Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
Sci Total Environ ; 927: 172278, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583631

RESUMO

The Wells-Riley model is extensively used for retrospective and prospective modelling of the risk of airborne transmission of infection in indoor spaces. It is also used when examining the efficacy of various removal and deactivation methods for airborne infectious aerosols in the indoor environment, which is crucial when selecting the most effective infection control technologies. The problem is that the large variation in viral load between individuals makes the Wells-Riley model output very sensitive to the input parameters and may yield a flawed prediction of risk. The absolute infection risk estimated with this model can range from nearly 0 % to 100 % depending on the viral load, even when all other factors, such as removal mechanisms and room geometry, remain unchanged. We therefore propose a novel method that removes this sensitivity to viral load. We define a quanta-independent maximum absolute before-after difference in infection risk that is independent of quanta factors like viral load, physical activity, or the dose-response relationships. The input data needed for a non-steady-state calculation are just the removal rates, room volume, and occupancy duration. Under steady-state conditions the approach provides an elegant solution that is only dependent on removal mechanisms before and after applying infection control measures. We applied this method to compare the impact of relative humidity, ventilation rate and its effectiveness, filtering efficiency, and the use of ultraviolet germicidal irradiation on the infection risk. The results demonstrate that the method provides a comprehensive understanding of the impact of infection control strategies on the risk of airborne infection, enabling rational decisions to be made regarding the most effective strategies in a specific context. The proposed method thus provides a practical tool for mitigation of airborne infection risk.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Aerossóis/análise , COVID-19/prevenção & controle , COVID-19/transmissão , Ventilação , Carga Viral , Modelos Teóricos , Controle de Infecções/métodos , Medição de Risco
2.
Environ Sci Technol ; 58(16): 6846-6867, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568611

RESUMO

The emergence of coronavirus disease 2019 (COVID-19) has catalyzed great interest in the spread of airborne pathogens. Airborne infectious diseases are classified into viral, bacterial, and fungal infections. Environmental factors can elevate their transmission and lethality. Air pollution has been reported as the leading environmental cause of disease and premature death worldwide. Notably, ambient particulates of various components and sizes are harmful pollutants. There are two prominent health effects of particles in the atmosphere: (1) particulate matter (PM) penetrates the respiratory tract and adversely affects health, such as heart and respiratory diseases; and (2) bioaerosols of particles act as a medium for the spread of pathogens in the air. Particulates contribute to the occurrence of infectious diseases by increasing vulnerability to infection through inhalation and spreading disease through interactions with airborne pathogens. Here, we focus on the synergistic effects of airborne particulates on infectious disease. We outline the concepts and characteristics of bioaerosols, from their generation to transformation and circulation on Earth. Considering that microorganisms coexist with other particulates as bioaerosols, we investigate studies examining respiratory infections associated with airborne PM. Furthermore, we discuss four factors (meteorological, biological, physical, and chemical) that may impact the influence of PM on the survival of contagious pathogens in the atmosphere. Our review highlights the significant role of particulates in supporting the transmission of infectious aerosols and emphasizes the need for further research in this area.

3.
Open Forum Infect Dis ; 11(4): ofae169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665173

RESUMO

Background: Using a multiple-measurement approach, we examined the real-world effectiveness of portable HEPA air filtration devices (air cleaners) in a school setting. Methods: We collected data over 7 weeks during winter 2022/2023 in 2 Swiss secondary school classes: environmental (CO2, particle concentrations), epidemiologic (absences related to respiratory infections), audio (coughing), and molecular (bioaerosol and saliva samples). Using a crossover design, we compared particle concentrations, coughing, and risk of infection with and without air cleaners. Results: All 38 students participated (age, 13-15 years). With air cleaners, mean particle concentration decreased by 77% (95% credible interval, 63%-86%). There were no differences in CO2 levels. Absences related to respiratory infections were 22 without air cleaners vs 13 with them. Bayesian modeling suggested a reduced risk of infection, with a posterior probability of 91% and a relative risk of 0.73 (95% credible interval, 0.44-1.18). Coughing also tended to be less frequent (posterior probability, 93%), indicating that fewer symptomatic students were in class. Molecular analysis detected mainly non-SARS-CoV-2 viruses in saliva (50/448 positive) but not in bioaerosols (2/105) or on the HEPA filters of the air cleaners (4/160). The molecular detection rate in saliva was similar with and without air cleaners. Spatiotemporal analysis of positive saliva samples identified several likely transmissions. Conclusions: Air cleaners improved air quality and showed potential benefits in reducing respiratory infections. Airborne detection of non-SARS-CoV-2 viruses was rare, suggesting that these viruses may be more difficult to detect in the air. Future studies should examine the importance of close contact and long-range transmission and the cost-effectiveness of using air cleaners.

