Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 832
Filtrar
1.
Genes (Basel) ; 15(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38674390

RESUMO

The Adriamycin (ADR) nephropathy model, which induces podocyte injury, is limited to certain mouse strains due to genetic susceptibilities, such as the PrkdcR2140C polymorphism. The FVB/N strain without the R2140C mutation resists ADR nephropathy. Meanwhile, a detailed analysis of the progression of ADR nephropathy in the FVB/N strain has yet to be conducted. Our research aimed to create a novel mouse model, the FVB-PrkdcR2140C, by introducing PrkdcR2140C into the FVB/NJcl (FVB) strain. Our study showed that FVB-PrkdcR2140C mice developed severe renal damage when exposed to ADR, as evidenced by significant albuminuria and tubular injury, exceeding the levels observed in C57BL/6J (B6)-PrkdcR2140C. This indicates that the FVB/N genetic background, in combination with the R2140C mutation, strongly predisposes mice to ADR nephropathy, highlighting the influence of genetic background on disease susceptibility. Using RNA sequencing and subsequent analysis, we identified several genes whose expression is altered in response to ADR nephropathy. In particular, Mmp7, Mmp10, and Mmp12 were highlighted for their differential expression between strains and their potential role in influencing the severity of kidney damage. Further genetic analysis should lead to identifying ADR nephropathy modifier gene(s), aiding in early diagnosis and providing novel approaches to kidney disease treatment and prevention.


Assuntos
Modelos Animais de Doenças , Doxorrubicina , Nefropatias , Animais , Doxorrubicina/efeitos adversos , Camundongos , Nefropatias/induzido quimicamente , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Predisposição Genética para Doença , Podócitos/metabolismo , Podócitos/patologia , Podócitos/efeitos dos fármacos
2.
J Ethnopharmacol ; 329: 118156, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583729

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Throughout Chinese history, Hydrangea paniculata Siebold has been utilized as a traditional medicinal herb to treat a variety of ailments associated to inflammation. In a number of immune-mediated kidney disorders, total coumarins extracted from Hydrangea paniculata (HP) have demonstrated a renal protective effect. AIM OF THE STUDY: To investigate renal beneficial effect of HP on experimental Adriamycin nephropathy (AN), and further clarify whether reversing lipid metabolism abnormalities by HP contributes to its renoprotective effect and find out the underlying critical pathways. MATERIALS AND METHODS: After establishment of rat AN model, HP was orally administrated for 6 weeks. Biochemical indicators related to kidney injury were determined. mRNAs sequencing using kidney tissues were performed to clarify the underlying mechanism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, western blot, molecular docking, and drug affinity responsive target stability (DARTS) assay was carried out to further explore and confirm pivotal molecular pathways and possible target by which HP and 7-hydroxylcoumarin (7-HC) played their renal protection effect via modulating lipid metabolism. RESULTS: HP could significantly improve renal function, and restore renal tubular abnormal lipid metabolism and interstitial fibrosis in AN. In vitro study demonstrated that HP and its main metabolite 7-HC could reduce ADR-induced intracellular lipid deposition and fibrosis characteristics in renal tubular cells. Mechanically, HP and 7-HC can activate AMP-activated protein kinase (AMPK) via direct interaction, which contributes to its lipid metabolism modulation effect. Moreover, HP and 7-HC can inhibit fibrosis by inhibiting CCAAT/enhancer binding protein beta (C/EBPß) expression in renal tubular cells. Normalization of lipid metabolism by HP and 7-HC further provided protection of mitochondrial structure integrity and inhibited the nuclear factor kappa-B (NF-κB) pathway. Long-term toxicity using beagle dogs proved the safety of HP after one-month administration. CONCLUSION: Coumarin derivates from HP alleviate adriamycin-induced lipotoxicity and fibrosis in kidney through activating AMPK and inhibiting C/EBPß.

3.
Tissue Cell ; 88: 102360, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38489913

RESUMO

PURPOSE: Intermittent fasting (IF) has been shown to induce a well-organized adaptive defense against stress inside the cells, which increases the production of anti-oxidant defenses, repair of DNA, biogenesis of mitochondria, and genes that combat inflammation. So, the goal of the current investigation was to identify the effects of IF on rats with adriamycin (ADR)-induced nephropathy and any potential underlying mechanisms. METHODS: Four groups of 40 mature Sprague-Dawley male rats were allocated as follow; control, fasting, ADR, and ADR plus fasting. After 8 weeks of ADR administration urine, blood samples and kidneys were taken for assessment of serum creatinine (Cr), BUN, urinary proteins, indicators of oxidative damage (malondialdehyde (MDA), reduced glutathione (GSH) and Catalase (CAT) levels), histopathological examinations, immunohistochemical examinations for caspase-3, Sirt1, aquaporin2 (AQP2) and real time PCR for antioxidant genes; Nrf2, HO-1 in kidney tissues. RESULTS: IF significantly improved serum creatinine, BUN and urinary protein excretion, oxidative stress (low MDA with high CAT and GSH), in addition to morphological damage to the renal tubules and glomeruli as well as caspase-3 production during apoptosis. Moreover, IF stimulates significantly the expression of Sirt1 and Nrf2/HO-1 and AQP2. CONCLUSION: AQP2, Sirt1, Nrf2/HO-1 signaling may be upregulated and activated by IF, which alleviates ADR nephropathy. Enhancing endogenous antioxidants, reducing apoptosis and tubulointerstitial damage, and maintaining the glomerular membrane's integrity are other goals.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38529940

RESUMO

Background: Cancer-derived exosomes facilitate chemoresistance by transferring RNAs, yet their role in exosomal microRNA-221-3p (miR-221-3p) regulation of Adriamycin resistance in breast cancer (BC) remains unclear. Methods: Adriamycin-resistant BC cells were developed from MCF-7 and MDA-MB-231 cells by incremental Adriamycin exposure. The miR-221-3p levels were quantified by quantitative reverse transcription-polymerase chain reaction. Subsequently, exosomes were isolated and incubated with BC cells, and exosome-mediated Adriamycin sensitivity was evaluated using Cell Counting Kit-8, colony formation, and flow cytometry assays. Sensitive cells were cocultured with miR-221-3p inhibitor-treated cells to assess Adriamycin resistance. Moreover, the interaction between miR-221-3p and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) was validated using a dual luciferase reporter gene assay. Mimics and inhibitors were used to determine the effects of miR-221-3p on Adriamycin resistance. Results: Elevated levels of miR-221-3p expression were observed in Adriamycin-resistant BC cells and exosomes. Sensitive cells were cocultured with exosomes from resistant cells, resulting in increased half-maximal inhibitory concentration value and proliferation, and reduced Adriamycin-induced apoptosis. However, the effects of coculturing sensitive cells with Adriamycin-resistant cells were significantly weakened by miR-221-3p inhibitor transfection in Adriamycin-resistant cells. PIK3R1 was found to be a target of miR-221-3p, and miR-221-3p mimics enhanced Adriamycin resistance in sensitive cells. miR-221-3p inhibitors increased the expression of PIK3R1, p-AKT, c-Myc, HK2, and PKM2, decreased FOXO3 expression, and weakened the Adriamycin resistance in resistant cells. Conclusions: miR-221-3p can be transferred between BC cells through exosomes. High levels of miR-221-3p were found to target PIK3R1 and promoted Adriamycin resistance in BC cells. [Figure: see text].

5.
Artigo em Inglês | MEDLINE | ID: mdl-38498061

RESUMO

The purpose of this study is to investigate the ingredients and mechanisms through which Dalbergiae Odoriferae Lignum (DOL) reduces adriamycin-induced cardiotoxicity. DOL's ingredients and drug targets were acquired from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), and adriamycin-induced cardiotoxicity disease targets were gathered from GeneCards and National Center for Biotechnology Information (NCBI). The therapeutic targets of DOL against adriamycin-induced cardiotoxicity were identified by intersecting drug and disease targets. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted using R. Subsequently, core targets were determined and used for molecular docking with DOL ingredients. In vitro and in vivo experiments validated DOL's primary ingredients against adriamycin-induced cardiotoxicity efficacy. Western blot and immunohistochemistry verified its impact on target protein. After intersecting 530 drug targets and 51 disease targets, 19 therapeutic targets for DOL alleviated adriamycin-induced cardiotoxicity were received. Molecular docking demonstrated that DOL primary ingredient formononetin had a robust binding affinity for nitric oxide synthase 3 (NOS3). Experimental results showed that formononetin effectively mitigated adriamycin-induced cardiotoxicity. Additionally, western blot and immunohistochemistry showed that formononetin improved NOS3 expression. The network pharmacology and experimentation suggest that the primary ingredient of DOL, formononetin, may target NOS3 to act as a therapeutic agent for adriamycin-induced cardiotoxicity.

6.
FASEB J ; 38(5): e23550, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466338

RESUMO

Breast cancer is the most prevalent malignant tumor in women. Adriamycin (ADR) is a primary chemotherapy drug, but resistance limits its effectiveness. Ferroptosis, a newly identified cell death mechanism, involves the transferrin receptor (TFRC), closely linked with tumor cells. This study aimed to explore TFRC and ferroptosis's role in breast cancer drug resistance. Bioinformatics analysis showed that TFRC was significantly downregulated in drug-resistant cell lines, and patients with low TFRC expression might demonstrate a poor chemotherapeutic response to standard treatment. High expression of TFRC was positively correlated with most of the ferroptosis-related driver genes. The research findings indicate that ferroptosis markers were higher in breast cancer tissues than in normal ones. In chemotherapy-sensitive cases, Ferrous ion (Fe2+ ) and malondialdehyde (MDA) levels were higher than in resistant cases (all p < .05). TFRC expression was higher in breast cancer than in normal tissue, especially in the sensitive group (all p < .05). Cytological experiments showed increased hydrogen peroxide (H2 O2 ) after ADR treatment in both sensitive and resistant cells, with varying MDA changes (all p < .05). Elevating TFRC increased Fe2+ and MDA in ADR-resistant cells, enhancing their sensitivity to ADR. However, TFRC upregulation combined with ADR increased proliferation and invasiveness in resistant cell lines (all p < .05). In conclusion, ADR resistance to breast cancer is related to the regulation of iron ion-mediated ferroptosis by TFRC. Upregulation of TFRC in ADR-resistant breast cancer cells activates ferroptosis and reverses ADR chemotherapy resistance of breast cancer.


Assuntos
Neoplasias da Mama , Ferroptose , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Doxorrubicina/farmacologia , Receptores da Transferrina/genética , Transferrina
7.
Ultrasound Med Biol ; 50(6): 869-881, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538442

RESUMO

OBJECTIVE: Novel strategies for treating triple-negative breast cancer (TNBC) are ongoing because of the lack of standard-of-care treatment. Nanoframed materials with a protein pillar are considered a valuable tool for designing multigoals of energy-absorbing/medication cargo and are a bridge to cross-conventional treatment strategies. METHODS: Nanobioconjugates of gold nanoclusters-bovine serum albumin (AuNCs-BSA) and doxorubicin-AuNCs-BSA (Dox-AuNCs-BSA) were prepared and employed as a simultaneous double photosensitizer/sonosensitizer and triple chemotherapeutic/photosensitizer/sonosensitizer, respectively. RESULTS: The highly stable AuNCs-BSA and Dox-AuNCs-BSA have ζ potentials of -29 and -18 mV, respectively, and represent valuable photothermal and sonodynamic activities for the combination of photothermal therapy and sonodynamic therapy (PTT/SDT) and synchronized chemotherapy/photothermal therapy/sonodynamic therapy (CTX/PTT/SDT) of human TNBC cells, respectively. The efficiency of photothermal conversion of AuNCs-BSA was calculated to be a promising value of 32.9%. AuNCs-BSA and Dox-AuNCs-BSA were activated on either laser light irradiation or ultrasound exposure with the highest efficiency on the combination of both types of radiation. CTX/PTT/SDT of MCF-7 and MDA-MB-231 breast cancer cell lines by Dox-AuNCs-BSA were evaluated with the MTT cell proliferation assay and found to progress synergistically. CONCLUSION: Results of the MTT assay, detection of the generation of intracellular reactive oxygen species and occurrence of apoptosis in the cells confirmed that CTX/PTT/SDT by Dox-AuNCs-BSA was attained with lower needed doses of the drug and improved tumor cell ablation, which would result in the enhancement of therapeutic efficacy and overcoming of therapeutic resistance.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Ouro , Terapia Fototérmica , Soroalbumina Bovina , Neoplasias de Mama Triplo Negativas , Terapia por Ultrassom , Humanos , Ouro/química , Doxorrubicina/farmacologia , Neoplasias de Mama Triplo Negativas/terapia , Feminino , Terapia por Ultrassom/métodos , Terapia Fototérmica/métodos , Antibióticos Antineoplásicos/farmacologia , Nanoconjugados/química , Terapia Combinada , Nanopartículas Metálicas , Receptores de Estrogênio , Linhagem Celular Tumoral , Neoplasias da Mama/terapia
8.
Cell Signal ; 117: 111101, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38365112

RESUMO

Breast cancer (BC) is a common cancer whose incidence continues to grow while its medical progress has stagnated. miRNAs are vital messengers that facilitate communications among different cancer cells. This study was to reveal the correlation of miR-122-3p expression with BC metastasis and Adriamycin (ADM) resistance and its mechanism of inhibiting BC metastasis. We found that expression of miR-122-3p is negatively correlated with BC metastasis and is lower in MCF-7/ADR cells. Overexpression of miR-122-3p in MCF-7/ADR cancer cells impairs their ability to migrate, invade, and stimulate blood vessel formation. Further research found that miR-122-3p directly binds to the 3' UTR of GRK4, reducing the phosphorylation of LRP6, which activates the Wnt/ß-catenin signaling pathway, facilitating BC development and metastasis. In addition, we observed that miR-122-3p is present in MCF-7  cells, and treatment of MCF-7/ADR cells with MCF-7-derived exosomes, but not with exosomes from miR-122-3p-deficient MCF-7 cells, has identical effects to miR-122-3p overexpression. Data from xenograft experiments further suggest that excess miR-122-3p and MCF-7-derived exosomes inhibit the growth and metastasis of MCF-7/ADR cancer cells in vivo. In conclusion our data reveal that exosomal miR-122-3p may negatively regulate BC growth and metastasis, potentially serving as a diagnostic and druggable target for BC treatment.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Células MCF-7 , Via de Sinalização Wnt , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Quinase 4 de Receptor Acoplado a Proteína G/metabolismo
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 39-44, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387897

RESUMO

OBJECTIVE: To investigate the effects of miR-217 on proliferation and adriamycin sensitivity of acute myeloid leukemia (AML) cells. METHODS: The mimic NC and miR-217 mimic vectors were constructed and transfected into HL-60 cells, and transfection efficiency was detected by qPCR. The cells were treated with different concentrations of adriamycin for 24 h and 48 h. CCK-8 assay was used to detect the chemical sensitivity of adriamycin and screen the optimal concentration and time of adriamycin treatment. Cells were divided into control group, mimic NC group, miR-217 mimic group, adriamycin group and miR-217 mimic+adriamycin group. Apoptosis was detected by flow cytometry, and the expressions of miR-217, PI3K and Akt3 were detected by qPCR. Western blot was used to detect the expression of PI3K/Akt pathway proteins PI3K, Akt3 and apoptosis proteins Bcl-2, Bax, and double luciferase was used to verify the relationship between miR-217 and Akt3. RESULTS: MiR-217 mimic could enhance the sensitivity of HL-60 cells to adriamycin. The optimal concentration and treatment time of adriamycin were 160 ng/ml and 48 h, respectively. Compared with control group, apoptosis rate, miR-217 and Bax protein levels were significantly increased in miR-217 mimic and adriamycin groups (P < 0.01), while Bcl-2 protein, PI3K, Akt3 mRNA and protein levels were significantly decreased (P < 0.01). Compared with adriamycin group, apoptosis rate, miR-217 and Bax protein levels were significantly increased in miR-217 mimic+adriamycin group (P < 0.01), while Bcl-2 protein, PI3K, Akt3 mRNA and protein levels were significantly decreased (P < 0.01). Dual luciferase assay showed that there was a targeted regulatory relationship between miR-217 and Akt3. CONCLUSION: MiR-217 regulates the PI3K/Akt pathway targeting Akt3, inhibits cell proliferation, promotes cell apoptosis and enhances the sensitivity of adriamycin to AML cells.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Doxorrubicina/farmacologia , Proteína X Associada a bcl-2/metabolismo , Transdução de Sinais , Leucemia Mieloide Aguda/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro , Luciferases , Proliferação de Células
10.
Funct Integr Genomics ; 24(1): 22, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306005

RESUMO

MHY1485 is an mTOR activator that inhibits the autophagy process by inhibiting the fusion between autophagosomes and lysosomes. This study aimed to explore the role and mechanism of MHY1485 in hepatocellular carcinoma (HCC) and to provide an in-depth understanding of the mechanisms of autophagy regulation in relation to adriamycin (ADM) resistance, as well as the development of a molecularly targeted autophagy-modulating approach. Here, ADM was used to treat HepG2 cells and construct an ADM-resistant cell model. The HepG2/ADM cell line and HepG2 cells were treated with MHY1485 and ADM, respectively, and the proliferation and apoptosis of HCC cells were detected using CCK8, clone formation, flow cytometry, and 5-ethynyl-2'-deoxyuridine staining assays. Ki-67, mTOR phosphorylation, and LC3A expression were detected by IF staining; the expression or phosphorylation levels of autophagy-related proteins (i.e., GLUT1, PGI, PFK, END, and MTHFD2) and apoptosis-related proteins (caspase-3, caspase-8, and caspase-9) were detected by qPCR and western blotting. The number of autophagosomes was determined by monodansylcadaverine staining. Our results showed that MHY1485 can inhibit the proliferation and growth of liver cancer cells, and that MHY1485 combined with ADM can effectively inhibit the tolerance of HepG2/ADM cells to ADM and enhance the efficacy of ADM. The results of the detection of the autophagy-related protein LC3A also indicated that MHY1485 activates mTOR and can affect the phosphorylation level of ULK1, inhibit autophagy, and enhance the sensitivity of liver cancer cells to adriamycin. In summary, MHY1485 can enhance the sensitivity of adriamycin-resistant cells to adriamycin by activating mTOR and blocking the autophagy process in cells; therefore, mTOR may become a potential target for the treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Morfolinas , Triazinas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Doxorrubicina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Apoptose , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Proliferação de Células , Linhagem Celular Tumoral
11.
Kidney Blood Press Res ; 49(1): 81-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38185119

RESUMO

INTRODUCTION: Sodium-glucose cotransporter 2 (SGLT2) inhibitors target SGLT2 in renal proximal tubules and promote glycosuria in type 2 diabetes mellitus in humans and animal models, resulting in reduced blood glucose levels. Although clinical trials have shown that SGLT2 inhibitors attenuate the progression of chronic kidney disease, there have been concerns regarding SGLT2-induced acute kidney injury. In this study, we investigated the effect of SGLT2 inhibitors on adriamycin-induced kidney injury in mice. METHODS: Seven-week-old balb/c mice were injected with adriamycin 11.5 mg/kg via the tail vein. Additionally, dapagliflozin was administered via gavage for 2 weeks. The mice were divided into five groups: vehicle, dapagliflozin 3 mg/kg, adriamycin, adriamycin plus dapagliflozin 1 mg/kg, and adriamycin plus dapagliflozin 3 mg/kg. RESULTS: Adriamycin injection reduced the body weight and food and water intakes. Dapagliflozin also decreased the body weight and food and water intakes. Fasting blood glucose and urine volume were not altered by either adriamycin or dapagliflozin. Once adriamycin-induced kidney injury had developed, there were no differences in systolic blood pressure among the groups. Dapagliflozin did not alleviate proteinuria in adriamycin-induced kidney injury. Adriamycin induced significant glomerular and interstitial injury, but dapagliflozin did not attenuate these changes in renal injury. Interestingly, SGLT2 expressions were different between the cortex and medulla of kidneys by dapagliflozin treatment. Dapagliflozin increased SGLT2 expression in medulla, not in cortex. CONCLUSION: Dapagliflozin had no effect on proteinuria or inflammatory changes such as glomerular and tubular damages in adriamycin-induced kidney injury. Our study suggests that dapagliflozin does not protect against adriamycin-induced kidney injury. More experimental studies regarding the effects of SGLT2 inhibitors on various kidney diseases are needed to clarify the underlying mechanisms.


Assuntos
Diabetes Mellitus Tipo 2 , Glucosídeos , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Camundongos , Animais , Transportador 2 de Glucose-Sódio/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Doxorrubicina , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Rim/metabolismo , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Insuficiência Renal Crônica/metabolismo , Proteinúria/tratamento farmacológico , Peso Corporal , Água/metabolismo
12.
Rev Invest Clin ; 76(1): 6-17, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38253021

RESUMO

Background: Adriamycin resistance remains an obstacle to gastric cancer chemotherapy treatment. Objective: The objective of this study was to study the role and mechanism of transcription factor E2F7 in sensitivity to ADM chemotherapeutic agents in gastric cancer. Methods: Cell viability and cell sensitivity were assessed by CCK-8 and IC50 values of ADM were calculated. The impact of ADM on cellular proliferative capacity was assessed through colony formation assay. The binding relationship between E2F7 and PKMYT1 was then verified by dual luciferase assay and chromatin immunoprecipitation assay. ERK1/ERK2 and p-ERK1/p-ERK2 protein expression levels were detected by western blot. Results: In both gastric cancer tissue and ADM-resistant cells, a conspicuous upregulation of E2F7 and PKMYT1 was observed. Upregulated PKMYT1 was notably enriched in the MAPK signaling pathway. Enhanced levels of E2F7 were shown to not only drive gastric cancer cell proliferation but also engender a reduction in the sensitivity of these cells to ADM. Furthermore, PKMYT1 emerged as a downstream target of E2F7. Activation of E2F7 culminated in the transcriptional upregulation of PKMYT1, and silencing E2F7 reversed the inhibitory impact of PKMYT1 overexpression on ADM sensitivity in gastric cancer cells. Conclusion: E2F7/PKMYT1 axis might promote the proliferation and partially inhibit ADM sensitivity of gastric cancer cells by activating the MAPK pathway.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Doxorrubicina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Proteínas de Membrana/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
13.
Iran J Basic Med Sci ; 27(2): 233-240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234666

RESUMO

Objectives: Due to its negative side effects, mainly nephrotoxicity, adriamycin (ADR) is used fairly infrequently. The purpose of this study is to investigate the effects of N-acetyl cysteine (NAC) on the immunoreactivity of spexin (SPX) in the kidney tissues of rats given ADR. Materials and Methods: A total of 28 male Sprague-Dawley rats were randomly assigned to four groups (n=7): control (no intervention), NAC (150 mg/kg/day, administered intraperitoneally), ADR (single dose of 15 mg/kg, administered intraperitoneally), and ADR+NAC (single dose of 15 mg/kg ADR + 150 mg/kg/day NAC, both administered intraperitoneally). The experiment was concluded on the 15th day. Results: The administration of ADR resulted in biochemical and histopathological alterations in the kidney. It was found that ADR treatment led to elevated levels of TOS (total oxidative stress), apoptosis, and SPX. Conversely, when NAC was administered as a treatment, it effectively reduced TOS, apoptosis, and SPX levels. These findings suggest that SPX may contribute to the development of ADR-induced kidney damage. Conclusion: Further investigations are warranted to gain a comprehensive understanding of kidney damage, and specifically to elucidate the role of SPX in this context. Additionally, these studies can pave the way for exploring novel therapeutic strategies targeting SPX to prevent and/or treat the development of kidney damage.

14.
Mol Cell Biochem ; 479(1): 73-83, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36995547

RESUMO

Adriamycin (ADR) causes irreversible damage to the heart, leading to ADR-induced cardiomyopathy (ACM). Angiotensin-(1-9) [Ang-(1-9)] is a peptide from the counter-regulatory renin-angiotensin system, but the effects on ACM is unclear. Our study was aimed to explore the effects and underlying molecular mechanisms of Ang-(1-9) against ACM in Wistar rats. Rats were injected intraperitoneally with ADR via six equal doses (each containing 2.5 mg/kg) within a period of 2 weeks to induce ACM. After 2 weeks of ADR treatment, the rats were treated with Ang-(1-9) (200 ng/kg/min) or angiotensin type 2 receptor (AT2R) antagonist PD123319 (100 ng/kg/min) for 4 weeks. Although Ang-(1-9) treatment did not influence blood pressure, it significantly improved left ventricular function and remodeling in ADR-treated rats, by inhibiting collagen deposition, the expression of TGF-ß1, inflammatory response, cardiomyocyte apoptosis and oxidative stress. Moreover, Ang-(1-9) reduced ERK1/2 and P38 MAPK phosphorylation. The therapeutic effects of Ang-(1-9) were blocked by the AT2R antagonist PD123319, which also offset the down-regulation protein expression of pERK1/2 and pP38 MAPK induced by Ang-(1-9). These data suggest that Ang-(1-9) improved left ventricular function and remodeling in ADR-treated rats by an AT2R/ ERK1/2 and P38 MAPK-dependent mechanism. Thus, the Ang-(1-9)/AT2R axis may provide a novel and promising target to the prevention and treatment of ACM.


Assuntos
Cardiomiopatias , Receptor Tipo 2 de Angiotensina , Ratos , Animais , Receptor Tipo 2 de Angiotensina/metabolismo , Ratos Wistar , Doxorrubicina/efeitos adversos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/prevenção & controle , Angiotensina II/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno , Receptor Tipo 1 de Angiotensina
15.
Int Endod J ; 57(2): 195-207, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071432

RESUMO

AIM: This study aimed to investigate the potential protective effects of N-acetyl-L-cysteine (NAC) against apical periodontitis (AP) in rats with adriamycin (ADR)-induced kidney and heart diseases. METHODOLOGY: Fourty-eight Wistar albino rats were divided into six groups: (1) Control group, (2) ADR group (1 mg/kg/day ip for 10 days), (3) AP Group (1st mandibular molar tooth), (4) AP + ADR Group, (5) AP + NAC group (150 mg/kg/day ip), and (6) AP + ADR + NAC group. After 3 weeks, the rats were decapitated and blood and tissue samples (heart, kidney, and jaw) were collected. Tissue samples were evaluated by biochemical (inflammatory cytokines and hemodynamic parameters) and radiological analyses. One-way anova with Tukey post hoc tests was used to compare data, considering p < .05 as statistically significant. RESULTS: The serum levels of TNF-α, IL-1ß, BUN, Creatinine, CK, and LDH were elevated in the test groups compared with the control group, and treatment with NAC reduced these levels (p < .05). Heart and kidney tissue analysis showed a higher heart-to-body weight ratio (HW/BW) and kidney-to-body weight ratio (KW/BW) in the test groups compared with the control group (p < .05). No significant differences in HW/BW and KW/BW were found between the control and AP + NAC groups. Volumetric apical bone resorption analysis showed an increase in periapical radiolucencies in AP-induced groups indicating apical periodontitis. NAC treatment reduced the total area and volume of resorption cavities (p < .05). CONCLUSIONS: The results suggest that NAC's antioxidant and anti-inflammatory effects can reduce adriamycin-mediated heart and kidney damage and may have a positive effect on apical periodontitis in individuals with nephropathy and cardiomyopathy.


Assuntos
Cardiomiopatias , Periodontite Periapical , Ratos , Animais , Ratos Wistar , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Doxorrubicina , Periodontite Periapical/induzido quimicamente , Periodontite Periapical/tratamento farmacológico , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/tratamento farmacológico , Peso Corporal
16.
Antioxid Redox Signal ; 40(10-12): 598-615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37265150

RESUMO

Aims: Obese patients are highly sensitive to adriamycin (ADR)-induced cardiotoxicity. However, the potential mechanism of superimposed toxicity remains to be elucidated. Sestrin 2 (SESN2), a potential antioxidant, could attenuate stress-induced cardiomyopathy; therefore, this study aims to explore whether SESN2 enhances cardiac resistance to ADR-induced oxidative damage in high-fat diet (HFD)-induced obese mice. Results: The results revealed that obesity decreased SESN2 expression in ADR-exposed heart. And, HFD mice may predispose to ADR-induced cardiotoxicity, which was probably associated with inhibiting protein kinase B (AKT), glycogen synthase kinase-3 beta (GSK-3ß) phosphorylation and subsequently blocking nuclear localization of nuclear factor erythroid-2 related factor 2 (NRF2), ultimately resulting in cardiac oxidative damage. However, these destructive cascades and cardiac oxidative damage effects induced by HFD/sodium palmitate combined with ADR were blocked by overexpression of SESN2. Moreover, the antioxidant effect of SESN2 could be largely abolished by sh-Nrf2 or wortmannin. And sulforaphane, an NRF2 agonist, could remarkably reverse cardiac pathological and functional abnormalities caused by ADR in obese mice. Innovation and Conclusion: This study demonstrated that SESN2 might be a promising therapeutic target for improving anthracycline-related cardiotoxicity in obesity by upregulating activity of NRF2 via AKT/GSK-3ß/Src family tyrosine kinase signaling pathway. Antioxid. Redox Signal. 40, 598-615.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Antioxidantes/metabolismo , Cardiotoxicidade , Dieta Hiperlipídica/efeitos adversos , Doxorrubicina/toxicidade , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Obesos , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sestrinas/metabolismo
17.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 1971-1984, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37812241

RESUMO

Doxorubicin is a potent chemotherapeutic agent that can cause cardiotoxicity. Many documents (more than 14,000) have been published in the area of doxorubicin-induced cardiotoxicity (DIC) since 1970. A comprehensive bibliographic analysis of author keywords was used to describe better and understand the molecular mechanisms involved in DIC. The objective was to consider the state of the author keywords of research on the molecular mechanisms involved in DIC based on a bibliometrics study of articles published over the past fifty years. A bibliometrics analysis was conducted using VOSviewer with data collected from the Web of Science Core Collection database of over 14,000 documents (from 1970 to July 19, 2023). Using scientific publications retrieved about DIC, author keywords were assessed at the scientific field level. The current study showed that the annual number of DIC-related publications has increased over the past 50 years. The Journal of Clinical Oncology is the leading journal in this field. The top cited DIC document was published in 2004. The top keywords with high frequency were "doxorubicin," "cardiotoxicity," and "adriamycin." According to the results of this study, the most common mechanisms involved in DIC were as follows oxidative stress, apoptosis, inflammation, autophagy, mitophagy, endoplasmic reticulum stress, pyroptosis, and ferroptosis. The highest occurrences of regulators-related author keywords were "AKT," "Sirt1," and "AMPK." Based on the findings, oxidative stress, apoptosis, inflammation, autophagy, mitophagy, endoplasmic reticulum stress, pyroptosis, and ferroptosis were hot research mechanisms of DIC from 1970 to July 19, 2023.


Assuntos
Apoptose , Cardiotoxicidade , Humanos , Bibliometria , Doxorrubicina , Inflamação
18.
Heliyon ; 9(12): e22718, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058452

RESUMO

This study employed network pharmacology, molecular docking technology, and modern pharmacological research methods to explore the pre-protective effect and underlying mechanism, Sanwei sandalwood decoction, against Adriamycin-induced Chronic Heart Failure, with a particular focus on the involvement of aquaporins. Additionally, the study highlighted aquaporins as a significant factor, affecting processes such as cell proliferation and response to reactive oxygen species. The results of in vivo experiments demonstrated that the administration of Sanwei sandalwood decoction in rats with chronic heart failure led to an enhancement in the ejection fraction and improved heart ejection function. Additionally, the decoction significantly reduced the serum levels of Creatine Kinase, Creatine Kinase-MB, and N-terminal pro-B-type natriuretic peptide. Furthermore, the relative expression of Aquarporin-1, 4, and 7mRNAs and proteins in the hearts of rats with chronic heart failure was down-regulated upon treatment. Overall, Sanwei sandalwood decoction can have an effective cardioprotective effect in preventing Adriamycin-induced Chronic Heart Failure in rats.

19.
Front Cardiovasc Med ; 10: 1267525, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915739

RESUMO

Background: Recently, attention has been paid to the protective properties of active ingredients in Salvia miltiorrhiza (AISM) against organ toxicity induced by chemotherapy drugs. Purpose of the present systematic review is to evaluate the chemoprotective effects and mechanisms of AISM on in vitro and in vivo models of doxorubicin-induced cardiotoxicity (DIC). Methods: According to the PRISMA guideline, the current systematic review was conducted in the Web of Science, PubMed, Embase, and the Cochrane Library to collect all relevant in vitro and in vivo studies on "the role of AISM on DIC" published up until May 2023. The SYRCLE's tool was used to identify potential risk of bias. Results: Twenty-two eligible articles were included in this systematic review. Eleven types of active ingredients in Salvia miltiorrhiza were used for DIC, which have the following effects: improvement of physical signs and biochemical indicators, reduction of cardiac function damage caused by DIC, protection of heart tissue structure, enhancement of myocardial cell viability, prevention of cardiomyocyte apoptosis, increase of the chemosensitivity of cancer cells to Doxorubicin, etc. The cardioprotective mechanism of AISM involves inhibiting apoptosis, attenuating oxidative stress, suppressing endoplasmic reticulum (ER) stress, decreasing inflammation, improving mitochondrial structure and function, affecting cellular autophagy and calcium homeostasis. The quality scores of included studies ranged from 4 to 7 points (a total of 10 points), according to SYRCLE's risk of bias tool. Conclusion: This systematic review demonstrated that AISM have chemoprotective effects on DIC in vivo and in vitro models through several main mechanisms such as anti-apoptosis, antioxidant effects, anti-ER stress, and anti-inflammatory.

20.
Cell Signal ; 112: 110913, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797796

RESUMO

Chemotherapy resistance of breast cancer cells is one of the major factors affecting patient survival rate. Heat shock protein 27 (Hsp27) is a member of the small heat shock protein family that has been reported to be associated with chemotherapy resistance in tumor cells, but the exact mechanism is not fully understood. Here, we explored the regulation of Hsp27 in adriamycin-resistant pathological conditions of breast cancer in vitro and in vivo. We found that overexpression of Hsp27 in MCF-7 breast cancer cells reversed DNA damage induced by adriamycin, and thereby reduced subsequent cell apoptosis. Non-phosphorylated Hsp27 accelerated ubiquitin-mediated degradation of c-Myc under normal physiological conditions. After stimulation with adriamycin, Hsp27 was phosphorylated and translocated from the cytoplasm into the nucleus, where phosphorylated Hsp27 upregulated c-Myc and Nijmegen breakage syndrome 1 (NBS1) protein levels thus leading to ATM activation. We further showed that phosphorylated Hsp27 promoted c-Myc nuclear import and stabilization by regulating T58/S62 phosphorylation of c-Myc through a protein phosphatase 2A (PP2A)-dependent mechanism. Collectively, the data presented in this study demonstrate that Hsp27, in its phosphorylation state, plays a critical role in adriamycin-resistant pathological conditions of breast cancer cells.


Assuntos
Neoplasias da Mama , Doxorrubicina , Feminino , Humanos , Apoptose , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Proteínas de Choque Térmico HSP27/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...