Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786068

RESUMO

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Assuntos
Adesão Celular , Diabetes Mellitus Experimental , Proteína-Tirosina Quinases de Adesão Focal , Podócitos , Proteinúria , Receptor A2B de Adenosina , Animais , Humanos , Masculino , Ratos , Adenosina/metabolismo , Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/tratamento farmacológico , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteinúria/metabolismo , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/metabolismo
2.
Brain Res ; 1833: 148866, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494098

RESUMO

Caffeine has been extensively studied in the context of CNS pathologies as many researchers have shown that consuming it reduces pro-inflammatory biomarkers, potentially delaying the progression of neurodegenerative pathologies. Several lines of evidence suggest that adenosine receptors, especially A1 and A2A receptors, are the main targets of its neuroprotective action. We found that caffeine pretreatment 15 min before LPS administration reduced the expression of Il1b in the hippocampus and striatum. The harmful modulation of caffeine-induced inflammatory response involved the downregulation of the expression of A2A receptors, especially in the hippocampus. Caffeine treatment alone promoted the downregulation of the adenosinergic receptor Adora2A; however, this promotion effect was reversed by LPS. Although administering caffeine increased the expression of the enzymes DNA methyltransferases 1 and 3A and decreased the expression of the demethylase enzyme Tet1, this effect was reversed by LPS in the hippocampus of mice that were administered Caffeine + LPS, relative to the basal condition; no significant differences were observed in the methylation status of the promoter regions of adenosine receptors. Finally, the bioinformatics analysis of the expanded network demonstrated the following results: the Adora2B gene connects the extended networks of the adenosine receptors Adora1 and Adora2A; the Mapk3 and Esr1 genes connect the extended Adora1 network; the Mapk4 and Arrb2 genes connect the extended Adora2A network with the extended network of the proinflammatory cytokine Il1ß. These results indicated that the anti-inflammatory effects of acute caffeine administration in the hippocampus may be mediated by a complex network of interdependencies between the Adora2B and Adora2A genes.


Assuntos
Cafeína , Regulação para Baixo , Hipocampo , Lipopolissacarídeos , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Receptor A2A de Adenosina , Animais , Lipopolissacarídeos/farmacologia , Receptor A2A de Adenosina/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Cafeína/farmacologia , Masculino , Regulação para Baixo/efeitos dos fármacos , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Interleucina-1beta/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente
3.
Aging Brain ; 5: 100104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225985

RESUMO

The aging process induces neurochemical alterations in different brain regions, including hypothalamus. This pivotal area of the central nervous system (CNS) is crucial for detection and integration of nutritional and hormonal signals from the periphery of the body to maintain metabolic homeostasis. Astrocytes support the CNS homeostasis, energy metabolism, and inflammatory response, as well as increasing evidence has highlighted a critical role of astrocytes in orchestrating hypothalamic functions and in gliocrine system. In this study, we aimed to investigate the age-dependent mRNA expression of adenosine receptors, the insulin-like growth factor 1 receptor (IGF1R), and the hypoxia-inducible factor 1α (HIF1α), in addition to the levels of IGF1 and HIF1α in hypothalamic astrocyte cultures derived from newborn, adult, and aged rats. Our results revealed age-dependent changes in adenosine receptors, as well as a decrease in IGF1R/IGF1 and HIF1α. Of note, adenosine receptors, IGF1, and HIF1α are affected by inflammatory, redox, and metabolic processes, which can remodel hypothalamic properties, as observed in aging brain, reinforcing the role of hypothalamic astrocytes as targets for understanding the onset and/or progression of age-related diseases.

4.
Neuroscience ; 536: 57-71, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37979842

RESUMO

The first synapses of the afferents of peripheral chemoreceptors are located in the Nucleus Tractus Solitarius (NTS) and there is evidence that short-term sustained hypoxia (SH - 24 h, FiO2 0.1) facilitates glutamatergic transmission in NTS neurons of rats. Adenosine is an important neuromodulator of synaptic transmission and hypoxia contributes to increase its extracellular concentration. The A2A receptors mediate the excitatory actions of adenosine and are active players in the modulation of neuronal networks in the NTS. Herein, we used knockout mice for A2A receptors (A2AKO) and electrophysiological recordings of NTS neurons were performed to evaluate the contribution of these receptors in the changes in synaptic transmission in NTS neurons of mice submitted to SH. The membrane passive properties and excitability of NTS neurons were not affected by SH and were similar between A2AKO and wild-type mice. The overall amplitude of spontaneous glutamatergic currents in NTS neurons of A2AKO mice was lower than in Balb/c WT mice. SH increased the amplitude of evoked glutamatergic currents of NTS neurons from WT mice by a non-presynaptic mechanism, but this enhancement was not observed in NTS neurons of A2AKO mice. Under normoxia, the amplitude of evoked glutamatergic currents was similar between WT and A2AKO mice. The data indicate that A2A receptors (a) modulate spontaneous glutamatergic currents, (b) do not modulate the evoked glutamatergic transmission in the NTS neurons under control conditions, and (c) are required for the enhancement of glutamatergic transmission observed in the NTS neurons of mice submitted to SH.


Assuntos
Neurônios , Núcleo Solitário , Ratos , Camundongos , Animais , Núcleo Solitário/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Hipóxia , Adenosina
5.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37895945

RESUMO

Acute myocardial infarction (AMI) is the main cause of morbidity and mortality worldwide and is characterized by severe and fatal arrhythmias induced by cardiac ischemia/reperfusion (CIR). However, the molecular mechanisms involved in these arrhythmias are still little understood. To investigate the cardioprotective role of the cardiac Ca2+/cAMP/adenosine signaling pathway in AMI, L-type Ca2+ channels (LTCC) were blocked with either nifedipine (NIF) or verapamil (VER), with or without A1-adenosine (ADO), receptors (A1R), antagonist (DPCPX), or cAMP efflux blocker probenecid (PROB), and the incidence of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by CIR in rats was evaluated. VA, AVB and LET incidences were evaluated by ECG analysis and compared between control (CIR group) and intravenously treated 5 min before CIR with NIF 1, 10, and 30 mg/kg and VER 1 mg/kg in the presence or absence of PROB 100 mg/kg or DPCPX 100 µg/kg. The serum levels of cardiac injury biomarkers total creatine kinase (CK) and CK-MB were quantified. Both NIF and VER treatment were able to attenuate cardiac arrhythmias caused by CIR; however, these antiarrhythmic effects were abolished by pretreatment with PROB and DPCPX. The total serum CK and CK-MB were similar in all groups. These results indicate that the pharmacological modulation of Ca2+/cAMP/ADO in cardiac cells by means of attenuation of Ca2+ influx via LTCC and the activation of A1R by endogenous ADO could be a promising therapeutic strategy to reduce the incidence of severe and fatal arrhythmias caused by AMI in humans.

6.
Clinics (Sao Paulo) ; 78: 100243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459671

RESUMO

AIMS: Although reduced life expectancy in Parkinson's Disease (PD) patients has been related to severe cardiac arrhythmias due to autonomic dysfunctions, its molecular mechanisms remain unclear. To investigate the role of cardiac ß1-Adrenergic (ß1AR) and A1-Adenosine (A1R) receptors in these dysfunctions, the pharmacological effects of stimulation of cardiac ß1AR (isoproterenol, ISO), in the absence and presence of cardiac ß1AR (atenolol, AT) or A1R (1,3-dipropyl-8-cyclopentyl xanthine, DPCPX) blockade, on the arrhythmias induced by Ischemia/Reperfusion (CIR) in an animal PD model were studied. METHODS: PD was produced by dopaminergic lesions (confirmed by immunohistochemistry analysis) caused by the injection of 6-hydroxydopamine (6-OHDA, 6 µg) in rat striatum. CIR was produced by a surgical interruption for 10 min followed by reestablishment of blood circulation in the descendent left coronary artery. On the incidence of CIR-Induced Ventricular Arrhythmias (VA), Atrioventricular Block (AVB), and Lethality (LET), evaluated by Electrocardiogram (ECG) analysis, the effects of intravenous treatment with ISO, AT and DPCPX (before CIR) were studied. RESULTS: VA, AVB and LET incidences were significantly higher in 6-OHDA (83%, 92%, 100%, respectively) than in control rats (58%, 67% and 67%, respectively). ISO treatment significantly reduced these incidences in 6-OHDA (33%, 33% and 42%, respectively) and control rats (25%, 25%, 33%, respectively), indicating that stimulation of cardiac ß1AR induced cardioprotection. This response was prevented by pretreatment with AT and DPCPX, confirming the involvement of cardiac ß1AR and A1R. CONCLUSION: Pharmacological modulation of cardiac ß1AR and A1R could be a potential therapeutic strategy to reduce severe arrhythmias and increase life expectancy in PD patients.


Assuntos
Adrenérgicos , Doença de Parkinson , Ratos , Animais , Adrenérgicos/uso terapêutico , Oxidopamina/uso terapêutico , Arritmias Cardíacas/etiologia , Receptores Purinérgicos P1/uso terapêutico
7.
Neurochem Res ; 48(10): 3007-3015, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37256498

RESUMO

Alcohol (ethanol) dependence and related disorders are life-threatening conditions and source of suffering for the user, family members and society. Alcohol withdrawal syndrome (AWS) is a little-known dynamic process associated with a high frequency of relapses. A state of hyperglutamatergic neurotransmission and imbalanced GABAergic function is related to an increased susceptibility to seizures during alcohol withdrawal. Adenosine signaling display an important role in endogenous response to decrease seizure and related damages. Here, an intermittent alcohol exposure regimen (1 h daily of 0.5% ethanol solution) for 16 days or 8 days of the same ethanol exposure regimen followed by 1 or 8 days of ethanol withdrawal was used to assess adenosine signaling in the context of seizure susceptibility using adult zebrafish. In both abstainer groups, a sub-convulsant dose of pentylenetetrazol (2.5 mM) was able to increase the frequency of animals reaching a clonic seizure-like state, while continuous-treated animals had no seizure, as did control animals. The total brain mRNA expression of A1 adenosine receptor was decreased in animals with 1 day of ethanol withdrawal. The agonism of A1 adenosine receptor induced an anticonvulsant effect in animals with 1 day of ethanol withdrawal after the injection of the specific agonist (N6-cyclopentyladenosine, 10 mg.Kg- 1; i.p.). These findings reinforce A1 adenosine receptor as a key target in acute alcohol withdrawal syndrome and zebrafish as an excellent platform to study biological mechanism of AWS.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Animais , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Alcoolismo/tratamento farmacológico , Adenosina/farmacologia , Peixe-Zebra/metabolismo , Anticonvulsivantes/uso terapêutico , Etanol/toxicidade , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Receptores Purinérgicos P1
8.
Exp Neurol ; 365: 114427, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37116638

RESUMO

The retinotectal topography of rats develops within the first three postnatal weeks during the critical period. Previous studies have shown that monocular enucleation results in plasticity of the intact retinotectal pathway in a time-dependent manner. Glial fibrillary acidic protein (GFAP), an astrocyte marker, is up-regulated after central nervous system injury. Adenosine is a neuromodulator involved in the development and plasticity of the visual system acting through the inhibitory A1 and excitatory A2a receptor activities. Herein, we examined whether adenosine receptors and astrocytes are crucial for monocular enucleation (ME)-induced plasticity. We also investigate whether A2a blockade alters retinotectal plasticity in an astrocyte-dependent manner. Lister Hooded rats were submitted to monocular enucleation at postnatal day 10 (PND10) or PND21 and, after different survival times, were processed for immunohistochemistry or western blotting assays. Another group underwent subpial implantation of ELVAX containing vehicle (DMSO) or SCH58261 (1 µM - an A2a receptor antagonist), simultaneously with ME at PND10. After a 72 h survival, GFAP content and the retinotectal plasticity were evaluated. Our data show that monocular enucleation leads to an upregulation in GFAP expression in the contralateral superior colliculus. At PND10, a slight increase in GFAP labeling was observed at 72 h post-enucleation, while at PND21 GFAP increase was detected in the deafferented superior colliculus after 1 to 3 weeks of survival. The content of adenosine receptors also varies in the contralateral target after ME. A transient increase in A1 receptors is observed in the early periods of plasticity, while A2a receptors are upregulated later. Interestingly, the local blockade of A2a receptors abolished the increase in GFAP and the retinotectal reorganization induced by monocular enucleation during the critical period. Taken together these results suggest a correlation between astrocytes and A2a adenosine receptors in the subcortical visual plasticity.


Assuntos
Astrócitos , Colículos Superiores , Animais , Ratos , Astrócitos/metabolismo , Enucleação Ocular , Colículos Superiores/metabolismo , Receptores Purinérgicos P1/metabolismo , Imuno-Histoquímica , Receptor A2A de Adenosina/metabolismo
9.
Antioxidants (Basel) ; 12(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36978802

RESUMO

Evidence has shown that caffeine administration reduces pro-inflammatory biomarkers, delaying fatigue and improving endurance performance. This study examined the effects of caffeine administration on the expression of inflammatory-, adenosine receptor- (the targets of caffeine), epigenetic-, and oxidative metabolism-linked genes in the vastus lateralis muscle of mice submitted to lipopolysaccharide (LPS)-induced inflammation. We showed that caffeine pre-treatment before LPS administration reduced the expression of Il1b, Il6, and Tnfa, and increased Il10 and Il13. The negative modulation of the inflammatory response induced by caffeine involved the reduction of inflammasome components, Asc and Casp1, promoting an anti-inflammatory scenario. Caffeine treatment per se promoted the upregulation of adenosinergic receptors, Adora1 and Adora2A, an effect that was counterbalanced by LPS. Moreover, there was observed a marked Adora2A promoter hypermethylation, which could represent a compensatory response towards the increased Adora2A expression. Though caffeine administration did not alter DNA methylation patterns, the expression of DNA demethylating enzymes, Tet1 and Tet2, was increased in mice receiving Caffeine+LPS, when compared with the basal condition. Finally, caffeine administration attenuated the LPS-induced catabolic state, by rescuing basal levels of Ampk expression. Altogether, the anti-inflammatory effects of caffeine in the muscle can be mediated by modifications on the epigenetic landscape.

10.
Clinics ; Clinics;78: 100243, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1506020

RESUMO

Abstract Aims Although reduced life expectancy in Parkinson's Disease (PD) patients has been related to severe cardiac arrhythmias due to autonomic dysfunctions, its molecular mechanisms remain unclear. To investigate the role of cardiac β1-Adrenergic (β1AR) and A1-Adenosine (A1R) receptors in these dysfunctions, the pharmacological effects of stimulation of cardiac β1AR (isoproterenol, ISO), in the absence and presence of cardiac β1AR (atenolol, AT) or A1R (1,3-dipropyl-8-cyclopentyl xanthine, DPCPX) blockade, on the arrhythmias induced by Ischemia/Reperfusion (CIR) in an animal PD model were studied. Methods PD was produced by dopaminergic lesions (confirmed by immunohistochemistry analysis) caused by the injection of 6-hydroxydopamine (6-OHDA, 6 μg) in rat striatum. CIR was produced by a surgical interruption for 10 min followed by reestablishment of blood circulation in the descendent left coronary artery. On the incidence of CIR-Induced Ventricular Arrhythmias (VA), Atrioventricular Block (AVB), and Lethality (LET), evaluated by Electrocardiogram (ECG) analysis, the effects of intravenous treatment with ISO, AT and DPCPX (before CIR) were studied. Results VA, AVB and LET incidences were significantly higher in 6-OHDA (83%, 92%, 100%, respectively) than in control rats (58%, 67% and 67%, respectively). ISO treatment significantly reduced these incidences in 6-OHDA (33%, 33% and 42%, respectively) and control rats (25%, 25%, 33%, respectively), indicating that stimulation of cardiac β1AR induced cardioprotection. This response was prevented by pretreatment with AT and DPCPX, confirming the involvement of cardiac β1AR and A1R. Conclusion Pharmacological modulation of cardiac β1AR and A1R could be a potential therapeutic strategy to reduce severe arrhythmias and increase life expectancy in PD patients.

11.
Front Immunol ; 13: 946698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967385

RESUMO

Multiple sclerosis (MS) is a highly disabling, progressive neurodegenerative disease with no curative treatment available. Although significant progress has been made in understanding how MS develops, there remain aspects of disease pathogenesis that are yet to be fully elucidated. In this regard, studies have shown that dysfunctional adenosinergic signaling plays a pivotal role, as patients with MS have altered levels adenosine (ADO), adenosine receptors and proteins involved in the generation and termination of ADO signaling, such as CD39 and adenosine deaminase (ADA). We have therefore performed a literature review regarding the involvement of the adenosinergic system in the development of MS and propose mechanisms by which the modulation of this system can support drug development and repurposing.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Receptores Purinérgicos P1 , Adenosina/imunologia , Adenosina Desaminase/imunologia , Apirase/imunologia , Humanos , Esclerose Múltipla/etiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/terapia , Receptores Purinérgicos P1/imunologia , Transdução de Sinais
12.
Front Immunol ; 13: 866097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479074

RESUMO

Adenosine is a purine nucleoside that, via activation of distinct G protein-coupled receptors, modulates inflammation and immune responses. Under pathological conditions and in response to inflammatory stimuli, extracellular ATP is released from damaged cells and is metabolized to extracellular adenosine. However, studies over the past 30 years provide strong evidence for another source of extracellular adenosine, namely the "cAMP-adenosine pathway." The cAMP-adenosine pathway is a biochemical mechanism mediated by ATP-binding cassette transporters that facilitate cAMP efflux and by specific ectoenzymes that convert cAMP to AMP (ecto-PDEs) and AMP to adenosine (ecto-nucleotidases such as CD73). Importantly, the cAMP-adenosine pathway is operative in many cell types, including those of the airways. In airways, ß2-adrenoceptor agonists, which are used as bronchodilators for treatment of asthma and chronic respiratory diseases, stimulate cAMP efflux and thus trigger the extracellular cAMP-adenosine pathway leading to increased concentrations of extracellular adenosine in airways. In the airways, extracellular adenosine exerts pro-inflammatory effects and induces bronchoconstriction in patients with asthma and chronic obstructive pulmonary diseases. These considerations lead to the hypothesis that the cAMP-adenosine pathway attenuates the efficacy of ß2-adrenoceptor agonists. Indeed, our recent findings support this view. In this mini-review, we will highlight the potential role of the extracellular cAMP-adenosine pathway in chronic respiratory inflammatory disorders, and we will explore how extracellular cAMP could interfere with the regulatory effects of intracellular cAMP on airway smooth muscle and innate immune cell function. Finally, we will discuss therapeutic possibilities targeting the extracellular cAMP-adenosine pathway for treatment of these respiratory diseases.


Assuntos
Adenosina , Asma , Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/uso terapêutico , Asma/tratamento farmacológico , Humanos , Receptores Adrenérgicos , Transdução de Sinais/fisiologia
13.
Cell Mol Neurobiol ; 42(3): 829-846, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33079284

RESUMO

Sulforaphane is a natural compound that presents anti-inflammatory and antioxidant properties, including in the central nervous system (CNS). Astroglial cells are involved in several functions to maintain brain homeostasis, actively participating in the inflammatory response and antioxidant defense systems. We, herein, investigated the potential mechanisms involved in the glioprotective effects of sulforaphane in the C6 astrocyte cell line, when challenged with the inflammogen, lipopolysaccharide (LPS). Sulforaphane prevented the LPS-induced increase in the expression and/or release of pro-inflammatory mediators, possibly due to nuclear factor κB and hypoxia-inducible factor-1α activation. Sulforaphane also modulated the expressions of the Toll-like and adenosine receptors, which often mediate inflammatory processes induced by LPS. Additionally, sulforaphane increased the mRNA levels of nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO1), both of which mediate several cytoprotective responses. Sulforaphane also prevented the increase in NADPH oxidase activity and the elevations of superoxide and 3-nitrotyrosine that were stimulated by LPS. In addition, sulforaphane and LPS modulated superoxide dismutase activity and glutathione metabolism. Interestingly, the anti-inflammatory and antioxidant effects of sulforaphane were blocked by HO1 pharmacological inhibition, suggesting its dependence on HO1 activity. Finally, in support of a glioprotective role, sulforaphane prevented the LPS-induced decrease in glutamate uptake, glutamine synthetase activity, and glial-derived neurotrophic factor (GDNF) levels, as well as the augmentations in S100B release and Na+, K+ ATPase activity. To our knowledge, this is the first study that has comprehensively explored the glioprotective effects of sulforaphane on astroglial cells, reinforcing the beneficial effects of sulforaphane on astroglial functionality.


Assuntos
Lipopolissacarídeos , Transdução de Sinais , Animais , Células Cultivadas , Isotiocianatos/farmacologia , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Sulfóxidos
14.
Cell Mol Neurobiol ; 42(6): 1693-1725, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33730305

RESUMO

Ischemia is characterized by a transient, insufficient, or permanent interruption of blood flow to a tissue, which leads to an inadequate glucose and oxygen supply. The nervous tissue is highly active, and it closely depends on glucose and oxygen to satisfy its metabolic demand. Therefore, ischemic conditions promote cell death and lead to a secondary wave of cell damage that progressively spreads to the neighborhood areas, called penumbra. Brain ischemia is one of the main causes of deaths and summed with retinal ischemia comprises one of the principal reasons of disability. Although several studies have been performed to investigate the mechanisms of damage to find protective/preventive interventions, an effective treatment does not exist yet. Adenosine is a well-described neuromodulator in the central nervous system (CNS), and acts through four subtypes of G-protein-coupled receptors. Adenosine receptors, especially A1 and A2A receptors, are the main targets of caffeine in daily consumption doses. Accordingly, caffeine has been greatly studied in the context of CNS pathologies. In fact, adenosine system, as well as caffeine, is involved in neuroprotection effects in different pathological situations. Therefore, the present review focuses on the role of adenosine/caffeine in CNS, brain and retina, ischemic events.


Assuntos
Cafeína , Isquemia , Fármacos Neuroprotetores , Adenosina/metabolismo , Encéfalo , Cafeína/farmacologia , Sistema Nervoso Central , Glucose/metabolismo , Humanos , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Receptores Purinérgicos P1 , Retina
16.
Eur J Appl Physiol ; 121(3): 749-769, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33403509

RESUMO

Caffeine is a popular ergogenic aid due to its primary physiological effects that occur through antagonism of adenosine receptors in the central nervous system. This leads to a cascade of physiological reactions which increases focus and volition, and reduces perception of effort and pain, contributing to improved exercise performance. Substantial variability in the physiological and performance response to acute caffeine consumption is apparent, and a growing number of studies are implicating a single-nucleotide polymorphism in the CYP1A2 gene, responsible for caffeine metabolism, as a key factor that influences the acute responses to caffeine ingestion. However, existing literature regarding the influence of this polymorphism on the ergogenic effects of caffeine is controversial. Fast caffeine metabolisers (AA homozygotes) appear most likely to benefit from caffeine supplementation, although over half of studies showed no differences in the responses to caffeine between CYP1A2 genotypes, while others even showed either a possible advantage or disadvantage for C-allele carriers. Contrasting data are limited by weak study designs and small samples sizes, which did not allow separation of C-allele carriers into their sub-groups (AC and CC), and insufficient mechanistic evidence to elucidate findings. Mixed results prevent practical recommendations based upon genotype while genetic testing for CYP1A2 is also currently unwarranted. More mechanistic and applied research is required to elucidate how the CYP1A2 polymorphism might alter caffeine's ergogenic effect and the magnitude thereof, and whether CYP1A2 genotyping prior to caffeine supplementation is necessary.


Assuntos
Desempenho Atlético/fisiologia , Cafeína/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Citocromo P-450 CYP1A2/genética , Exercício Físico , Humanos , Polimorfismo de Nucleotídeo Único
17.
Auton Neurosci ; 229: 102737, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33166836

RESUMO

Adenosine and nitric oxide act on the fine-tuning regulation of neural cardiovascular control in the nucleus tractus solitarius (NTS). Although the interaction between adenosine and NO is well known in the periphery, the mechanisms by which adenosine interferes in the dynamics of nitrergic neurotransmission, related to neural control of circulation, are not completely understood and might be relevant for individuals predisposed to hypertension. In this study we evaluate the interaction between adenosinergic and nitrergic systems in cell culture from the dorsomedial medulla oblongata of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Using quantification of nitrite levels, RT-PCR analysis and RNA interference we demonstrate that adenosine A1 (A1R) and A2a receptor (A2aR) agonists induce a concentration-dependent decrease and increase of nitrite and nNOS mRNA levels in cultured cells from WKY and SHR, respectively. These effects in nitrite levels are attenuated by the administration of A1R and A2aR selective antagonists, CPT and ZM 241385. Furthermore, knockdown of A1R and A2aR show an increase and decrease of nNOS mRNA levels, respectively. Pretreatment with the nonselective inhibitor of NOS, L-NAME, abolishes nitrite-increased levels triggered by CGS 21680 in WKY and SHR cells. Finally, it is shown that the cAMP-PKA pathway is involved in A1R and A2aR-mediated decrease and increase in nitrite levels in SHR and WKY cells. Our results highlight the influence of adenosine on nitric oxide levels in cultured cells from dorsal medulla oblongata of neonate WKY and SHR rats. In part, the modulatory profile is different in the SHR strain.


Assuntos
Adenosina/metabolismo , Hipertensão/metabolismo , Bulbo/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
18.
Int J Dev Neurosci ; 80(7): 636-647, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798310

RESUMO

BACKGROUND: This study assessed the effects of an acute stress model upon the long-term hyperalgesia induced by repeated morphine administration in neonatal rats. We also evaluated neurotrophins and cytokines levels; expressions of adenosine and acetylcholine receptors, and acetylcholinesterase enzyme at the spinal cord. MATERIAL AND METHODS: Male Wistar rats were subjected to morphine or saline administration from P8 to P14. Thermal hyperalgesia and mechanical hyperesthesia were assessed using the hot plate (HP) and von Frey (vF) tests, respectively, at postnatal day P30 and P60. After baseline measurements, rats were subjected to a single exercise session, as an acute stress model, at P30 or P60. We measured the levels of BDNF and NGF, interleukin-6, and IL-10 in the cerebral cortex and the brainstem; and the expression levels of adenosine and muscarinic receptors, as well as acetylcholinesterase (AChE) enzyme at the spinal cord. RESULTS: A stress exercise session was not able to revert the morphine-induced hyperalgesia. The morphine and exercise association in rats induced a decrease in the neurotrophins brainstem levels, and A1 , A2A , A2B receptors expression in the spinal cord, and an increase in the IL-6 cortical levels. The exercise reduced M2 receptors expression in the spinal cord of naive rats, while morphine prevented this effect. CONCLUSIONS: Single session of exercise does not revert hyperalgesia induced by morphine in rats; however, morphine plus exercise modulate neurotrophins, IL-6 central levels, and expression of adenosine receptors.


Assuntos
Hiperalgesia/metabolismo , Fatores de Crescimento Neural/metabolismo , Condicionamento Físico Animal/fisiologia , Receptor A1 de Adenosina/metabolismo , Receptores A2 de Adenosina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Citocinas/metabolismo , Hiperalgesia/induzido quimicamente , Masculino , Morfina/efeitos adversos , Ratos , Ratos Wistar , Receptores Colinérgicos/metabolismo
19.
Purinergic Signal ; 16(3): 379-387, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32725400

RESUMO

Parkinson's disease (PD) signs and symptoms regularly include tremor. Interestingly, the nucleoside guanosine (GUO) has already proven to be effective in reducing reserpine-induced tremulous jaw movements (TJMs) in rodent models, thus becoming a promising antiparkinsonian drug. Here, we aimed at revealing the mechanism behind GUO antiparkinsonian efficacy by assessing the role of adenosine A1 and A2A receptors (A1R and A2AR) on GUO-mediated anti-tremor effects in the reserpinized mouse model of PD. Reserpinized mice showed elevated reactive oxygen species (ROS) production and cellular membrane damage in striatal slices assessed ex vivo and GUO treatment reversed ROS production. Interestingly, while the simultaneous administration of sub-effective doses of GUO (5 mg/kg) and SCH58261 (0.01 mg/kg), an A2AR antagonist, precluded reserpine-induced TJMs, these were ineffective on reverting ROS production in ex vivo experiments. Importantly, GUO was able to reduce TJM and ROS production in reserpinized mouse lacking the A2AR, thus suggesting an A2AR-independent mechanism of GUO-mediated effects. Conversely, the administration of DPCPX (0.75 mg/kg), an A1R antagonist, completely abolished both GUO-mediated anti-tremor effects and blockade of ROS production. Overall, these results indicated that GUO anti-tremor and antioxidant effects in reserpinized mice were A1R dependent but A2AR independent, thus suggesting a differential participation of adenosine receptors in GUO-mediated effects.


Assuntos
Guanosina/uso terapêutico , Doença de Parkinson Secundária/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Tremor/metabolismo , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Guanosina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Tremor/induzido quimicamente , Tremor/tratamento farmacológico , Xantinas/farmacologia
20.
J Mol Neurosci ; 70(4): 590-599, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31867702

RESUMO

The severity score of quinolinic acid (QA)-induced seizures was investigated after N-methyl-D-aspartate (NMDA) preconditioning associated with adenosine receptors. Also, the levels of adenosine A1 and A2A receptors and subunits of NMDA receptors in the hippocampi of mice were determined to define components of the resistance mechanism. Adult CF-1 mice were treated intraperitoneally with saline or NMDA (75 mg/kg), and some mice were treated intracerebroventricularly (i.c.v.) with 0.1 pmol of adenosine receptor antagonists 8-cyclopentyltheophylline (CPT; receptor A1) or ZM241385 (receptor A2A) 0, 1, or 6 h after NMDA administration. These adenosine receptor antagonists were administered to block NMDA's protective effect. Seizures and their severity scores were evaluated during convulsions induced by QA (36.8 nmol) that was administered i.c.v. 24 h after NMDA. The cell viability and content of subunits of the NMDA receptors were analyzed 24 h after QA administration. NMDA preconditioning reduced the maximal severity 6 displayed in QA-administered mice, inducing protection in 47.6% of mice after QA-induced seizures. CPT increased the latency of seizures when administered 0 or 6 h, and ZM241385 generated the same effect when administered 6 h after NMDA administration. The GluN1 content was lower in the hippocampi of the QA mice and the NMDA-preconditioned animals without seizures. GluN2A content was unaltered in all groups. The results demonstrated the components of resistance evoked by NMDA, in which adenosine receptors participate in a time-dependent mode. Similarly, the reduction on GluN1 expression in the hippocampus may contribute to this effect during the preconditioning period.


Assuntos
Anticonvulsivantes/uso terapêutico , N-Metilaspartato/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P1/metabolismo , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , N-Metilaspartato/administração & dosagem , N-Metilaspartato/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Ácido Quinolínico/toxicidade , Convulsões/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA