between the evaluation and subsequent open-tank tests confirms that using AE technology effectively captures corrosion signals from oil storage tanks' bottoms. The feasibility of carrying out online inspection under the condition of oil storage in vertical steel oil tanks was verified through a comparison with open inspections, which provided a guide for determining the inspection target and opening order of large-scale oil tanks.

13.
Sensors (Basel) ; 24(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793909

RESUMO

Constipation is a common gastrointestinal disorder that impairs quality of life. Evaluating bowel motility via traditional methods, such as MRI and radiography, is expensive and inconvenient. Bowel sound (BS) analysis has been proposed as an alternative, with BS-time-domain acoustic features (BSTDAFs) being effective for evaluating bowel motility via several food and drink consumption tests. However, the effect of BSTDAFs before drink consumption on those after drink consumption is yet to be investigated. This study used BS-based stimulus-response plots (BSSRPs) to investigate this effect on 20 participants who underwent drinking tests. A strong negative correlation was observed between the number of BSs per minute before carbonated water consumption and the ratio of that before and after carbonated water consumption. However, a similar trend was not observed when the participants drank cold water. These findings suggest that when carbonated water is drunk, bowel motility before ingestion affects motor response to ingestion. This study provides a non-invasive BS-based approach for evaluating motor response to food and drink, offering a new research window for investigators in this field.


Assuntos
Ingestão de Líquidos , Motilidade Gastrointestinal , Humanos , Ingestão de Líquidos/fisiologia , Masculino , Motilidade Gastrointestinal/fisiologia , Feminino , Adulto , Adulto Jovem , Constipação Intestinal/fisiopatologia , Voluntários Saudáveis , Água Carbonatada
14.
Sensors (Basel) ; 24(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793919

RESUMO

Geothermal energy exploitation in urban areas necessitates robust real-time seismic monitoring for risk mitigation. While surface-based seismic networks are valuable, they are sensitive to anthropogenic noise. This study investigates the capabilities of borehole Distributed Acoustic Sensing (DAS) for local seismic monitoring of a geothermal field located in Munich, Germany. We leverage the operator's cloud infrastructure for DAS data management and processing. We introduce a comprehensive workflow for the automated processing of DAS data, including seismic event detection, onset time picking, and event characterization. The latter includes the determination of the event hypocenter, origin time, seismic moment, and stress drop. Waveform-based parameters are obtained after the automatic conversion of the DAS strain-rate to acceleration. We present the results of a 6-month monitoring period that demonstrates the capabilities of the proposed monitoring set-up, from the management of DAS data volumes to the establishment of an event catalog. The comparison of the results with seismometer data shows that the phase and amplitude of DAS data can be reliably used for seismic processing. This emphasizes the potential of improving seismic monitoring capabilities with hybrid networks, combining surface and downhole seismometers with borehole DAS. The inherent high-density array configuration of borehole DAS proves particularly advantageous in urban and operational environments. This study stresses that realistic prior knowledge of the seismic velocity model remains essential to prevent a large number of DAS sensing points from biasing results and interpretation. This study suggests the potential for a gradual extension of the network as geothermal exploitation progresses and new wells are equipped, owing to the scalability of the described monitoring system.

15.
Sensors (Basel) ; 24(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793963

RESUMO

The rapid advancement toward smart cities has accelerated the adoption of various Internet of Things (IoT) devices for underground applications, including agriculture, which aims to enhance sustainability by reducing the use of vital resources such as water and maximizing production. On-farm IoT devices with above-ground wireless nodes are vulnerable to damage and data loss due to heavy machinery movement, animal grazing, and pests. To mitigate these risks, wireless Underground Sensor Networks (WUSNs) are proposed, where devices are buried underground. However, implementing WUSNs faces challenges due to soil heterogeneity and the need for low-power, small-size, and long-range communication technology. While existing radio frequency (RF)-based solutions are impeded by substantial signal attenuation and low coverage, acoustic wave-based WUSNs have the potential to overcome these impediments. This paper is the first attempt to review acoustic propagation models to discern a suitable model for the advancement of acoustic WUSNs tailored to the agricultural context. Our findings indicate the Kelvin-Voigt model as a suitable framework for estimating signal attenuation, which has been verified through alignment with documented outcomes from experimental studies conducted in agricultural settings. By leveraging data from various soil types, this research underscores the feasibility of acoustic signal-based WUSNs.

16.
Sensors (Basel) ; 24(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793981

RESUMO

Acoustic tomography utilizes sensor arrays to collect sound wave signals, enabling non-contact measurement of physical parameters within an area of interest. Compared to optical technologies, acoustic tomography offers the advantages of low cost, low maintenance, and easy installation. Current research in acoustic tomography mainly focuses on reconstruction algorithms for temperature fields, while monitoring the composition and concentration of gases is significant for ensuring safety and improving efficiency, such as in scenarios like boiler furnaces and aviation engine nozzles. In excitable gases, the speed of sound exhibits an S-shaped curve that changes with frequency, a characteristic that could be potentially useful for acoustic tomography. Therefore, this study primarily discusses the quantitative calculation of gas concentration and temperature based on the dispersion of the speed of sound. By employing graphic processing and pattern matching methods, a coupled relationship of the dispersion of the speed of sound with gas concentration and temperature is established. The projection intersection method is used to calculate the concentration and temperature of binary and ternary gas mixtures. Combined with the inversion method, a joint reconstruction method for gas concentration fields and temperature fields based on the dispersion of the speed of sound is developed. The feasibility of the proposed simultaneous reconstruction method for temperature and concentration fields is validated using numerical simulations. Additionally, an acoustic tomography experimental system was set up to conduct reconstruction experiments for binary gas concentration fields and temperature fields, confirming the effectiveness of the proposed method.

17.
Polymers (Basel) ; 16(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794523

RESUMO

This research investigates the mechanical behavior and damage evolution in cross-ply basalt fiber composites subjected to different loading modes. A modified Arcan rig for simultaneous acoustic emission (AE) monitoring was designed and manufactured to apply quasi-isotropic shear, combined tensile and shear loading, and pure tensile loading on specimens with a central notch. Digital image correlation (DIC) was applied for high-resolution strain measurements. The measured failure strengths of the bio-composite specimens under different loading angles are presented. The different competing failure mechanisms that contribute to the local reduction in stress concentration are described. Different damage mechanisms trigger elastic waves in the composite, with distinct AE signatures that closely follow the sequence of fracture mechanisms. AE monitoring is employed to capture signals associated with structural damage initiation and progression. The characteristic parameters of AE signals are correlated with crack modes and damage mechanisms. The evolution of AE parameters during the peak load transition is presented, which enables the timely AE detection of the maximum load transition. The combination of DIC and AE monitoring improves understanding of the mechanical response and failure mechanisms in cross-ply basalt fiber composites, offering valuable insights for possible performance monitoring and structural reliability in diverse engineering applications.

18.
Polymers (Basel) ; 16(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794548

RESUMO

The in situ study of fractal microstructure in nanocarbon polymers is an actual task for their application and for the improvement in their functional properties. This article presents a visualization of the bulk structural features of the composites using pulsed acoustic microscopy and synchrotron X-ray microtomography. This article presents details of fractal structure formation using carbon particles of different sizes and shapes-exfoliated graphite, carbon platelets and nanotubes. Individual structural elements of the composite, i.e., conglomerations of the particles in the air capsule as well as their distribution in the composite volume, were observed at the micro- and nanoscale. We have considered the influence of particle architecture on the fractal formation and elastic properties of the composite. Acoustic and X-ray imaging results were compared to validate the carbon agglomeration.

19.
Ultrasonics ; 141: 107354, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38795521

RESUMO

Some topographies in plate structures can hide cracks and make it difficult to monitor damage growth. This is because topographical features convert homogeneous structures to heterogeneous one and complicate the wave propagation through such structures. At certain points destructive interference between incident, reflected and transmitted elastic waves can make those points insensitive to the damage growth when adopting acoustics based structural health monitoring (SHM) techniques. A newly developed nonlinear ultrasonic (NLU) technique called sideband peak count - index (or SPC-I) has shown its effectiveness and superiority compared to other techniques for nondestructive testing (NDT) and SHM applications and is adopted in this work for monitoring damage growth in plate structures with topographical features. The performance of SPC-I technique in heterogeneous specimens having different topographies is investigated using nonlocal peridynamics based peri-ultrasound modeling. Three types of topographies - "X" topography, "Y" topography and "XY" topography are investigated. It is observed that "X" and "XY" topographies can help to hide the crack growth, thus making cracks undetectable when the SPC-I based monitoring technique is adopted. In addition to the SPC-I technique, we also investigate the effectiveness of an emerging sensing technique based on topological acoustic sensing. This method monitors the changes in the geometric phase; a measure of the changes in the acoustic wave's spatial behavior. The computed results show that changes in the geometric phase can be exploited to monitor the damage growth in plate structures for all three topographies considered here. The significant changes in geometric phase can be related to the crack growth even when these cracks remain hidden for some topographies during the SPC-I based single point inspection. Sensitivities of both the SPC-I and the topological acoustic sensing techniques are also investigated for sensing the topographical changes in the plate structures.

20.
Ultrason Sonochem ; 106: 106893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705083

RESUMO

The impact of hydrostatic pressure, commonly known as ambient or external pressure, on the phenomenon of sonochemistry and/or sonoluminescence has been extensively investigated through a multitude of experimental and computational studies, all of which have emphasized the crucial role played by this particular parameter. Numerous previous studies have successfully demonstrated the existence of an optimal static pressure for the occurrence of sonoluminescence and multi-bubble or single-bubble sonochemistry. However, despite these findings, a universally accepted value for this critical pressure has not yet been established. In addition, it has been found that the cavitation effect is completely inhibited when the static pressure is either too high or too low. This comprehensive review aims to delve into the primary experimental results and elucidate their significance in relation to hydrostatic pressure. We will then conduct an analysis of numerical calculations, focusing specifically on the influence of external pressure on single bubble sonochemistry. By delving into these calculations, we will be able to gain a deeper understanding of the experimental results and effectively interpret their implications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...