4.
Sci Rep ; 14(1): 6843, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514758

RESUMO

The impact of mechanical ventilation on airborne diseases is not completely known. The recent pandemic of COVID-19 clearly showed that additional investigations are necessary. The use of computational tools is an advantage that needs to be included in the study of designing safe places. The current study focused on a hospital lift where two subjects were included: a healthy passenger and an infected one. The elevator was modelled with a fan placed on the middle of the ceiling and racks for supplying air at the bottom of the lateral wall. Three ventilation strategies were evaluated: a without ventilation case, an upwards-blowing exhausting fan case and a downwards-blowing fan case. Five seconds after the elevator journey began, the infected person coughed. For the risk assessment, the CO2 concentration, droplet removal performance and dispersion were examined and compared among the three cases. The results revealed some discrepancies in the selection of an optimal ventilation strategy. Depending on the evaluated parameter, downward-ventilation fan or no ventilation strategy could be the most appropriate approach.


Assuntos
COVID-19 , Dióxido de Carbono , Humanos , Respiração , Hospitais , Tosse , Ventilação/métodos
5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520159

RESUMO

AIMS: Airborne transmission of diseases presents a serious threat to human health, so effective air disinfection technology to eliminate microorganisms in indoor air is very important. This study evaluated the effectiveness of a non-thermal plasma (NTP) air disinfector in both laboratory experiments and real environments. METHODS AND RESULTS: An experimental chamber was artificially polluted with a bioaerosol containing bacteria or viruses. Additionally, classroom environments with and without people present were used in field tests. Airborne microbial and particle concentrations were quantified. A 3.0 log10 reduction in the initial load was achieved when a virus-containing aerosol was disinfected for 60 min and a bacteria-containing aerosol was disinfected for 90 min. In the field test, when no people were present in the room, NTP disinfection decreased the airborne microbial and particle concentrations (P < 0.05). When people were present in the room, their constant activity continuously contaminated the indoor air, but all airborne indicators decreased (P < 0.05) except for planktonic bacteria (P = 0.094). CONCLUSIONS: NTP effectively inactivated microorganisms and particles in indoor air.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Bactérias , Desinfecção , Gases em Plasma , Desinfecção/métodos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Humanos , Gases em Plasma/farmacologia , Aerossóis , Desinfetantes/farmacologia , Vírus/efeitos dos fármacos , Vírus/isolamento & purificação
6.
Risk Anal ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501447

RESUMO

The Wells-Riley model has been widely used to estimate airborne infection risk, typically from a deterministic point of view (i.e., focusing on the average number of infections) or in terms of a per capita probability of infection. Some of its main limitations relate to considering well-mixed air, steady-state concentration of pathogen in the air, a particular amount of time for the indoor interaction, and that all individuals are homogeneous and behave equally. Here, we revisit the Wells-Riley model, providing a mathematical formalism for its stochastic version, where the number of infected individuals follows a Binomial distribution. Then, we extend the Wells-Riley methodology to consider transient behaviours, randomness, and population heterogeneity. In particular, we provide analytical solutions for the number of infections and the per capita probability of infection when: (i) susceptible individuals remain in the room after the infector leaves, (ii) the duration of the indoor interaction is random/unknown, and (iii) infectors have heterogeneous quanta production rates (or the quanta production rate of the infector is random/unknown). We illustrate the applicability of our new formulations through two case studies: infection risk due to an infectious healthcare worker (HCW) visiting a patient, and exposure during lunch for uncertain meal times in different dining settings. Our results highlight that infection risk to a susceptible who remains in the space after the infector leaves can be nonnegligible, and highlight the importance of incorporating uncertainty in the duration of the indoor interaction and the infectivity of the infector when estimating risk.

7.
J Hosp Infect ; 148: 1-10, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447806

RESUMO

BACKGROUND: Many UK hospitals rely heavily on natural ventilation as their main source of airflow in patient wards. This method of ventilation can have cost and energy benefits, but it may lead to unpredictable flow patterns between indoor spaces, potentially leading to the unexpected transport of infectious material to other connecting zones. However, the effects of weather conditions on airborne transmission are often overlooked. METHODS: A multi-zone CONTAM model of a naturally ventilated hospital respiratory ward, incorporating time-varying weather, was proposed. Coupling this with an airborne infection model, this study assessed the variable risk in interconnected spaces, focusing particularly on occupancy, disease and ventilation scenarios based on a UK respiratory ward. RESULTS: The results suggest that natural ventilation with varying weather conditions can cause irregularities in the ventilation rates and interzonal flow rates of connected zones, leading to infrequent but high peaks in the concentration of airborne pathogens in particular rooms. This transient behaviour increases the risk of airborne infection, particularly through movement of pathogens between rooms, and highlights that large outbreaks may be more likely under certain conditions. This study demonstrated how ventilation rates achieved by natural ventilation are likely to fall below the recommended guidance, and that the implementation of supplemental mechanical ventilation can increase ventilation rates and reduce the variability in infection risks. CONCLUSION: This model emphasizes the need for consideration of transient external conditions when assessing the risk of transmission of airborne infection in indoor environments.

8.
Proc Natl Acad Sci U S A ; 121(13): e2317194121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502700

RESUMO

Aerosols play a major role in the transmission of the SARS-CoV-2 virus. The behavior of the virus within aerosols is therefore of fundamental importance. On the surface of a SARS-CoV-2 virus, there are about 40 spike proteins, which each have a length of about 20 nm. They are glycosylated trimers, which are highly flexible, due to their structure. These spike proteins play a central role in the intrusion of the virus into human host cells and are, therefore, a focus of vaccine development. In this work, we have studied the behavior of spike proteins of the SARS-CoV-2 virus in the presence of a vapor-liquid interface by molecular dynamics (MD) simulations. Systematically, the behavior of the spike protein at different distances to a vapor-liquid interface were studied. The results reveal that the spike protein of the SARS-CoV-2 virus is repelled from the vapor-liquid interface and has a strong affinity to stay inside the bulk liquid phase. Therefore, the spike protein bends when a vapor-liquid interface approaches the top of the protein. This has important consequences for understanding the behavior of the virus during the dry-out of aerosol droplets.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Proteica , Aerossóis e Gotículas Respiratórios
9.
Artigo em Inglês | MEDLINE | ID: mdl-38467247

RESUMO

OBJECTIVES: To compare the prevalence of SARS-CoV-2 and other respiratory viruses in saliva and bioaerosols between two winters and to model the probability of virus detection in classroom air for different viruses. METHODS: We analysed saliva, air, and air cleaner filter samples from studies conducted in two Swiss secondary schools (students aged 14-17 years) over 7 weeks during the winters of 2021/22 and 2022/23. Two bioaerosol sampling devices and high efficiency particulate air (HEPA) filters from air cleaners were used to collect airborne virus particles in four classrooms. Daily bioaerosol samples were pooled for each sampling device before PCR analysis of a panel of 19 respiratory viruses and viral subtypes. The probability of detection of airborne viruses was modelled using an adjusted Bayesian logistic regression model. RESULTS: Three classes (58 students) participated in 2021/22, and two classes (38 students) in 2022/23. During winter 2021/22, SARS-CoV-2 dominated in saliva (19 of 21 positive samples) and bioaerosols (9 of 10). One year later, there were 50 positive saliva samples, mostly influenza B, rhinovirus, and adenovirus, and two positive bioaerosol samples, one rhinovirus and one adenovirus. The weekly probability of airborne detection was 34% (95% credible interval [CrI] 22-47%) for SARS-CoV-2 and 10% (95% CrI 5-16%) for other respiratory viruses. DISCUSSION: There was a distinct shift in the distribution of respiratory viruses from SARS-CoV-2 during the omicron wave to other respiratory viruses one year later. SARS-CoV-2 is more likely to be detected in the air than other endemic respiratory viruses, possibly reflecting differences in viral characteristics and the composition of virus-carrying particles that facilitate airborne long-range transmission.

10.
Environ Sci Technol ; 58(8): 3595-3608, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38355395

RESUMO

Understanding the airborne survival of viruses is important for public health and epidemiological modeling and potentially to develop mitigation strategies to minimize the transmission of airborne pathogens. Laboratory experiments typically involve investigating the effects of environmental parameters on the viability or infectivity of a target airborne virus. However, conflicting results among studies are common. Herein, the results of 34 aerovirology studies were compared to identify links between environmental and compositional effects on the viability of airborne viruses. While the specific experimental apparatus was not a factor in variability between reported results, it was determined that the experimental procedure was a major factor that contributed to discrepancies in results. The most significant contributor to variability between studies was poorly defined initial viable virus concentration in the aerosol phase, causing many studies to not measure the rapid inactivation, which occurs quickly after particle generation, leading to conflicting results. Consistently, studies that measured their reference airborne viability minutes after aerosolization reported higher viability at subsequent times, which indicates that there is an initial loss of viability which is not captured in these studies. The composition of the particles which carry the viruses was also found to be important in the viability of airborne viruses; however, the mechanisms for this effect are unknown. Temperature was found to be important for aerosol-phase viability, but there is a lack of experiments that directly compare the effects of temperature in the aerosol phase and the bulk phase. There is a need for repeated measurements between different research groups under identical conditions both to assess the degree of variability between studies and also to attempt to better understand already published data. Lack of experimental standardization has hindered the ability to quantify the differences between studies, for which we provide recommendations for future studies. These recommendations are as follows: measuring the reference airborne viability using the "direct method"; use equipment which maximizes time resolution; quantify all losses appropriately; perform, at least, a 5- and 10-min sample, if possible; report clearly the composition of the virus suspension; measure the composition of the gas throughout the experiment. Implementing these recommendations will address the most significant oversights in the existing literature and produce data which can more easily be quantitatively compared.


Assuntos
Vírus , Aerossóis
11.
Heliyon ; 10(4): e26076, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404762

RESUMO

The evaluation of airborne pathogens diffusion is a crucial practice in preventing airborne diseases like COVID-19, especially in indoor environments. Through this transmission route, pathogens can be carried by droplets, droplet nuclei and aerosols and be conveyed over long distances. Therefore, understanding their diffusion is vital for prevention and curbing disease transmission. There are different techniques used for this purpose, and one of the most common is the utilization of tracer gas, however, it has limitations such as the difference in size between the gas molecules and the respiratory droplets, as well as its incapability to take into account evaporation. For this reason, a new method for evaluating the diffusion of respiratory droplets has been developed. This approach involves the use of an ultrasonic emitter to release and disperse pigmented aerosols, and a colorimeter for the following quantitative evaluation. A comparison with the tracer gas technique has been carried out, showing for the pigmented aerosols methodology a response that is dependent on different relative humidity conditions, while there is no clear difference in the dispersion of tracer gas at high or low humidity.

12.
Risk Anal ; 44(3): 631-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37317640

RESUMO

The risk assessments during the COVID-19 pandemic were primarily based on dose-response models derived from the pooled datasets for infection of animals susceptible to SARS-CoV. Despite similarities, differences in susceptibility between animals and humans exist for respiratory viruses. The two most commonly used dose-response models for calculating the infection risk of respiratory viruses are the exponential and the Stirling approximated ß-Poisson (BP) models. The modified version of the one-parameter exponential model or the Wells-Riley model was almost solely used for infection risk assessments during the pandemic. Still, the two-parameter (α and ß) Stirling approximated BP model is often recommended compared to the exponential dose-response model due to its flexibility. However, the Stirling approximation restricts this model to the general rules of ߠ≫ 1 and α â‰ª ß, and these conditions are very often violated. To refrain from these requirements, we tested a novel BP model by using the Laplace approximation of the Kummer hypergeometric function instead of the conservative Stirling approximation. The datasets of human respiratory airborne viruses available in the literature for human coronavirus (HCoV-229E) and human rhinovirus (HRV-16 and HRV-39) are used to compare the four dose-response models. Based on goodness-of-fit criteria, the exponential model was the best fitting model for the HCoV-229E (k = 0.054) and for HRV-39 datasets (k = 1.0), whereas the Laplace approximated BP model followed by the exact and Stirling approximated BP models are preferred for both the HRV-16 (α = 0.152 and ß = 0.021 for Laplace BP) and the HRV-16 and HRV-39 pooled datasets (α = 0.2247 and ß = 0.0215 for Laplace BP).


Assuntos
COVID-19 , Coronavirus Humano 229E , Animais , Humanos , Rhinovirus , Pandemias , Medição de Risco
13.
Ann Work Expo Health ; 68(1): 1-7, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-37776568

RESUMO

In May 2023 the World Health Organization (WHO) Director General announced the "end" of the COVID-19 Public Health Emergency of International Concern. Although the scale of the pandemic was unprecedented in living memory, it had not been unforeseen. Previous outbreaks of viral respiratory disease have shown important lessons regarding the need to protect healthcare workers (HCW), and research has also been undertaken into the relative effectiveness of control measures and their resource implications. Relevant guidance for worker protection, including HCW protection, which existed at the onset of the COVID-19 pandemic was disregarded both at international and national governmental levels. In many countries there were significant systemic flaws in strategy, culture, and resource availability, and hence in overall preparedness. When the pandemic struck, many experts and organizations advocated a precautionary approach with regard to worker protection, consistent with good occupational hygiene science, practice, and standards. In many Asian countries, protective measures were relatively stringent. However, many workers were left unprotected especially as the WHO, the United States, the United Kingdom, and other governments did not pursue adequate COVID-19 protective measures at work. As the pandemic progressed, improvements in protection were patchy. A notable lack of protection arose from the underestimation of the contribution of aerosol exposure to infection risks, particularly among HCWs providing routine care of potentially infectious patients. A disciplined strategy of source control, pathway control (such as ventilation), and receptor control notably Respiratory Protective Equipment is needed, as well as worldwide vaccination, to contend with this pandemic. Control measures appropriate to the risk of infections transmitted through the air will remain necessary in the longer term, as well as adaptations in the workplace to take account of long-term COVID-19 morbidity and new work practices.


Assuntos
COVID-19 , Exposição Ocupacional , Humanos , Estados Unidos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Exposição Ocupacional/prevenção & controle
14.
Virology ; 589: 109926, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952465

RESUMO

H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Humanos , Animais , Galinhas , Hemaglutininas , Subtipo H7N9 do Vírus da Influenza A/genética , Aerossóis e Gotículas Respiratórios , Aves Domésticas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/metabolismo , Filogenia
15.
Environ Pollut ; 343: 123164, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38103710

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic demonstrated the threat of airborne pathogenic respiratory viruses such as the airborne Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The ability to detect circulating viruses in a workplace or dormitory setting allows an early warning system that can alert occupants to implement precautions (e.g. masking) and/or trigger individual testing to allow isolation and quarantine measures to halt contagion. This work extends and validates the first successful detection of SARS-CoV-2 virus in dormitory Heating, Ventilation, and Air Conditioning (HVAC) systems and compares different air sampling methods and media types combined with optimized quantitative Reverse-Transcription PCR (qRT-PCR) analysis. The study was performed in two environments; large dormitories of students who underwent periodic testing for COVID-19 (unknown environment) and the HVAC air from a suite with a student who had tested positive for COVID-19 (known dorm). The air sampling methods were performed using Filter Cassettes, BioSampler, AerosolSense Sampler and Button Sampler (with four media types with different pore sizes of 5 µm, 3 µm, 3 µm (gelatin), and 1.2 µm). The SARS-CoV-2 positive air samples were compared with the positive samples collected by individual student campus track tracing methods using PCR testing on saliva and nasopharyngeal samples. The results show a detection rate of 73% in the unknown environment and a 78% detection rate in the known dorm. Our data show that the virus was detectable with all the sampling methods we employed. However, the AerosolSense sampler and BioSampler performed the best at 63% and 61% detection rates, compared to 25% for the Filter Cassettes and 23% for the Button Sampler. