Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Ecotoxicol Environ Saf ; 278: 116336, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691883

RESUMO

Aflatoxin B1 (AFB1), a common mycotoxin, can occur in agricultural products. As a metabolite of AFB1, aflatoxin M1 (AFM1) mainly exist in dairy products. These two mycotoxins threaten human health, although it is unclear how they affect the function of the intestinal barrier. In this study, mice were exposed to AFB1 (0.3 mg/kg body b.w.) and AFM1(3.0 mg/kg b.w.) either individually or in combination for 28 days to explore the main differentially expressed proteins (DEPs) and the associated enriched pathways. These findings were preliminarily verified by the transcriptomic and proteomic analyses in differentiated Caco-2 cells. The results revealed that AFB1 and AFM1 exposure in mice disrupted the function of the intestinal barrier, and the combined toxicity was greater than that of each toxin alone. Further proteomic analysis in mice demonstrated that the mechanisms underlying these differences could be explained as follows: (i) lipid metabolism was enriched by AFB1-induced DEPs. (ii) protein export pathway was stimulated by AFM1-induced DEPs. (iii) cell metabolic ability was inhibited (as evidenced by changes in UDP-GT1, UDP-GT2, and Gatm6), apoptosis was induced (MAP4K3), and epithelial cell integrity was disrupted (Claudin7 and IQGAP2), resulting in more extensive intestinal damage after combined treatment. In conclusion, the hazardous impact of co-exposure to AFB1 and AFM1 from proteomic perspectives was demonstrated in the present study.

2.
Iran J Public Health ; 53(1): 175-186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38694852

RESUMO

Background: Fungal metabolites known as aflatoxin M1 (AFM1) are linked to contaminated milk and milk products. Consuming food contaminated with AFM1 poses major health risks and may even be fatal. Methods: The retrieved publications were categorized in this bibliometric study using the Web of Science (WoS) database Jan 1, 1970 to Nov 30, 2022 based on a variety of factors, including the time of publication of articles, citation totals, languages, research areas, countries, affiliations, funding agencies, journals, and keywords analysis to identify any hot and developing subjects. Additionally, VOSviewer software version 1.6.18 provided the bibliometric analysis of the global collaboration network and hot research themes. Results: Overall, 679 published documents were detected. Food Control was the top-line journal in publications on AFM1 research with 540 published articles, while the USA was the best productive country in AFM1 publications as well as the major country with the maximum co-authorship collaboration. This study ensures quantitative and qualitative analyses of the top 25 journals, most cited published articles, most relevant authors and title word occurrences in published documents on AFM1 publications. Over the past two decades, there has been an enormous rise for research conducted on global AFM1. Conclusion: The assessment of the historical state and development trend in AFM1 scientific research can serve as a roadmap for future research and eventually, serve as a foundation for bettering management practices for territorial decisions, healthcare, and dairy industries.

3.
Open Vet J ; 14(2): 640-651, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549581

RESUMO

Background: The assessment of risks related to food safety is becoming a challenge in developing countries with its consequent health hazards. Chemical risk assessment in dairy products is important to maintain consumer health locally and internationally. Since milk and dairy products are essential foods for a wide range of customers, mostly children, patients, and pregnant women, it is very important to estimate the risks of some chemical residues, such as pesticides, some heavy metals, and aflatoxins. Aim: This work aims to determine the levels of chemical contamination in milk and traditional Egyptian cheese. Methods: Heavy metals were determined in samples by atomic absorption spectrometry. GC-mass spectrometry (MS)/MS and LC-MS/MS were also used for measuring pesticide residues. The Aflatoxin M1 was determined by enzyme-linked immune-sorbent assay. Results: Raw milk samples were tested and showed elevated concentrations of lead and cadmium, (46% and 4%, respectively). The heavy metals detected in the Egyptian cheese samples were variable depending on the type of cheese. Moreover, p.p.-DDE phenofose was present in 45% and 29% of raw milk and Ras cheese samples, respectively. For Aflatoxin M1, only 7% of milk samples and 2.9% of Ras cheese samples exceeded the acceptable limits. Conclusion: More surveying and risk assessment of chemical residues in milk and milk products are essential for controlling health risks to consumers.


Assuntos
Queijo , Metais Pesados , Gravidez , Feminino , Animais , Leite/química , Aflatoxina M1/análise , Egito , Cromatografia Líquida/veterinária , Contaminação de Alimentos/análise , Espectrometria de Massas em Tandem/veterinária , Metais Pesados/análise
4.
Toxicol Rep ; 12: 186-199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38313814

RESUMO

Wagashi is a West African type cottage cheese locally prepared from cow milk. Wagashi like other milk products, is prone to microbial contamination, particularly by fungi. Many of these fungal species produce mycotoxins which are of serious public health concern. This work aimed to update the mycoflora profile and determine the concentrations of aflatoxin M1 and its health risk characterization due to the consumption of wagashi. Culturing the wagashi on mycological media (Oxytetracycline Glucose Yeast Extract OGYE, Dichloran Rose Bengal Chloramphenicol DRBC) caused a de-novo growth of the quiescent spores at 28-30 °C for 5-7 days. The analysis of AFM1 levels in the samples was done using High-Performance Liquid Chromatography connected to a Fluorescence detector (HPLC-FLD). The exposure and risk assessment to the AFMI levels were determined using deterministic models prescribed by the European Food Safety Authority (EFSA). The fungal counts ranged between 2.36-4.30 log10 CFU/g. In total, thirteen (13) fungal species from eight (8) genera were isolated from all wagashi samples. They are; Fusarium oxysporum, Aspergillus flavus, Aspergillus niger, Fusarium verticillioides, Penicillium digitatum, Trichoderma harzianum, Aspergillus terreus, Rhodotorula mucilaginosa, Rhizopus stolonifer, Aspergillus fumigatus, Yeast sp., Mucor racemosus and Fusarium oligosporum belonging to the genera Fusarium, Aspergillus, Penicillium, Trichoderma, Rhodotorula, Rhizopus, Yeast, and Mucor. The AFM1 observed in the wagashi samples' analysis was low, ranging from 0.00 (Not Detected) ± 0.00 - 0.06 ± 0.002 µg/Kg. Risk assessments of AFM1 using deterministic models produced outcomes that ranged between 5.92 × 10-3- 0.14 ng/kg bw/day, 1.42 -44.35, 0-0.0323 ng aflatoxins/kg bw/day, and 1.51 × 10-3 - 9.69 × 10-4 cases/100,000 person/yr for estimated daily intake (EDI), margin of exposure (MOE), average potency, and cancer risks, respectively, for the age categories investigated. Fungal counts were interpreted as medium to high. It was also established that the consumption of wagashi may pose adverse health effects on all age categories in the selected zones of the study since all calculated MOE values were less than 100,000.

5.
Talanta ; 271: 125729, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306811

RESUMO

Given the highly mutagenic and carcinogenic nature of Aflatoxin M1 (AFM1), the quantity assessment of AFM1 residues in milk and dairy products is necessary to maintain consumer health and food safety. Herein, CRISPR-Cas12a-based colorimetric aptasensor was developed using the catalytic activity of flower-like nanozymes of MnO2 and trans-cleavage property of CRISPR-Cas12a system to quantitatively detect AFM1. The basis of the developed colorimetric aptasensor relies on whether or not the CRISPR-Cas12a system is activated, as well as the contrast in oxidase-mimicking capability exhibited by flower-like MnO2 nanozymes when AFM1 is absent or present. When AFM1 is not present in the sample, single-stranded DNA (ssDNA) is degraded by the activated CRISPR-Cas12a, and the solution turns into yellow due to the catalytic activity of the nanozymes. While, in the attendance of AFM1, ssDNA degradation does not occur due to the inactivation of the CRISPR-Cas12a. Therefore, with the adsorption of the ssDNA on the MnO2 nanozymes, their catalytic activity decreases, and the solution color becomes pale yellow due to less oxidation of the chromogenic substrate. In this aptasensor, the relative absorbance changes increased linearly from 6 to 160 ng L-1, and the detection limit was 2.1 ng L-1. The developed aptasensor displays a selective detection performance and a practical application for quantitative analysis of AFM1 in milk samples. The results of the introduced aptasensor open up the way to design other selective and sensitive aptasensors for the detection of other mycotoxins by substitution of the used sequences.


Assuntos
Aflatoxina M1 , Técnicas Biossensoriais , Aflatoxina M1/análise , Oxirredutases , Sistemas CRISPR-Cas , Colorimetria , Compostos de Manganês , Técnicas Biossensoriais/métodos , Óxidos
6.
Mycotoxin Res ; 40(2): 211-221, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38285127

RESUMO

Breast milk (BM) is considered as the best source of nutrition which could have prevention effects on various diseases in the first years of a child. Along with nutritive compounds, presence of contaminants such as mycotoxins in BM could be transmitted into neonate. The aim of this study was to determine the occurrence, levels, and factors associated with the presence of aflatoxin M1 (AFM1) and ocratoxin a (OTA) in BM samples of nursing mothers in rural centers of Yazd, Iran. The presence and average AFM1 and OTA concentration in 72 BM samples was measured by competitive ELISA. The demographic and diet parameters of nursing mothers were collected by a questionnaire and were analyzed using SPSS 18 software. AFM1 and OTA were detected in 63 (87.5%) and 47 (65.2%) samples with the mean concentration levels of 19.46 ± 13.26 ng/L (ranges from 5.1 to 53.9) and 200 ± 160 ng/L (ranges from 100 to 2460), respectively. Of these, 32 samples (50.7%) for AFM1 and 23 samples (48.9%) for OTA had values exceeding the limit set by the European Union regulation for infant foods (25 ng/L for AFM1 and 500 ng/L for OTA). It was also found that the risk of AFM1 and OTA occurrence in BM increased significantly with the consumption of beans, bread, cereals, fruit juice and crackers, and cream, respectively. This study showed that the estimated daily intake for AFM1 and OTA by 1 month of age infants was 2.7 and 28.5 ng/kg bw/day, respectively, while, as the age of the infant increased, the values were lower and close to 0.9 and 9.9 ng/kg bw/day for AFM1 and OTA in 12 months of age infants, respectively. The high occurrence and noticeable levels of AFM1 and OTA detected in this study indicated that some infants receive undesirable exposures to AFM1 and OTA with breast milk. Therefore, it is recommended that mothers are advised to avoid certain foods during pregnancy and breastfeeding that are likely sources of mycotoxins.


Assuntos
Aflatoxina M1 , Leite Humano , Ocratoxinas , População Rural , Aflatoxina M1/análise , Humanos , Irã (Geográfico) , Ocratoxinas/análise , Feminino , Adulto , Leite Humano/química , Medição de Risco , Adulto Jovem , Contaminação de Alimentos/análise , Lactente , Ensaio de Imunoadsorção Enzimática
7.
Toxicon ; 239: 107625, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38244865

RESUMO

Aflatoxin B1 (AFB1), a naturally-occurring mycotoxin, can cause severe toxicological and carcinogenic effects in livestock and humans. Given that the chicken is one of the most important food-producing animals, knowledge regarding AFB1 metabolism and enzymes responsible for AFB1 transformation in the chicken has important implications for chicken production and food safety. Previously, we have successfully expressed chicken CYP1A5 and CYP3A37 monooxygenases in E. coli, and reconstituted them into a functional CYP system consisting of CYP1A5 or CYP3A37, CPR and cytochrome b5. In this study, we aimed to investigate the roles of CYP1A5 and CYP3A37 in the bioconversion of AFB1 to AFM1. Our results showed that chicken CYP1A5 was able to hydroxylate AFB1 to AFM1. The formation of AFM1 followed the typical Michaelis-Menten kinetics. The kinetics parameters of Vmax and Km were determined as 0.83 ± 0.039 nmol/min/nmol P450 and 26.9 ± 4.52 µM respectively. Docking simulations further revealed that AFB1 adopts a "side-on" conformation in chicken CYP1A5, facilitating the hydroxylation of the C9a atom and the production of AFM1. On the other hand, AFB1 assumes a "face-on" conformation in chicken CYP3A37, leading to the displacement of the C9a atom from the heme iron and explaining the lack of AFM1 hydroxylation activity. The results demonstrate that chicken CYP1A5 possesses efficient hydroxylase activity towards AFB1 to form AFM1.


Assuntos
Aflatoxina B1 , Aflatoxina M1 , Hidrocarboneto de Aril Hidroxilases , Humanos , Animais , Aflatoxina B1/metabolismo , Aflatoxina M1/metabolismo , Galinhas/metabolismo , Escherichia coli/metabolismo
8.
Int J Biol Macromol ; 256(Pt 2): 127863, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952803

RESUMO

In view of the feed/foods inevitably contaminated by toxic and carcinogenic aflatoxin B1 (AFB1), efficient mesoporous metformin-chitosan/silica­cobalt ferrite nanospheres (Mt-CS/CFS NSs) was prepared to remove AFB1 from aqueous/non-aqueous media. The morphological, functional, and structural characteristics and adsorption properties of C/N-enriched CS/CFS were investigated systematically. The interactive operating variables (temperature (5.0-35 °C); time (10-100 min); AFB1 dose (50-100 µg/mL); and Mt-CS/CFS dosage (0.5-3.5 mg) were optimized via the Box-Behnken design (BBD), which demonstrated good agreement between the experimental data and proposed model. The adsorption efficiency in artificially contaminated cow's milk as well as aqueous environment reached over 91.0 % in a wide pH range (3.0-9.0), without significant change in the nutritional value of milk. Freundlich isotherm and second-order adsorption kinetics were regarded as the most suitable models to fit the adsorption results, and the adsorption rate is dominated by the intra-particle diffusion and boundary layer diffusion. Thermodynamic analyses proved that the process was spontaneous and exothermic. The adsorption mechanism could be explained as physisorption via hydrogen bonding, n-π interaction, and hydrophobic/hydrophilic interactions. The porous Mt-CS/CFS NS derived from chitosan nanoparticles is therefore outstanding adsorbent, offering great adsorptive performance and recycabilities, which impedes economic losses in the food industry.


Assuntos
Quitosana , Cobalto , Compostos Férricos , Nanosferas , Poluentes Químicos da Água , Animais , Aflatoxina B1 , Quitosana/química , Leite , Concentração de Íons de Hidrogênio , Nitrogênio , Termodinâmica , Adsorção , Cinética , Poluentes Químicos da Água/química , Água/química
9.
Toxicon ; 237: 107530, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008384

RESUMO

AIM AND BACKGROUND: Aflatoxins, produced by Aspergillus flavus and Aspergillus parasiticus, are among the most toxic mycotoxins. Aflatoxin M1 (AFM1) is a hydroxylated metabolite of aflatoxin B1 (AFB1), found in milk and dairy products from animals fed AFB1-contaminated feed. Consumption of AFM1 has related adverse effects on human health. Breast milk can be a source of contamination for infants due to the presence of AFM. AFM1 can also contaminate powdered milk, a significant product of the milk industry. Consequently, monitoring dairy products for these toxins is imperative. STUDY METHOD: A total of 50 samples (25 samples of breast milk and 25 samples of powdered infant milk formula) were collected in Tehran from December 2021 to February 2022. HPLC method was used for the determination of AFM1 in samples. RESULTS: and Discussion: AFM1 was detected in 72% of breast milk samples and 96% of powdered milk samples. AFM1 levels varied significantly between the two sample types (p < 0.05). The average amount of AFM1 in breast milk samples was 25.82 ± 4.72 ng/kg, while the average amount in powdered milk samples was 40.59 ± 7.76 ng/kg. Moreover, 44% of the breast and 68% of powdered milk samples exceeded the AFM1 content limit of the European Union and the Iranian national standard. This study concludes that given the importance of breast milk and formula to maternal and infant health, monitoring and regulating the toxin levels in these products in Tehran is crucial.


Assuntos
Aflatoxinas , Leite , Humanos , Feminino , Lactente , Animais , Leite/química , Aflatoxina M1 , Irã (Geográfico) , Contaminação de Alimentos/análise , Leite Humano , Aflatoxinas/análise , Aflatoxina B1/análise
10.
Immunopharmacol Immunotoxicol ; 46(2): 199-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151925

RESUMO

CONTEXT: Aflatoxins are the most harmful mycotoxins that cause human and animal health concerns. Aflatoxin M1 (AFM1) is the primary hydroxylated metabolite of aflatoxin B1 and is linked to the development of hepatocellular carcinoma and immunotoxicity in humans and animals. Because of the important role of dairy products in human life, especially children, AFM1 is such a major concern to humans because of its frequent occurrence in dairy products at concentrations high enough to cause adverse effects to human and animal health. Reduced its bioavailability becomes a high priority in order to protect human and animal health. OBJECTIVES: This study aimed to investigate, in vivo, the ability of lactic acid bacteria (lactobacillus rhamnosus GAF01, LR) and clay mineral (bentonite, BT) mixture to mitigate/reduce AFM1-induced immunotoxicity, hepatotoxicity, nephrotoxicity and oxidative stress in exposed Balb/c mice. MATERIALS AND METHODS: The in vivo study was conducted using male Balb/c mice that treated, orally, by AFM1 alone or in combination with LR and/or BT, daily for 10 days as follows: group 1 control received 200 µl of PBS, group 2 treated with LR alone (2.108 CFU/mL), group 3 treated with BT alone (1 g/kg bw), group 4 treated with AFM1 alone (100 µg/kg), group 5 co-treated with LR + AFM1, group 6 co-treated with BT + AFM1, group 7 co-treated with BT + LR + AFM1. Forty-eight h after the end of the treatment, the mice were sacrificed and the blood, spleen, thymus, liver and kidney were collected. The blood was used for biochemical and immunological study. Spleen and thymus samples were used to thymocytes and splenocytes assessments. Liver and kidney samples were the target for evaluation of oxidative stress enzymes status and for histological assays. RESULTS: The results showed that AFM1 caused toxicities in male Blab/c mice at different levels. Treatment with AFM1 resulted in severe stress of liver and kidney organs indicated by a significant change in the biochemical and immunological parameters, histopathology as well as a disorder in the profile of oxidative stress enzymes levels. Also, it was demonstrated that AFM1 caused toxicities in thymus and spleen organs. The co-treatment with LR and/or BT significantly improved the hepatic and renal tissues, regulated antioxidant enzyme activities, spleen and thymus viability and biochemical and immunological parameters. LR and BT alone showed to be safe during the treatment. CONCLUSION: In summary, the LR and/or BT was able to reduce the biochemical, histopathological and immunological damages induced by AFM1 and indeed it could be exploited as one of the biological strategies for food and feedstuffs detoxification.


Assuntos
Lactobacillales , Humanos , Criança , Masculino , Camundongos , Animais , Lactobacillales/metabolismo , Argila , Camundongos Endogâmicos BALB C , Aflatoxina M1/toxicidade , Aflatoxina M1/metabolismo , Aflatoxina B1/toxicidade , Minerais/toxicidade , Contaminação de Alimentos
11.
J Dairy Sci ; 107(5): 2748-2759, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101746

RESUMO

A novel ratiometric electrochemical aptasensor based on split aptamer and Au-reduced graphene oxide (Au-rGO) nanomaterials was proposed to detect aflatoxin M1 (AFM1). In this work, Au-rGO nanomaterials were coated on the electrode through the electrodeposition method to increase the aptamer enrichment. We split the aptamer of AFM1 into 2 sequences (S1 and S2), where S1 was immobilized on the electrode due to the Au-S bond, and S2 was tagged with methylene blue (MB) and acted as a response signal. A complementary strand to S1 (CS1) labeled with ferrocene (Fc) was introduced as another reporter. In the presence of AFM1, CS1 was released from the electrode surface due to the formation of the S1-AFM1-S2 complex, leading to a decrease in Fc and an increase in the MB signal. The developed ratiometric aptasensor exhibited a linear range of 0.03 µg L-1 to 2.00 µg L-1, with a detection limit of 0.015 µg L-1 for AFM1 detection. The ratiometric aptasensor also showed a linear relationship from 0.2 µg L-1 to 1.00 µg L-1, with a detection limit of 0.05 µg L-1 in natural milk after sample pretreatment, indicating the successful application of the developed ratiometric aptasensor. Our proposed strategy provides a new way to construct aptasensors with high sensitivity and selectivity.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Compostos Ferrosos , Grafite , Metalocenos , Animais , Aflatoxina M1/análise , Aptâmeros de Nucleotídeos/química , Grafite/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/veterinária , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/veterinária , Limite de Detecção
12.
Food Sci Nutr ; 11(11): 7100-7108, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970428

RESUMO

This study aimed to investigate Aflatoxin-M1 (AFM1) contamination in pasteurized and raw milk samples consumed in Kerman and Rafsanjan in southeastern Iran. In this cross-sectional study, a total of 100 samples of raw (n = 67) and pasteurized (n = 33) milk were randomly collected from retail stores, supermarkets, and milk transport tankers in the winter of 2020 and the summer of 2021. The level of AFM1 contamination in the collected samples was evaluated by high-performance liquid chromatography with fluorescence detection (HPLC-FD). AFM1 was detected in 95% of samples and its median concentration was 17.38 ng/L. The median concentration of AFM1 in the pasteurized milk samples (24.89 ng/L) was significantly higher than in the raw milk samples (13.54 ng/L). The AFM1 contamination level in 20% (raw = 13% and pasteurized = 7%) of the samples was higher than the maximum permitted level (MPL) recommended by the European Union (i.e., 50 ng/L), whilst 4% (raw = 3% and pasteurized = 1%) of the samples was higher than the Iranian maximum standard limit (i.e., 100 ng/L). The hazard index (HI) was higher than 1 in 16%, 18%, and 35% of total milk samples for men, women, and children, respectively. The AFM1 contamination level in the milk samples collected in southeastern Iran was worrying. The margin of exposure (MoE) values were lower than 10,000 for children. Because aflatoxins are among the most potent carcinogens known, prevention of milk contamination in all stages from the farm to the table can considerably reduce the community's exposure to AFM1 and its consequent health risks.

13.
Heliyon ; 9(9): e19679, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809415

RESUMO

Cheese is popular in Iran because of its high nutritional value; therefore, it is necessary to control this product regarding health risk factors, particularly aflatoxin M1 (AFM1). This research reviewed AFM1 in various varieties of cheese in Iran to assess the potential health risks associated with consuming these products for different age groups. In this regard, all accessible papers from different databases were screened between June 27, 2000 and October 10, 2022 b y systematic research and then considering the selection criteria of the studies; finally, 22 articles were selected for the current review. The amount and prevalence of AFM1 were calculated and separated based on the cheese variety, and the sampling location; health risk assessment (HRA), statistical, uncertainty, and sensitivity analysis for AFM1 of cheese for different age groups were performed. The study results for 2143 samples showed that the overall average AFM1 for cheese is 160 ± 175 ng/kg, below the European Commission (EC) regulation (250 ng/kg). AFM1 contaminated 72.42% of all cheese samples, and 13% of these contaminated samples had a higher AFM1 than the EC regulation. Cheese varieties were ranked based on average levels of AFM1 as white pasteurized > traditional > creamy > probiotic > Lighvan, and this ranking was obtained based on sampling locations as market > dairy factories > livestock farms. Based on the HRAs, from the perspective of the liver cancer risk (LCR), the margin of exposure (MOE), and the hazard index (HI) approach, it can be concluded that cheese produced in Iran, in terms of AFM1, particularly for children, poses serious health risks. Accordingly, it is imperative to carefully consider implementing suitable management methods to inhibit the growth of aflatoxin B1 (AFB1) in livestock fodder, and training in sanitary production and processing of dairy products according to world standards is suggested for industrial and traditional cheese producers across Iran.

14.
J Biomol Struct Dyn ; : 1-11, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817538

RESUMO

The aim of this work was to evaluate interaction between aflatoxin M1 (AFM1) and structural models of ß-lactoglobulin (ß-LG) at pH 4.0 and 6.5. This information would provide an explanation of the variability in AFM1 during cheese production. Once ß-LG models were optimized using molecular dynamic (MD) simulation, it was found that a region of the Calyx cavity underwent conformational changes, at the E-F loop, from the closed conformation at pH 6.5 to the open at pH 4.0. No differences in Site C conformation were observed at both pH. The binding free energy (ΔGb) of the ß-LG-AFM1 complexes at the different pHs were determined by molecular docking. The ΔGb values obtained for the Calyx cavity showed that at pH 4.0 there is a more stable complex formation compared to pH 6.5 with values of -42.6 and -32.0 kJ mol-1, respectively. On the contrary, in the complexes formed in Site C at both pH´s there were no differences. Likewise, the ΔGb in the dimer interface was evaluated, obtaining a value of -29.3 kJ mol-1, like those obtained at Site C. In addition, by the MD simulations of the ß-LG-AFM1 complexes, it was observed that at acidic pH the binding of AFM1 with ß-LG is more stable. In conclusion, the computational tools showed that the most stable complex was formed at the Calyx cavity at pH 4.0. This suggests that during cheese production using acidic coagulation, the whey proteins show higher affinity toward AFM1 which may explain the observed variability of mycotoxin.Communicated by Ramaswamy H. Sarma.

15.
Toxins (Basel) ; 15(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37755944

RESUMO

Milk is a staple food that is essential for human nutrition because of its high nutrient content and health benefits. However, it is susceptible to being contaminated by Aflatoxin M1 (AFM1), which is a toxic metabolite of Aflatoxin B1 (AFB1) presented in cow feeds. This research investigated AFM1 in Tunisian raw cow milk samples. A total of 122 samples were collected at random from two different regions in 2022 (Beja and Mahdia). AFM1 was extracted from milk using the QuEChERS method, and contamination amounts were determined using liquid chromatography (HPLC) coupled with fluorescence detection (FD). Good recoveries were shown with intra-day and inter-day precisions of 97 and 103%, respectively, and detection and quantification levels of 0.003 and 0.01 µg/L, respectively. AFM1 was found in 97.54% of the samples, with amounts varying from values below the LOQ to 197.37 µg/L. Lower AFM1 was observed in Mahdia (mean: 39.37 µg/L), respectively. In positive samples, all AFM1 concentrations exceeded the EU maximum permitted level (0.050 µg/L) for AFM1 in milk. In Tunisia, a maximum permitted level for AFM1 in milk and milk products has not been established. The risk assessment of AFM1 was also determined. Briefly, the estimated intake amount of AFM1 by Tunisian adults through raw cow milk consumption was 0.032 µg/kg body weight/day. The Margin of Exposure (MOE) values obtained were lower than 10,000. According to the findings, controls as well as the establishment of regulations for AFM1 in milk are required in Tunisia.

16.
J Hazard Mater ; 460: 132438, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666170

RESUMO

Aflatoxin M1 (AFM1) is highly toxic, widely distributed, and difficult to monitor, posing a serious threat to human health. Therefore, a highly sensitive, rapid, convenient, and low-cost detection method must be urgently established. In this study, a triple strategy-enhanced immunochromatographic assay (ICA) was developed to satisfy these detection requirements. First, a turn-on signal output mode of the fluorescence quenching ICA substituted the turn-off mode of the traditional ICA for sensitive response to trace AFM1, with the limit of detection (LOD) reduced by approximately 4.9-fold. Then, a novel Au and polydopamine (PDA) cogrowth chrysanthemum-like blackbody was prepared as the quenching probe to reduce the background signal. This probe combined the excellent properties of Au nanoparticles with PDA. Thus, its fluorescence quenching constant was higher than that of single Au and PDA nanoparticles by 25.8- and 4.9-fold, respectively. Furthermore, an aggregation-induced emission fluorescence microsphere with a 5.7-fold higher relative quantum yield than a commercial fluorescence microsphere was selected as the signal output carrier to improve the signal-to-noise ratio. The integration of the above triple strategies established a 53.4-fold sensitivity-enhanced fluorescence quenching ICA (LOD = 0.9 pg/mL) for detecting AFM1 in milk, providing a strong technical guarantee for the safety monitoring of milk products.


Assuntos
Aflatoxina M1 , Nanopartículas Metálicas , Humanos , Ouro , Limite de Detecção , Imunoensaio
17.
Ecotoxicol Environ Saf ; 264: 115428, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688864

RESUMO

Food safety can be seriously threatened by the existence of both aflatoxin M1 (AFM1) and ochratoxin A (OTA) in milk and corresponding products. The importance of intestine integrity in preserving human health is widely understood in vitro, but the fundamental processes by which AFM1 and OTA cause disruption of the intestinal barrier are as yet unknown, especially in vivo. Based on the analysis of the whole transcriptome of BALB/c mice, the competing endogenous RNA (ceRNA) regulation network was obtained in the current study. Each of 12 mice were separated into five treatments: saline solution treatment, 1.0% DMSO vehicle control treatment, 3.0 mg/kg b.w. individual AFM1 treatment (AFM1), 3.0 mg/kg b.w. individual OTA treatment (OTA), and combined mycotoxins treatment (AFM1 +OTA). The study period lasted 28 days. The jejunum tissue was collected for the histological assessment and whole transcriptome analysis, and the whole blood was collected, and determination of serum biochemical indicators. The phenotypic results demonstrated that AFM1 and OTA caused intestinal barrier disruption via an increased apoptosis level and decreased expression of tight junction (TJ) proteins. The ceRNA network demonstrated that AFM1 and OTA induced cell apoptosis through activating the expression of DUSP9 and suppressing the expression of PLA2G2D, which were regulated by differentially expressed microRNAs (DEmiRNAs) (miR-124-y, miR-194-z, miR-224-x, and miR-452-x) and differentially expressed long non-coding RNAs (DElncRNAs) (FUT8 and GPR31C). And AFM1 and OTA decreased TJ proteins via inhibiting the expression of PAK6, which was regulated by several important DEmiRNAs and DElncRNAs. These DE RNAs in intestinal integrity were involved in MAPK and Ras signaling pathway. Overall, our findings expand the current knowledge regarding the potential mechanisms of intestinal integrity disruption brought on by AFM1 and OTA in vivo.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , Aflatoxina M1/toxicidade , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Intestinos , RNA Longo não Codificante/genética
18.
Life (Basel) ; 13(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37629525

RESUMO

Milk contaminated with aflatoxin can lead to liver cancer. Aflatoxin B1 (AFB1), a serious animal feed contaminant, is transformed into Aflatoxin M1 (AFM1) and secreted in milk. In this study, a biological method using probiotic bacteria, Lactobacillus rhamnosus (L. rhamnosus) in combination with Saccharomyces cerevisiae (S. cerevisiae), was used to assess their antiaflatoxigenic effect in animal milk. A Box-Behnken design was used to establish the optimal ratio of L. rhamnosus and S. cerevisiae, incubation time, and temperature for efficient AFM1 detoxification from milk. To achieve this, the primary, interaction, and quadratic effects of the chosen factors were investigated. To investigate the quadratic response surfaces, a second-order polynomial model was built using a three-factor, three-level Box-Behnken design. The quantity of AFM1 was detected by the ELISA technique. The results of these experiments obtained an optimum condition in AFM1 detoxification of the three tested factors in order to maximize their effect on AFM1 detoxification in milk. The model was tested in three highly contaminated milk samples to assure the efficacy of the model. AFM1 detoxification was up to 98.4% in contaminated milk samples. These promising results provide a safe, low-cost, and low-time-consuming solution to get rid of the problem of milk contamination with AFM1.

19.
Foods ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444259

RESUMO

The increasing incidence of diseases caused by highly carcinogenic aflatoxin M1 (AFM1) in food demands a simple, fast, and cost-effective detection technique capable of sensitively monitoring AFM1. Recent works predominantly focus on the electrochemical aptamer-based biosensor, which still faces challenges and high costs in experimentally identifying an efficient candidate aptamer. However, the direct electrochemical detection of AFM1 has been scarcely reported thus far. In this study, we observed a significant influence on the electrochemical signals of ferric ions at a gold nanoparticle-modified glassy carbon electrode (AuNPs/GCE) by adding varying amounts of AFM1. Utilizing ferricyanide as a sensitive indicator of AFM1, we have introduced a novel approach for detecting AFM1, achieving an unprecedentedly low detection limit of 1.6 × 10-21 g/L. Through monitoring the fluorescence quenching of AFM1 with Fe3+ addition, the interaction between them has been identified at a ratio of 1:936. Transient fluorescence analysis reveals that the fluorescence quenching process is predominantly static. It is interesting that the application of iron chelator diethylenetriaminepentaacetic acid (DTPA) cannot prevent the interaction between AFM1 and Fe3+. With a particle size distribution analysis, it is suggested that a combination of AFM1 and Fe3+ occurs and forms a polymer-like aggregate. Nonetheless, the mutual reaction mechanism between AFM1 and Fe3+ remains unexplained and urgently necessitates unveiling. Finally, the developed sensor is successfully applied for the AFM1 test in real samples, fully meeting the detection requirements for milk.

20.
Reprod Toxicol ; 120: 108437, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422138

RESUMO

Aflatoxins are considered as reproductive toxins for mammalian species. Here, we studied the effect of aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) on the development and morphokinetics of bovine embryos. Cumulus oocyte complexes (COCs) were matured with AFB1 (0.032, 0.32, 3.2, 32 µM) or AFM1 (0.015, 0.15, 1.5, 15, 60 nM), then fertilized and the putative zygotes were cultured in an incubator equipped with a time-lapse system. Exposing COCs to 32 µM AFB1 or 60 nM AFM1 reduced the cleavage rate, whereas exposing them to 3.2 or 32 µM AFB1 further reduced the blastocyst formation. A delay was recorded for the first and second cleavages in a dose-dependent manner for both AFB1- and AFM1-treated oocytes. A delay was recorded in the third cleavage in the AFM1-treated group. To explore potential mechanisms, subgroups of COCs were examined for nuclear and cytoplasmic maturation (n = 225; DAPI and FITC-PNA, respectively), and mitochondrial function was examined in a stage-dependent manner. COCs were examined for their oxygen consumption rates (n = 875; Seahorse XFp analyzer) at the end of maturation, MII-stage oocytes were examined for their mitochondrial membrane potential (n = 407; JC1), and putative zygotes were examined using a fluorescent time-lapse system (n = 279; IncuCyte). Exposing COCs to AFB1 (3.2 or 32 µM) impaired oocyte nuclear and cytoplasmic maturation and increased mitochondrial membrane potential in the putative zygotes. These alterations were associated with changes in the expression of mt-ND2 (32 µM AFB1) and STAT3 (all AFM1 concentrations) genes in the blastocyst stage, suggesting a carryover effect from the oocyte to the developing embryos.


Assuntos
Aflatoxina B1 , Aflatoxinas , Bovinos , Animais , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Oócitos , Aflatoxinas/metabolismo , Aflatoxinas/farmacologia , Desenvolvimento Embrionário , Blastocisto , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...