Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 674: 766-777, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955008

RESUMO

Plasmon-mediated chemical reactions (PMCR) have garnered growing interest as a promising concept for photocatalysis. However, in electrochemical systems at solid-liquid interfaces, the photo-induced charge transfer on the surface of metal-semiconductor heterostructures involves complex processes and mechanisms, which are still poorly understood. We explore the plasmon-mediated carrier transfer mechanism and the synergistic effect of light and electric fields on Ag-TiO2 heterostructures, through a combination of electrochemical surface-enhanced Raman spectroscopy and photoelectrochemical methods, with para-aminothiophenol (PATP) serving as a probe molecule. The results show that photocurrent responses are dependent on not only excitation wavelengths and applied potentials, but also the irreversibility of redox. The relationship between photocurrent responses and the chemical transformation between PATP and 4,4'-dimercaptoazobenzene is established, reflecting the photo-induced charge transfer of the heterostructures. The collaboration of spectroscopic and photoelectrochemical methods provide valuable insights into the chemical transformation and kinetic information of adsorbed molecules on the heterostructure during PMCR, offering opportunities for modulating of photocatalytic activities of hot carriers.

2.
Adv Sci (Weinh) ; : e2405160, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049682

RESUMO

Binocular stereo vision relies on imaging disparity between two hemispherical retinas, which is essential to acquire image information in three dimensional environment. Therefore, retinomorphic electronics with structural and functional similarities to biological eyes are always highly desired to develop stereo vision perception system. In this work, a hemispherical optoelectronic memristor array based on Ag-TiO2 nanoclusters/sodium alginate film is developed to realize binocular stereo vision. All-optical modulation induced by plasmonic thermal effect and optical excitation in Ag-TiO2 nanoclusters is exploited to realize in-pixel image sensing and storage. Wide field of view (FOV) and spatial angle detection are experimentally demonstrated owing to the device arrangement and incident-angle-dependent characteristics in hemispherical geometry. Furthermore, depth perception and motion detection based on binocular disparity have been realized by constructing two retinomorphic memristive arrays. The results demonstrated in this work provide a promising strategy to develop all-optically controlled memristor and promote the future development of binocular vision system with in-sensor architecture.

3.
J Biomater Sci Polym Ed ; 35(11): 1609-1630, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38652755

RESUMO

Titanium (Ti) implants are widely used in orthopedic and dental applications due to their excellent biocompatibility and mechanical properties. However, bacterial adhesion and subsequent biofilm formation on implant surfaces pose a significant risk of postoperative infections and complications. Conventional surface modifications often lack long-lasting antibacterial efficacy, necessitating the development of novel coatings with enhanced antimicrobial properties. This study aims to develop a novel Ag-TiO2-OTS (Silver-Titanium dioxide-Octadecyltrichlorosilane, ATO) nanocomposite coating, through a chemical plating method. By employing a 'resist-killing-disintegrate' approach, the coating is designed to inhibit bacterial adhesion effectively, and facilitate pollutant removal with lasting effects. Characterization of the coatings was performed using spectroscopy, electron microscopy, and contact angle analysis. Antibacterial efficacy, quantitatively evaluated against E. coli and S. aureus over 168 h, showed a significant reduction in bacterial adhesion by 76.6% and 66.5% respectively, and bacterial removal rates were up to 83.8% and 73.3% in comparison to uncoated Ti-base material. Additionally, antibacterial assays indicated that the ratio of the Lifshitz-van der Waals apolar component to electron donor surface energy components significantly influences bacterial adhesion and removal, underscoring a tunable parameter for optimizing antibacterial surfaces. Biocompatibility assessments with the L929 cell line revealed that the ATO coatings exhibited excellent biocompatibility, with minimal cytotoxicity and no significant impact on cell proliferation or apoptosis. The ATO coatings provided a multi-functionality surface that not only resists bacterial colonization but also possesses self-cleaning capabilities, thereby marking a substantial advancement in the development of antibacterial coatings for medical implants.


Assuntos
Antibacterianos , Aderência Bacteriana , Materiais Revestidos Biocompatíveis , Escherichia coli , Nanocompostos , Próteses e Implantes , Prata , Staphylococcus aureus , Titânio , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Nanocompostos/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Propriedades de Superfície , Silanos/química , Silanos/farmacologia , Biofilmes/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Teste de Materiais , Animais
4.
Nanomaterials (Basel) ; 14(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38607176

RESUMO

Polyaniline (PANI) constitutes a very propitious conductive polymer utilized in several biomedical, as well as environmental applications, including tissue engineering, catalysis, and photocatalysis, due to its unique properties. In this study, nano-PANI/N-TiO2 and nano-PANI/Ag-TiO2 photocatalytic composites were fabricated via aniline's oxidative polymerization, while the Ag-and N-chemically modified TiO2 nanopowders were synthesized through the sol-gel approach. All produced materials were fully characterized. Through micro-Raman and FT-IR analysis, the co-existence of PANI and chemically modified TiO2 particles was confirmed, while via XRD analysis the composites' average crystallite size was determined as ≈20 nm. The semi-crystal structure of polyaniline exhibits higher photocatalytic efficiency compared to that of other less crystalline forms. The spherical-shaped developed materials are innovative, stable (zeta potential in the range from -26 to -37 mV), and cost-effective, characterized by enhanced photocatalytic efficiency under visible light (energy band gaps ≈ 2 eV), and synthesized with relatively simple methods, with the possibility of recycling and reusing them in potential future applications in industry, in wastewater treatment as well as in biomedicine. Thus, the PANI-encapsulated Ag and N chemically modified TiO2 nanocomposites exhibit high degradation efficiency towards Rhodamine B dye upon visible-light irradiation, presenting simultaneously high biocompatibility in different normal cell lines.

5.
Materials (Basel) ; 17(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591467

RESUMO

The objective of this research was to develop a surface modification for the NiTi shape memory alloy, thereby enabling its long-term application in implant medicine. This was achieved through the creation of innovative multifunctional hybrid layers comprising a nanometric molecular system of silver-rutile (Ag-TiO2), known for its antibacterial properties, in conjunction with bioactive submicro- and nanosized hydroxyapatite (HAp). The multifunctional, continuous, crack-free coatings were produced using the electrophoretic deposition method (EPD) at 20 V/1 min. Structural and morphological analyses through Raman spectrometry and scanning electron microscopy (SEM) provided comprehensive insights into the obtained coating. The silver within the layer existed in the form of nanometric silver carbonates (Ag2CO3) and metallic nanosilver. Based on DTA/TG results, dilatometric measurements, and high-temperature microscopy, the heat treatment temperature for the deposited layers was set at 800 °C for 2 h. The procedures applied resulted in the creation of a new generation of materials with a distinct structure compared with the initial nanopowders. The resulting composite layer, measuring 2 µm in thickness, comprised hydroxyapatite (HAp), apatite carbonate (CHAp), metallic silver, silver oxides, Ag@C, and rutile exhibiting a defective structure. This structural characteristic contributes significantly to its heightened activity, influencing both bioactivity and biocompatibility properties.

6.
Materials (Basel) ; 17(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673148

RESUMO

In this study, pure TiO2 gels were synthesized by applying the sol-gel method, using Ti(IV) butoxide with the addition of two different solvents, namely ethylene glycol (EG) and isopropanol (isop), with only air moisture present. It was established using XRD that the gel prepared with the addition of EG was amorphous even at 400 °C, while the other gel was amorphous up to 300 °C. It was found that TiO2 (anatase) had a dominant crystalline phase during heating to 600 °C, while at 700 °C, TiO2 (rutile) appeared. The as-obtained powdered materials were annealed at 500 °C and subsequently underwent photocatalytic tests with paracetamol. Additionally, the TiO2 samples were modified with Ag+ co-catalysts (10-2 M), using photofixation by UV illumination. The photocatalytic activity of the Ag-modified powders was also tested in the photodegradation of a commonly used paracetamol in aqueous solution under UV light illumination. The obtained data exhibited that the annealed samples had better photocatalytic efficiency and decomposed paracetamol faster in comparison to the non-annealed sol-gel powders. The highest degradation efficiency was observed for the TBT/isop/Ag material, with degradation efficiencies average values of 65.59% and 75.61% paracetamol achieved after the third cycle of photocatalytic treatment. The co-catalytically modified powders had higher photocatalytic efficiency in comparison to the pure nanosized powders. Moreover, the sol-gel powders of TBT/EG, TBT/EG/Ag (10-2 M), TBT/isop, and TBT/isop/Ag (10-2 M) demonstrated the ability to retain their photocatalytic activity even after three cycles of use, suggesting that they could find practical use in the treatment of pharmaceutical wastewater. The observed photocatalytic efficiency and positive impact of silver make the prepared powders a desirable choice for pharmaceutical drug degradation, helping to promote environmentally friendly and effective wastewater treatment technology.

7.
Environ Sci Pollut Res Int ; 31(3): 4640-4653, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38105328

RESUMO

Water contamination by organic pollutants is a serious environmental problem. 4-Nitrophenol (4-NP) is a potentially harmful chemical, which is commonly present in industrial effluents and can severely damage human health. Photocatalytic reduction of hazardous 4-NP by nano-sized materials to produce 4-aminophenol (4-AP), which is a commercially valuable product, is a promising alternative as the process is framed within the circular economy. In this context, Ag-doped TiO2 (AT) catalysts were synthesized by liquid impregnation and reduction techniques, and their structure, morphology, elemental composition, textural, and light absorption properties were evaluated by XRD, Raman spectroscopy, SEM, TEM, EDS, BET, and DRS spectroscopy. AT catalysts exhibited an enhanced photocatalytic reduction of 4-NP into 4-aminophenol (4-AP) in the presence of NaBH4. Among the tested catalysts, AT21 prepared by a simple aqueous reduction method showed the highest activity reaching about 98% 4-NP reduction within 10 min. Antibacterial tests of these catalysts against Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa revealed that AT21 also exhibited the lowest minimum inhibitory concentration, suggesting that it has the strongest antibacterial activity. These findings suggest that AT21 catalyst with improved catalytic and antibacterial properties can potentially be utilized for the remediation of 4-NP-contaminated water environment.


Assuntos
Aminofenóis , Antibacterianos , Nitrofenóis , Análise Espectral Raman , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Água , Catálise
8.
Heliyon ; 9(11): e21752, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027729

RESUMO

Post-harvest losses of fruits and vegetables account for a large share of food waste in the world due to improper handling and packaging. By using the sol-gel method, Ag/TiO2 nanocomposite was prepared in this study from micro-sized commercial TiO2 powder and incorporated in a chitosan-cellulose matrix for the purpose of promising food packaging. The particle size and distribution of Ag nanoparticles (9.2437 nm size) confirmed their successful inclusion in the TiO2 surface. The morphology of the package assured the successful and uniform disbursement of Ag/TiO2 nanocomposite into the chitosan-cellulose matrix, which led to enhanced water resistance and photocatalytic activity. The developed package is proficient in hindering the growth of fecal coliform bacteria (Esche (Escherichia coli) by 9 mm in the agar plate. Moreover, the efficient application of chitosan-Ag/TiO2 nanocomposite in food coating and packaging was examined in extending shelf life, minimizing water loss, and preventing microbial infection during the storage of chili (up to 7 days at 37 °C) and banana, respectively. It can be concluded from the results that chitosan-Ag/TiO2 nanocomposite-based food coating and packaging have competent potential for enhancing the shelf life of moist foods.

9.
Materials (Basel) ; 16(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687423

RESUMO

Dye-sensitized solar cells (DSSCs) have emerged as a potential candidate for third-generation thin film solar energy conversion systems because of their outstanding optoelectronic properties, cost-effectiveness, environmental friendliness, and easy manufacturing process. The electron transport layer is one of the most essential components in DSSCs since it plays a crucial role in the device's greatest performance. Silver ions as a dopant have drawn attention in DSSC device applications because of their stability under ambient conditions, decreased charge recombination, increased efficient charge transfer, and optical, structural, and electrochemical properties. Because of these concepts, herein, we report the synthesis of pristine TiO2 using a novel green modified solvothermal simplistic method. Additionally, the prepared semiconductor nanomaterials, Ag-doped TiO2 with percentages of 1, 2, 3, and 4%, were used as photoanodes to enhance the device's performance. The obtained nanomaterials were characterized using XRD, FTIR, FE-SEM, EDS, and UV-vis techniques. The average crystallite size for pristine TiO2 and Ag-doped TiO2 with percentages of 1, 2, 3, and 4% was found to be 13 nm by using the highest intensity peaks in the XRD spectra. The Ag-doped TiO2 nanomaterials exhibited excellent photovoltaic activity as compared to pristine TiO2. The incorporation of Ag could assist in successful charge transport and minimize the charge recombination process. The DSSCs showed a Jsc of 8.336 mA/cm2, a Voc of 698 mV, and an FF of 0.422 with a power conversion efficiency (PCE) of 2.45% at a Ag concentration of 4% under illumination of 100 mW/cm2 power with N719 dye, indicating an important improvement when compared to 2% Ag-doped (PCE of 0.97%) and pristine TiO2 (PCE of 0.62%).

10.
Environ Sci Pollut Res Int ; 30(43): 97660-97672, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37596483

RESUMO

Graphene oxide (GO) has now emerged as one of the most promising materials in different areas such as photocatalysis, adsorption, and energy storage due to its high surface area, unique layered structure, etc. Among various types of precursors, anthracite coal has attracted a lot of attention nowadays as it affords GO a high concentration of sp2 carbons resulting in high conductivity and superior absorbance in the visible region. In this report, we have prepared GO-TiO2 nanocomposites as it is supposed to possess high photocatalytic activity owing to facile electron transmission from the conduction band of TiO2 to the GO surface resulting in a much lower degree of electron-hole pair recombination. To boost the photocatalytic activity further, TiO2 was coated with Ag nanoparticles as well. These hybrid structures were characterized by different analytical techniques, for example, XRD, HR-TEM, SEM, and Raman spectroscopy. The XRD pattern of these composites consists of characteristic peaks corresponding to GO, TiO2, and Ag. The HR-TEM studies confirm the presence of GO layers, cube-shaped TiO2, and spherical Ag nanoparticles. Phenol and 4-nitrophenol have been used as model pollutants to evaluate the photooxidation efficiencies under both UV and visible light irradiation. Under UV irradiation, the GO/Ag-TiO2 ternary nanocomposite shows better photooxidation efficiency (62%) compared to Ag-TiO2 (38%), GO-TiO2 (9%), GO (17%), and TiO2 (8%) toward phenol degradation. The GO/Ag-TiO2 is also having the highest photocatalytic activity toward the removal of phenol under visible light irradiation (34%). The ternary heterostructure (85%) also possesses superior photooxidation activity compared to Ag-TiO2 (44%) and GO-TiO2 (71%) toward the degradation of p-nitrophenol under UV light radiation for 60 min. The above observation reveals that the cooperative effect of Ag, TiO2, and GO is playing a crucial role to result in the high photooxidation activity of the GO/Ag-TiO2 hetero-nanocomposites.


Assuntos
Nanopartículas Metálicas , Prata , Fenóis , Carvão Mineral
11.
Materials (Basel) ; 16(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37570204

RESUMO

In this study, heterostructured g-C3N4/Ag-TiO2 nanocomposites were successfully fabricated using an easily accessible hydrothermal route. Various analytical tools were employed to investigate the surface morphology, crystal structure, specific surface area, and optical properties of as-synthesized samples. XRD and TEM characterization results provided evidence of the successful fabrication of the ternary g-C3N4/Ag-TiO2 heterostructured nanocomposite. The heterostructured g-C3N4/Ag-TiO2 nanocomposite exhibited the best degradation efficiency of 98.04% against rhodamine B (RhB) within 180 min under visible LED light irradiation. The g-C3N4/Ag-TiO2 nanocomposite exhibited an apparent reaction rate constant 13.16, 4.7, and 1.33 times higher than that of TiO2, Ag-TiO2, and g-C3N4, respectively. The g-C3N4/Ag-TiO2 ternary composite demonstrated higher photocatalytic activity than pristine TiO2 and binary Ag-TiO2 photocatalysts for the degradation of RhB under visible LED light irradiation. The improved photocatalytic performance of the g-C3N4/Ag-TiO2 nanocomposite can be attributed to the formation of an excellent heterostructure between TiO2 and g-C3N4 as well as the incorporation of Ag nanoparticles, which promoted efficient charge carrier separation and transfer and suppressed the rate of recombination. Therefore, this study presents the development of heterostructured g-C3N4/Ag-TiO2 nanocomposites that exhibit excellent photocatalytic performance for the efficient degradation of harmful organic pollutants in wastewater, making them promising candidates for environmental remediation.

12.
Front Bioeng Biotechnol ; 11: 1221458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576996

RESUMO

In recent years, massive bacterial infections have led to human illness and death, reminding us of the urgent need to develop effective and long-lasting antimicrobial materials. In this paper, Ag-TiO2/ZIF-8 with good environmental friendliness and biological antibacterial activity was prepared by solvothermal method. The structure and morphology of the synthesized materials were characterized by XRD, FT-IR, SEM-EDS, TEM, XPS, and BET. To investigate the antibacterial activity of the synthesized samples, Escherichia coli and Bacillus subtilis were used as target bacteria for experimental studies of zone of inhibition, bacterial growth curves, minimum bactericidal concentration and antibacterial durability. The results demonstrated that 20 wt.%Ag-TiO2/ZIF-8 had the best bacteriostatic effect on E. coli and B. subtilis under dark and UV conditions compared to TiO2 and ZIF-8. Under the same conditions, the diameter of the inhibition circle of 20 wt% Ag-TiO2/ZIF-8 is 8.5-11.5 mm larger than that of its constituent material 4 wt% Ag-TiO2, with more obvious antibacterial effect and better antibacterial performance. It is also proposed that the excellent antibacterial activity of Ag-TiO2/ZIF-8 is due to the synergistic effect of Ag-TiO2 and ZIF-8 under UV light. In addition, the prepared material has good stability and durability with effective antimicrobial activity for more than 5 months.

13.
Materials (Basel) ; 16(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37444826

RESUMO

Composites of Ag and TiO2 nanoparticles were synthesized in situ on cotton fabrics using sonochemical and solvothermal methods achieving the successive formation of Ag-NPs and Ti-NPs directly on the fabric. The impregnated fabrics were characterized using ATR-FTIR spectroscopy; high-resolution microscopy (HREM); scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS); Raman, photoluminescence, UV-Vis, and DRS spectroscopies; and by tensile tension tests. Results showed the successful formation and impregnation of NPs on the cotton fabric, with negligible leaching of NPs after several washing cycles. The photocatalytic activity of supported NPs was assessed by the degradation of methyl blue dye (MB) under solar and UV irradiation revealing improved photocatalytic activity of the Ag-TiO2/cotton composites due to a synergy of both Ag and TiO2 nanoparticles. This behavior is attributed to a diminished electron-hole recombination effect in the Ag-TiO2/cotton samples. The biocide activity of these composites on the growth inhibition of Staphylococcus aureus (Gram+) and Escherichia coli (Gram-) was confirmed, revealing interesting possibilities for the utilization of the functionalized cotton fabric as protective cloth for medical applications.

14.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374528

RESUMO

In the pursuit of innovative solutions for modern technologies, particularly in the design and production of new micro/nanostructured materials, microorganisms acting as "natural microtechnologists" can serve as a valuable source of inspiration. This research focuses on harnessing the capabilities of unicellular algae (diatoms) to synthesize hybrid composites composed of AgNPs/TiO2NPs/pyrolyzed diatomaceous biomass (AgNPs/TiO2NPs/DBP). The composites were consistently fabricated through metabolic (biosynthesis) doping of diatom cells with titanium, pyrolysis of the doped diatomaceous biomass, and chemical doping of the pyrolyzed biomass with silver. To characterize the synthesized composites, their elemental and mineral composition, structure, morphology, and photoluminescent properties were analysed using techniques such as X-ray diffraction, scanning and transmission electron microscopy, and fluorescence spectroscopy. The study revealed the epitaxial growth of Ag/TiO2 nanoparticles on the surface of pyrolyzed diatom cells. The antimicrobial potential of the synthesized composites was evaluated using the minimum inhibitory concentration (MIC) method against prevalent drug-resistant microorganisms, including Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, both from laboratory cultures and clinical isolates.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36497814

RESUMO

Conventional wastewater treatment technologies have difficulties in feasibly removing persistent organics. The photocatalytic oxidation of these contaminants offers an economical and environmentally friendly solution. In this study, TiO2 membranes and Ag/TiO2 membranes were prepared and used for the decomposition of dissolved formic acid in wastewater. The photochemical deposition of silver on a TiO2 membrane improved the decomposition rate. The rate doubled by depositing ca. 2.5 mg of Ag per 1 g of TiO2. The influence of salinity on formic acid decomposition was studied. The presence of inorganic salts reduced the treatment performance of the TiO2 membranes to half. Ag/TiO2 membranes had a larger reduction of ca. 40%. The performance was recovered by washing the membranes with water. The anion adsorption on the membrane surface likely caused the performance reduction.


Assuntos
Sais , Águas Residuárias , Catálise , Titânio/química
16.
Micromachines (Basel) ; 13(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36295948

RESUMO

In this work, we present a new study on the electromagnetic (EM) enhancement properties generated by Ag/TiO2 toward the finger print of methylene blue (MB) molecules deposited on the surface of Ag nanostructures. SERS intensity generated by MB molecules reflects the interaction between the local electric field and their bonds. A power-dependent SERS study in order to reveal the magnitude effect of a local electric field on the vibration behavior of molecular bonds of MB was performed. A theoretical study using finite element (COMSOL Multiphysics) was performed in order to understand the effect of interparticle distance of Ag nanoparticles on the enhancement properties.

17.
Pharmaceutics ; 14(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015345

RESUMO

Background: Multidrug resistant MDR bacterial strains are causing fatal infections, such as mastitis. Thus, there is a need for the development of new target-oriented antimicrobials. Nanomaterials have many advantages over traditional antibiotics, including improved stability, controlled antibiotic release, targeted administration, enhanced bioavailability, and the use of antibiotic-loaded nanomaterials, such as the one herein reported for the first time, appear to be a promising strategy to combat antibiotic-resistant bacteria. The use of rationally designed metallic nanocomposites, rather than the use of single metallic nanoparticles (NPs), should further minimize the bacterial resistance. Aim: Green synthesis of a multimetallic/ternary nanocomposite formed of silver (Ag), titanium dioxide (TiO2), and iron(III) oxide (Fe2O3), conjugated to chitosan (CS), in which the large spectrum fluoroquinolone antibiotic ciprofloxacin (CIP) has been encapsulated. Methods: The metallic nanoparticles (NPs) Ag NPs, TiO2 NPs, and Fe2O3 NPs were synthesized by reduction of Moringa concanensis leaf aqueous extract. The ternary junction was obtained by wet chemical impregnation technique. CIP was encapsulated into the ternary nanocomposite Ag/TiO2/Fe2O3, followed by chitosan (CS) conjugation using the ionic gelation method. The resulting CS-based nanoparticulate drug delivery system (NDDS), i.e., CIP-Ag/TiO2/Fe2O3/CS, was characterized in vitro by gold standard physical techniques such as X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR) spectroscopy. Pharmacological analyses (i.e., LC, EE, ex-vivo drug release behavior) were also assessed. Further, biological studies were carried out both ex vivo (i.e., by disk diffusion method (DDM), fluorescence-activated single cell sorting (FACS), MTT assay) and in vivo (i.e., antibacterial activity in a rabbit model, colony-forming unit (CFU) on blood agar, histopathological analysis using H&E staining). Results: The encapsulation efficiency (EE) and the loading capacity (LC) of the NDDS were as high as 94% ± 1.26 and 57% ± 3.5, respectively. XRD analysis confirmed the crystalline nature of the prepared formulation. FESEM revealed nanorods with an average diameter of 50−70 ± 12 nm. FTIR confirmed the Fe-O-Ti-CS linkages as well as the successful encapsulation of CIP into the NDDS. The zeta potential (ZP) of the NDDS was determined as 85.26 ± 0.12 mV. The antimicrobial potential of the NDDS was elicited by prominent ZIs against MDR E. coli (33 ± 1.40 mm) at the low MIC of 0.112 µg/mL. Morphological alterations (e.g., deformed shape and structural damages) of MDR pathogens were clearly visible overtime by FESEM after treatment with the NDDS at MIC value, which led to the cytolysis ultimately. FACS analysis confirmed late apoptotic of the MDR E. coli (80.85%) after 6 h incubation of the NDDS at MIC (p < 0.05 compared to untreated MDR E. coli used as negative control). The highest drug release (89% ± 0.57) was observed after 8 h using PBS medium at pH 7.4. The viability of bovine mammary gland epithelial cells (BMGE) treated with the NDDS remained superior to 90%, indicating a negligible cytotoxicity (p < 0.05). In the rabbit model, in which infection was caused by injecting MDR E. coli intraperitoneally (IP), no colonies were detected after 72 h of treatment. Importantly, the histopathological analysis showed no changes in the vital rabbit organs in the treated group compared to the untreated group. Conclusions: Taken together, the newly prepared CIP-Ag/TiO2/Fe2O3/CS nanoformulation appears safe, biocompatible, and therapeutically active to fight MDR E. coli strains-causing mastitis.

18.
Materials (Basel) ; 15(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683336

RESUMO

In this paper, Ag-TiO2 photocatalysts with different Ag contents (1 mol%-5 mol%) were prepared and applied to cement mortar. The photocatalytic performance of Ag-TiO2 and photocatalytic cement mortar under UV light and simulated solar light was evaluated. The results showed that Ag loading on the surface of TiO2 could reduce its band gap width and increase its absorbance in the visible region, and 2% Ag-TiO2 had the highest photocatalytic activity under UV light, the degradation rate of methyl orange (MO) was 95.5% at 30 min, and the first-order reaction constant k was 0.0980 min-1, which was 61.7% higher than that of TiO2, and 5% Ag-TiO2 had the highest photocatalytic activity under solar light, the degradation rate of methylene blue (MB) was 69.8% at 40 min, and the first-order reaction constant k was 0.0294 min-1, which was 90.9% higher than that of TiO2. The photocatalytic mortar prepared by the spraying method has high photocatalytic performance, The MO degradation rate of sample S2 under UV light was 87.5% after 120 min, MB degradation rate of sample S5 under solar light was 75.4% after 120 min. The photocatalytic reaction conforms to the zero-order reaction kinetics, which was 1.5 times-3.3 times higher than that of the mixed samples and has no effect on the mechanical properties of mortar.

19.
Water Environ Res ; 94(6): e10744, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35662318

RESUMO

In this work, we reported the successful synthesis of novel Ag/TiO2 /CuFe2 O4 ternary nanocomposite by hydrothermal technique by using TiO2 /CuFe2 O4 binary nanocomposite precursor that was also prepared by hydrothermal treatment by using TiO2 nanoparticles and CuFe2 O4 nanoparticles synthesized via sol-gel method. The synthesized nanomaterials were accessed for their morphological, structural, and optical properties. X-ray diffraction (XRD) study reveals the formation of pure Ag/TiO2 /CuFe2 O4 ternary nanocomposite in which the Ag, TiO2 , and CuFe2 O4 are in anatase, spinal, and cubic crystal phases, respectively. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses of Ag/TiO2 /CuFe2 O4 ternary nanocomposite indicated granule-shaped morphology with bright spots of silver. The existence of Ti, O, Cu, Fe, and Ag without any other elements in the energy-dispersive X-ray spectroscopy (EDS) spectra of the prepared ternary nanocomposite depict its purity and its polycrystalline nature was confirmed by its selected area electron diffraction (SAED) pattern. The ternary nanocomposite was utilized for the methylene blue dye degradation with an optimum dose of 1.00 g/100 ml under ultraviolet (UV) light; the enhanced photocatalytic activity of the composite is attributed mainly due to the appreciable magnitudinal difference of positive charge of the valence band and negative charge of the conduction band of TiO2 and CuFe2 O4 ; meanwhile, the interfacially placed Ag acts as a sink for the elections. Also, the ternary nanocomposite showed satisfactory antibacterial activities. PRACTITIONER POINTS: The prepared ternary nanocomposite showed effective results in dye degradation and satisfactory antibacterial property. The concentration of methylene dye has decreased considerably in every degradation process which was accessed through UV-vis studies. The highest degradation by using the ternary nanocomposite archived at pH = 6 Appreciable antibacterial activity was achieved against a few Gram-positive strains and Gram-negative strains of bacteria. This research activity can open a broad area of research towards textile dye degradation and antibacterial studies.


Assuntos
Azul de Metileno , Nanocompostos , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Azul de Metileno/química , Nanocompostos/química , Titânio/química , Titânio/farmacologia
20.
Chemosphere ; 306: 135474, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35760139

RESUMO

Green synthesis has emerged as a sustainable approach for the fabrication of nanomaterials in the last few decades. Leaf extracts have been considered low-cost and highly efficient reactants for the synthesis of nanoparticles. In this study, an aqueous extract of Cleistocalyx operculatus leaves was employed as a reductant to synthesize Ag/TiO2 nanocomposites. The morphology, structure, and interface interaction of the Ag/TiO2 nanocomposites were investigated by (i) X-ray diffraction (XRD) to determine the crystallinity, (ii) scanning electron microscopy (SEM) to determine the morphologies, (iii) energy dispersive X-ray spectroscopy (EDX) to determine the elemental composition and distribution, and (iv) diffuse reflectance spectroscopy (DRS) to understand the optical properties. The results showed that Ag nanoparticles (AgNPs) with particle sizes of 20-40 nm homogeneously covered the surface of the TiO2 nanoparticles. The green-synthesized Ag/TiO2 nanocomposite also exhibited an excellent photodegradation ability for Rhodamine B with a removal percentage up to 91.4% after 180 min of photocatalytic reaction.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Syzygium , Catálise , Corantes , Nanopartículas Metálicas/química , Nanocompostos/química , Extratos Vegetais/química , Prata/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA