Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587712

RESUMO

This research investigates the excimerisation of acriflavine dye in ethylene glycol and glycerol solvents. Acriflavine, a member of the acridine dye family, exhibits unique fluorescence properties with applications in various fields, including cellular nucleus observation, nucleic acid analysis, and dye laser active media etc. The study explores the impact of solvent and concentration on acriflavine's emission properties, with a focus on excimer formation, which can influence its suitability as a dye laser active medium. UV-Visible absorption spectroscopy reveals concentration-dependent absorption profiles, with distinctive monomer bands. Steady-state fluorescence studies demonstrate the emergence of red-shifted excimer fluorescence bands as concentrations increase in both solvents. Temperature-dependent fluorescence studies reveal the dynamics of excimer formation, suggesting dynamic diffusion as the excimerisation mechanism. Time-resolved fluorescence spectroscopy confirms the singlet character of both monomer and excimer states, providing insights into the excimerisation process. Critical concentration values are determined, representing the equilibrium between monomeric and excimeric forms. The study also explores pH-induced spectral shifts, highlighting the influence of acidity on fluorescence properties. Overall, this research deepens our understanding of acriflavine's excimerisation in ethylene glycol and glycerol, offering insights that can enhance its diverse applications, especially in laser technologies.

2.
Front Immunol ; 14: 1271118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942317

RESUMO

Introduction: Optic neuritis (ON) is often an early sign of multiple sclerosis (MS), and recent studies show a link between HIF-1 pathway activation and inflammation. This study aimed to determine if inhibition of the HIF-1 pathway using the HIF-1a antagonist acriflavine (ACF) can reduce clinical progression and rescue the ocular phenotype in an experimental autoimmune encephalomyelitis (EAE) ON model. Methods: EAE-related ON was induced in 60 female C57BL/6J mice by immunization with MOG33-55, and 20 EAE mice received daily systemic injections of ACF at 5 mg/kg. Changes in the visual function and structure of ACF-treated EAE mice were compared to those of placebo-injected EAE mice and naïve control mice. Results: ACF treatment improved motor-sensory impairment along with preserving visual acuity and optic nerve function. Analysis of retinal ganglion cell complex alsoshowed preserved thickness correlating with increased survival of retinal ganglion cells and their axons. Optic nerve cell infiltration and magnitude of demyelination were decreased in ACF-treated EAE mice. Subsequent in vitro studies revealed improvements not only attributed to the inhibition of HIF-1 butalso to previously unappreciated interaction with the eIF2a/ATF4 axis in the unfolded protein response pathway. Discussion: This study suggests that ACF treatment is effective in an animal model of MS via its pleiotropic effects on the inhibition of HIF-1 and UPR signaling, and it may be a viable approach to promote rehabilitation in MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Neurite Óptica , Feminino , Animais , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Acriflavina/farmacologia , Acriflavina/uso terapêutico , Acriflavina/metabolismo , Camundongos Endogâmicos C57BL , Neurite Óptica/tratamento farmacológico , Células Ganglionares da Retina/metabolismo , Esclerose Múltipla/metabolismo
3.
BMC Chem ; 17(1): 93, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533016

RESUMO

Acriflavine is a multipurpose drug that shows antibacterial, antiviral, antimalarial, and antifungal activities. The remarkable native fluorescence of acriflavine is exploited in analytical chemistry field as an efficient probe for analysis of pharmaceutical and biological compounds. The fluorescent probe action of acriflavine is based on the remarkable fluorescence turning-off via formation of ion-pair complexes with acidic drugs at a specific pH. Herein, the acidic drug aceclofenac is analysed for the first time using acriflavine as a fluorescent probe. Aceclofenac can form an ion-pair complex with acriflavine at pH 8.5, and hence it partially turns off the fluorescence intensity of acriflavine over a concentration range of 1-20 µg/mL. The fluorescence quenching was monitored at 502 nm following an excitation at 265 or 451 nm. The reaction stoichiometry between acriflavine and aceclofenac was found to be 1:1 using limiting logarithmic method. The type of quenching was confirmed to be static using Stern-Volmer plot. The method showed low values of quantitation limit (0.89 µg/mL) and detection limit (0.29 µg/mL). Moreover, the method was linear (r = 0.9999), accurate, precise (RSD < 1.7%), robust, and specific. The proposed method was successfully employed to analyse aceclofenac in its dosage forms with high %recovery (98-101%). Additionally, GAPI and AGREE approaches were used to guarantee the suggested techniques' greenness, and the findings showed an excellent level of greenness.

4.
ACS Appl Bio Mater ; 6(8): 3089-3102, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37433114

RESUMO

Mesoporous and nonmesoporous SiO2@MnFe2O4 nanostructures were loaded with the hypoxia-inducible factor-1 inhibitor acriflavine for combined radiation and hypoxia therapies. The X-ray irradiation of the drug-loaded nanostructures not only triggered the release of the acriflavine inside the cells but also initiated an energy transfer from the nanostructures to surface-adsorbed oxygen to generate singlet oxygen. While the drug-loaded mesoporous nanostructures showed an initial drug release before the irradiation, the drug was primarily released upon X-ray radiation in the case of the nonmesoporous nanostructures. However, the drug loading capacity was less efficient for the nonmesoporous nanostructures. Both drug-loaded nanostructures proved to be very efficient in irradiated MCF-7 multicellular tumor spheroids. The damage of these nanostructures toward the nontumorigenic MCF-10A multicellular spheroids was very limited because of the small number of nanostructures that entered the MCF-10A spheroids, while similar concentrations of acriflavine without nanostructures were toxic for the MCF-10A spheroids.


Assuntos
Acriflavina , Nanoestruturas , Humanos , Acriflavina/uso terapêutico , Hipóxia/tratamento farmacológico , Nanoestruturas/uso terapêutico , Dióxido de Silício/química
5.
J Clin Endocrinol Metab ; 108(2): 368-384, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36190930

RESUMO

CONTEXT: Hypoxia is commonly observed in multiple aggressive cancers. Its role remains unclear in the biology and therapy of dedifferentiated thyroid cancer (DDTC). OBJECTIVE: We aimed to elucidate hypoxia's roles in DDTC tumor biology. METHODS: We discovered and confirmed hypoxia's correlation with dedifferentiation status, poor prognoses, and immune checkpoints in thyroid cancer using transcriptome data from our center and Gene Expression Omnibus (GEO) database. Then, the effect of targeting hypoxia was investigated via treating anaplastic thyroid cancer (ATC) cells with acriflavine (ACF) in vitro and in vivo, and hypoxia was analyzed for its association with response to immunotherapy in patients. RESULTS: Hypoxia score was positively associated with dedifferentiation status, and high hypoxia score significantly correlated with reduced overall survival, TP53 mutation, and elevated expression of immunosuppression-related markers in DDTC. ACF and siRNA targeting HIF-1α significantly suppressed growth and proliferation of thyroid cancer cells in vitro and in vivo, and reduced c-MYC and PDL1 expression in ATC. HIF-1α showed a positive correlation with PDL1 expression in DDTC. Integrated analyses of phosphoproteome and RNA sequencing data revealed that ACF's target was connected with differentiation genes and immune checkpoints via tumor-related kinases in ATC. Furthermore, hypoxia score was associated with immunotherapeutic response in some cancer types. CONCLUSION: Hypoxia score serves as a significant indicator for dedifferentiation status, prognoses, and immunotherapeutic response predicted by Tumor Immune Dysfunction and Exclusion in DDTC patients. Targeting hypoxia by ACF is useful to alleviate aggressive phenotype of ATC in a preclinical model of DDTC.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Hipóxia Tumoral , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/patologia , Hipóxia , Fenótipo , Carcinoma Anaplásico da Tireoide/patologia
6.
Drug Deliv ; 29(1): 3233-3244, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36299245

RESUMO

Cutaneous burn wounds are a common and troublesome critical issue of public health. Over the last decade, many researchers have investigated the development of novel therapeutic modalities which are capable of fully regeneration and reinstatement of structure and function of the skin with no or limited scar formation. Novel pharmaceutical carriers are offering a potential platform to deliver the drug effectively and to overcome the limitation associated with conventional wound dressings. The aim of this study was to investigate a pharmaceutical acriflavine-loaded polycaprolactone nanoemulsion (ACR-PCL-NE) for burn wound healing. Nanoemulsion was prepared by using the double emulsion solvent evaporation technique and it was subjected to thermodynamic stability testing, droplet size, polydispersity, zeta potential, pH, and surface morphology analysis. The in vivo study was performed to evaluate the efficacy of nanoemulsion using Sprague-Dawley rats as an animal model. The results of this study revealed that the optimized nanoemulsion was stable and had desirable physicochemical properties. The pH was about 4.02 at 25 °C and the particle size was found to be in the range of 302 ± 4.62 nm while the zeta potential was -7.8 ± 1.22 mV and the polydispersity index of 0.221 ± 0.017. The wound regeneration process was evaluated in vivo by different techniques, the formulation group (FG) showed high wound healing potential as compared to the standard group (SD) and control group (CG). These findings reveal that this nanoemulsion formulation can be used effectively for wound healing.


Assuntos
Acriflavina , Queimaduras , Ratos , Animais , Emulsões/química , Acriflavina/farmacologia , Ratos Sprague-Dawley , Cicatrização , Tamanho da Partícula , Queimaduras/tratamento farmacológico , Solventes
7.
Bioorg Chem ; 129: 106185, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36240541

RESUMO

The evolving SARS-CoV-2 epidemic buffets the world, and the concerted efforts are needed to explore effective drugs. Mpro is an intriguing antiviral target for interfering with viral RNA replication and transcription. In order to get potential anti-SARS-CoV-2 agents, we established an enzymatic assay using a fluorogenic substrate to screen the inhibitors of Mpro. Fortunately, Acriflavine (ACF) and Proflavine Hemisulfate (PRF) with the same acridine scaffold were picked out for their good inhibitory activity against Mpro with IC50 of 5.60 ± 0.29 µM and 2.07 ± 0.01 µM, respectively. Further evaluation of MST assay and enzymatic kinetics experiment in vitro showed that they had a certain affinity to SARS-CoV-2 Mpro and were both non-competitive inhibitors. In addition, they inhibited about 90 % HCoV-OC43 replication in BHK-21 cells at 1 µM. Both compounds showed nano-molar activities against SARS-CoV-2 virus, which were superior to GC376 for anti-HCoV-43, and equivalent to the standard molecule remdesivir. Our study demonstrated that ACF and PRF were inhibitors of Mpro, and ACF has been previously reported as a PLpro inhibitor. Taken together, ACF and PRF might be dual-targeted inhibitors to provide protection against infections of coronaviruses.


Assuntos
Acriflavina , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Inibidores de Cisteína Proteinase , Proflavina , SARS-CoV-2 , Inibidores de Protease Viral , Acriflavina/farmacologia , Proflavina/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Protease Viral/farmacologia , Mesocricetus , Animais , Cricetinae , Linhagem Celular , Replicação Viral/efeitos dos fármacos
8.
J Photochem Photobiol B ; 234: 112537, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35939916

RESUMO

BACKGROUND: photodynamics therapy (PDT) induces tumor cell death through oxidative stress and is closely associated with the expression of hypoxia inducible factor-1a (HIF1a), which activates multiple downstream survival signaling pathways. Therefore, the purpose of this study was to investigate the expression levels of HIF1a proteins in PDT-treated GBM cells and to determine whether inhibition of HIF1a reduces survival signals to enhance the efficacy of PDT. RESULTS: PDT combined with Acriflavine (ACF, PA) decreased the expression of HIF1a and regulated the downstream expression of GLUT-1, GLUT-3, HK2 and other gluconeogenic pathway proteins. PA group significantly suppressed tumor growth to improve the efficacy of PDT. METHODS: We first performed the correlation of HIF1a, GLUT-1, GLUT-3, and HK2, and quantified the expression of HIF1a on tumor grades and IDH mutation classification by TCGA and CGGA databases. Then, we used immunohistochemistry method to detect four gene expression levels in human GBM tissues. Besides, we examined the effects of different treatments on the proliferation, migration and invasion ability of GBM cell lines by CCK8, wound healing and transwell assays. ACF, a HIF1a/HIF1ß dimerization inhibitor, was used to evaluate its adjuvant effect on the efficacy of PDT. CONCLUSION: HIF1a is activated in GBM cell lines and contributes to the survival of tumor cells after PDT in vitro and in vivo. PA group inhibited HIF1a expression and improved PDT efficacy in the treatment of recalcitrant GBM.


Assuntos
Glioblastoma , Fotoquimioterapia , Acriflavina/farmacologia , Acriflavina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Humanos , Fator 1 Induzível por Hipóxia/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Transdução de Sinais
9.
J Mol Model ; 28(7): 194, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723744

RESUMO

Using TD-DFT/DFT, the ground and excited states of the acriflavine dye were studied in an aqueous medium. The mutual influence of photoexcitation and strong hydrogen bonds with the solvent was studied by comparing the purely implicit and combined modeling of the aqueous environment of the dye. The excitation of acriflavine was calculated considering the vibronic coupling. The effect of photoexcitation on dye vibrations was analyzed. The spatial structure of the acriflavine H-dimer was obtained and its absorption was estimated.


Assuntos
Acriflavina , Teoria Quântica , Ligação de Hidrogênio , Solventes/química , Água/química
10.
ACS Appl Mater Interfaces ; 14(25): 28615-28627, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35700479

RESUMO

In this study, we present a complementary approach for obtaining an effective drug, based on acriflavine (ACF) and zirconium-based metal-organic frameworks (MOFs), against SARS-CoV-2. The experimental results showed that acriflavine inhibits the interaction between viral receptor-binding domain (RBD) of spike protein and angiotensin converting enzyme-2 (ACE2) host receptor driving viral cell entry. The prepared ACF@MOF composites exhibited low (MOF-808 and UiO-66) and high (UiO-67 and NU-1000) ACF loadings. The drug release profiles from prepared composites showed different release kinetics depending on the local pore environment. The long-term ACF release with the effective antiviral ACF concentration was observed for all studied ACF@MOF composites. The density functional theory (DFT) calculations allowed us to determine that π-π stacking together with electrostatic interaction plays an important role in acriflavine adsorption and release from ACF@MOF composites. The molecular docking results have shown that acriflavine interacts with several possible binding sites within the RBD and binding site at the RBD/ACE2 interface. The cytotoxicity and ecotoxicity results have confirmed that the prepared ACF@MOF composites may be considered potentially safe for living organisms. The complementary experimental and theoretical results presented in this study have confirmed that the ACF@MOF composites may be considered a potential candidate for the COVID-19 treatment, which makes them good candidates for clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Estruturas Metalorgânicas , Acriflavina/farmacologia , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Acoplamento Molecular , Ácidos Ftálicos , Ligação Proteica , SARS-CoV-2 , Zircônio/química
11.
Mol Ther Nucleic Acids ; 27: 1023-1035, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35228897

RESUMO

The transcription factor hypoxia-inducible factor 1 (HIF1) is an important driver of cancer and is therefore an attractive drug target. Acriflavine (ACF) has been suggested to inhibit HIF1, but its mechanism of action is unknown. Here we investigated the interaction of ACF with DNA and long non-coding RNAs (lncRNAs) and its function in human endothelial cells. ACF promoted apoptosis and reduced proliferation, network formation, and angiogenic capacity. It also induced changes in gene expression, as determined by RNA sequencing (RNA-seq), which could not be attributed to specific inhibition of HIF1. A similar response was observed in murine lung endothelial cells. Although ACF increased and decreased a similar number of protein-coding genes, lncRNAs were preferentially upregulated under normoxic and hypoxic conditions. An assay for transposase accessibility with subsequent DNA sequencing (ATAC-seq) demonstrated that ACF induced strong changes in chromatin accessibility at lncRNA promoters. Immunofluorescence showed displacement of DNA:RNA hybrids. Such effects might be due to ACF-mediated topoisomerase inhibition, which was indeed the case, as reflected by DNA unwinding assays. Comparison with other acridine derivatives and topoisomerase inhibitors suggested that the specific function of ACF is an effect of acridinium-class compounds. This study demonstrates that ACF inhibits topoisomerases rather than HIF specifically and that it elicits a unique expression response of lncRNAs.

12.
Cell Chem Biol ; 29(5): 774-784.e8, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35021060

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort and available vaccines, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identify acriflavine (ACF) as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Acriflavina , Animais , Antivirais/química , Antivirais/farmacologia , Humanos , Camundongos , Simulação de Acoplamento Molecular , Pandemias
13.
Mol Biol Rep ; 49(4): 2755-2763, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088375

RESUMO

BACKGROUND: Resistance to cisplatin is a major obstacle to effective treatment of bladder cancer (BC). The present study aimed to determine whether a combination of acriflavine (ACF) with cisplatin could potentiate the antitumor property of cisplatin against the BC cells. Furthermore, the molecular mechanism behind the anticancer action of ACF was considered. METHODS AND RESULTS: Two human BC cells (5637 and EJ138) contain mutated form of p53 was culture in standard condition. Cotreatment protocol (simultaneous combination of IC30 value of ACF + various dose of cisplatin for 72 h) and pretreatment protocol (pretreatment with IC15 value of ACF for 24 h + various dose of cisplatin for 48 h) was used to determine the effect of ACF on the cells' sensitivity to main drug cisplatin. To assess the mechanism of action of ACF, real-time PCR was used to evaluate mRNA levels of hypoxia-inducible factor-1α (HIF-1α), Bax, Bcl-2, topoisomerase1 (TOP1) and topoisomerase 2 (TOP2A). Combination of ACF with cisplatin either as cotreatment or opretreatment protocol could significantly reduce the IC50 values of cisplatin as compared to the IC50 of cisplatin when use as a single drug. In addition, ACF could markedly decrease mRNA expression of TOP1 and TOP2A without changing the expression of HIF-1ɑ, Bax and Bcl-2. CONCLUSIONS: Our findings indicate that combination of cisplatin with ACF was able to significantly enhance the sensitivity of BC cells to cisplatin. The antitumor activity of ACF is exerted through the downregulation of TOP1 and TOP2A genes expression. ACF may serve as an adjuvant to boost cisplatin-based chemotherapy.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Acriflavina/farmacologia , Acriflavina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
14.
Int J Oncol ; 60(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913076

RESUMO

Myeloid cell leukemia sequence 1 (MCL­1), an anti­apoptotic B­cell lymphoma 2 (BCL­2) family molecule frequently amplified in various human cancer cells, is known to be critical for cancer cell survival. MCL­1 has been recognized as a target molecule for cancer treatment. While various agents have emerged as potential MCL­1 blockers, the present study presented acriflavine (ACF) as a novel MCL­1 inhibitor in triple­negative breast cancer (TNBC). Further evaluation of its treatment potential on lung adenocarcinoma and glioblastoma multiforme (GBM) was also investigated. The anticancer effect of ACF on TNBC cells was demonstrated when MDA­MB­231 and HS578T cells were treated with ACF. ACF significantly induced typical intrinsic apoptosis in TNBCs in a dose­ and time­dependent manner via MCL­1 downregulation. MCL­1 downregulation by ACF treatment was revealed at each phase of protein expression. Initially, transcriptional regulation via reverse transcription­quantitative PCR was validated. Then, post­translational regulation was explained by utilizing an inhibitor against protein biosynthesis and proteasome. Lastly, immunoprecipitation of ubiquitinated MCL­1 confirmed the post­translational downregulation of MCL­1. In addition, the synergistic treatment efficacy of ACF with the well­known MCL­1 inhibitor ABT­263 against the TNBC cells was explored [combination index (CI)<1]. Conjointly, the anticancer effect of ACF was assessed in GBM (U87, U251 and U343), and lung cancer (A549 and NCI­H69) cell lines as well, using immunoblotting, cytotoxicity assay and FACS. The effect of the combination treatment using ACF and ABT­263 was estimated in GBM (U87, U343 and U251), and non­small cell lung cancer (A549) cells likewise. The present study suggested a novel MCL­1 inhibitory function of ACF and the synergistic antitumor effect with ABT­263.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Acriflavina/farmacologia , Acriflavina/uso terapêutico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Linhagem Celular Tumoral/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Combinação de Medicamentos , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
15.
Eur J Pharm Biopharm ; 170: 179-186, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34968646

RESUMO

Glioblastomas have been historically difficult to treat with poor long-term survival. With novel strategies focused on targeting hypoxia-inducible factor (HIF) regulatory pathways, recent evidence has shown that Acriflavine (ACF) can effectively target glioma invasiveness and recurrence. However, local delivery of ACF and its combinatory effects with Temozolomide (TMZ) and radiation therapy (XRT) have not yet been optimized. In this study we test a novel polymeric matrix that can gradually release ACF at the tumor bed site in combination with systemic TMZ and XRT. In vitro cytotoxicity assays of ACF in combination with TMZ and XRT were performed on rodent and human cell lines with CCK-8 and flow cytometry. In vitro drug release was measured and intracranial safety was assessed in tumor-free animals. Finally, efficacy was assessed in an intracranial gliosarcoma model and combination therapy with TMZ and XRT evaluated. Combination therapy of ACF, TMZ, and XRT was able to reduce cell viability and induce apoptosis in glioma cells. In vitro and in vivo release of ACF was measured in benchtop and animal models. Efficacy was established in an in vivo gliosarcoma model in which intracranial ACF (p < 0.01) significantly improved median survival and the combination therapy of ACF, TMZ and XRT (p < 0.01) significantly improved median survival and led to long-term survival (LTS). We provide evidence that ACF, combined with TMZ and XRT, led to LTS in an intracranial model of rat gliosarcoma. These findings, in combination with the use of a novel polymeric matrix that allows more gradual drug delivery, constitute a first step in the translation of this novel strategy to human use.


Assuntos
Acriflavina/administração & dosagem , Neoplasias Encefálicas/terapia , Implantes de Medicamento , Glioma/terapia , Dosagem Radioterapêutica , Temozolomida/administração & dosagem , Implantes Absorvíveis , Acriflavina/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia Combinada , Polímeros/química , Ratos , Ratos Endogâmicos F344 , Taxa de Sobrevida , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
R Soc Open Sci ; 8(8): 210329, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34386250

RESUMO

Using two green and sensitive spectrofluorimetric methods, we quantified two cephalosporins, cefepime (CFM) and cefazolin (CFZ), in raw and pharmaceutical formulations. The first method is based on the reaction between CFM and fluorescamine (borate buffer, pH 8), which yields a highly fluorescent product. After excitation at 384 nm, the fluorescent product emits light at 484 nm. At concentration ranges from 12.0 to 120.0 ng ml-1, the relative fluorescence intensity/concentration curve was linear with a limit of quantification (LOQ) of 2.46 ng ml-1. The second method relied on measuring the CFZ quenching action on acriflavine fluorescence through formation of an ion-associate complex using Britton-Robinson buffer at pH 8. We measured acriflavine fluorescence at 505 nm after excitation at 265 nm. The decrease in acriflavine fluorescence intensity was CFZ concentration-dependent. Using this method, we quantified CFZ in concentrations ranging from 1 to 10 µg ml-1 with a LOQ of 0.48 µg ml-1. We studied and optimized the factors influencing reaction product formation. Moreover, we adapted our methods to the investigation of the mentioned drugs in raw and pharmaceutical formulations with greatly satisfying results. We statistically validated our methods according to International Council on Harmonisation Guidelines. The obtained results were consistent with those obtained with the official high-performance liquid chromatography methods.

17.
Pharm Dev Technol ; 26(9): 934-942, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34338582

RESUMO

Acriflavine (ACF) is an antiseptic compound with the potential antitumor activity which is used for the fluorescent staining of RNA due to its dominant fluorescent emission at ∼515 nm. Here, solid lipid nanoparticles (SLNs) containing ACF (ACF-SLNs) were prepared and their physicochemical properties, potential geno/cytotoxicity, as well as the fluorescent properties were investigated. FITC-annexin V/PI staining and cell cycle assays were carried out to find the type of cellular death caused. Particle size analysis and SEM images revealed that spherical ACF-SLNs had a homogeneous dispersion with a mean diameter of 106 ± 5.7 nm. Drug loading (DL) of 31.25 ± 4.21 mg/mL and high encapsulation efficiency (EE%) (89.75 ± 5.44) were found. ACF-SLNs physically were relatively stable in terms of dispersion, size, and EE. The uptake study demonstrated the potential use of fluorescent ACF-SLNs in bio-distribution studies. MTT assay showed that plain ACF could induce growth inhibition of A549 cells with IC50 of 8.5, 6, and 4.5 µMol after 24, 48, and 72 hours, respectively, while ACF-SLNs had stable cytotoxic effects after 48 hours. ACF-SLNs induced remarkable apoptosis and even necrosis after 48 h. Conclusively, ACF-SLNs with acceptable physicochemical features showed increased bioimpacts after 48 h compared to plain ACF.


Assuntos
Acriflavina/síntese química , Anti-Infecciosos Locais/síntese química , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica/métodos , Lipossomos/síntese química , Células A549 , Acriflavina/farmacologia , Anti-Infecciosos Locais/farmacologia , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Lipossomos/farmacologia , Nanopartículas , Tamanho da Partícula
18.
Cells ; 10(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205911

RESUMO

Hypoxia-inducible factor 1 can sufficiently control the progress of neurological symptoms after ischemic stroke owing to their actions associated with its downstream genes. In this study, we evaluated the role of HIF-1α in attenuating brain damage after endothelin-1 injection. Focal cerebral ischemia in mice were induced by endothelin-1 microinjection. Hypoxia-inducible factor 1 activator, dimethyloxalylglycine (DMOG), and HIF-1α inhibitor, acriflavine (ACF), were used to evaluate the hypoxia-inducible factor 1 activity during cerebral ischemia. The expression levels of HIF-1α, glial fibrillary acidic protein (GFAP), interleukin-10 (IL-10), inducible nitric oxide synthase (iNOS), phosphorylated I-kappa-B-alpha/total I-kappa-B-alpha (p-IκBα/IκBα) and nuclear factor kappa B (NF-kB) were assessed. Besides, mRNA levels of IL-10, tumor necrosis factor- alpha (TNF-α), and NF-kB were also analyzed. Results showed a noticeable increase in hypoxia-inducible factor 1 and IL-10 levels in the DMOG group with a decline in iNOS, TNF-α, and NF-kB levels, implying the anti-inflammatory role of hypoxia-inducible factor 1 activator following stroke. These findings were further corroborated by GFAP immunostaining that showed astrocytic activation to be inhibited 12 days post-ischemia, as well as histological and TEM analyses that demonstrated hypoxia-inducible factor 1 induction to alleviate neuronal soma damage and cell death. Based on our study, HIF-1α could be a potential therapeutic target for ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , AVC Isquêmico/metabolismo , Neuroglia/metabolismo , Animais , Isquemia Encefálica/patologia , Citocinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/metabolismo , Inflamação/patologia , AVC Isquêmico/patologia , Camundongos , Neuroglia/patologia , Óxido Nítrico Sintase Tipo II/metabolismo
19.
Acta Crystallogr C Struct Chem ; 77(Pt 2): 116-122, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33536375

RESUMO

The synthesis and structural characterization of the monohydrated 1:2 cocrystal salt of acriflavine with 3,5-dinitrobenzoic acid [systematic name: 3,6-diamino-10-methylacridin-10-ium 3,5-dinitrobenzoate-3,5-dinitrobenzoic acid-water (1/1/1), C14H14N3+·C7H3N2O6-·C7H4N2O6·H2O] are reported. Single-crystal X-ray diffraction measurements show that the title solvated monohydrate salt crystalizes in the monoclinic space group P21 with one acriflavine cation, a 3,5-dinitrobenzoate anion, a 3,5-dinitrobenzoic acid molecule and a water molecule in the asymmetric unit. The neutral and anionic forms of 3,5-dinitrobenzoic acid are linked via O-H...O hydrogen bonds to form a monoanionic dimer. Neighbouring monoanionic dimers of 3,5-dinitrobenzoic acid are linked by nitro-nitro N-O...N and nitro-acid N-O...π intermolecular interactions to produce a porous organic framework. The acriflavine cations are linked with carboxylic acid molecules directly via amine-carboxy N-H...O, amine-nitro N-H...O and acriflavine-carboxy C-H...O hydrogen bonds, and carboxy-acriflavine C-O...π, nitro-acriflavine N-O...π and acriflavine-nitro π-π interactions, or through the water molecule by amino-water N-H...O and water-carboxy O-H...O hydrogen bonds, and are located in the voids of the porous organic framework. The intermolecular interactions were studied using the CrystalExplorer program to provide information about the interaction energies and the dispersion, electrostatic, polarization and repulsion contributions to the lattice energy.

20.
Polymers (Basel) ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35012125

RESUMO

Nanoparticles are used increasingly for the treatment of different disorders, including burn wounds of the skin, due to their important role in wound healing. In this study, acriflavine-loaded poly (ε-caprolactone) nanoparticles (ACR-PCL-NPs) were prepared using a double-emulsion solvent evaporation method. All the formulations were prepared and optimized by using a Box-Behnken design. Formulations were evaluated for the effect of independent variables, i.e., poly (ε-caprolactone) (PCL) amount (X1), stirring speed of external phase (X2), and polyvinyl alcohol (PVA) concentration (X3), on the formulation-dependent variables (particle size, polydispersity index (PDI), and encapsulation efficiency) of ACR-PCL-NPs. The zeta potential, PDI, particle size, and encapsulation efficiency of optimized ACR-PCL-NPs were found to be -3.98 ± 1.58 mV, 0.270 ± 0.19, 469.2 ± 5.6 nm, and 71.9 ± 5.32%, respectively. The independent variables were found to be in excellent correlation with the dependent variables. The release of acriflavine from optimized ACR-PCL-NPs was in biphasic style with the initial burst release, followed by a slow release for up to 24 h of the in vitro study. Morphological studies of optimized ACR-PCL-NPs revealed the smooth surfaces and spherical shapes of the particles. Thermal and FTIR analyses revealed the drug-polymer compatibility of ACR-PCL-NPs. The drug-treated group showed significant re-epithelialization, as compared to the controlled group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA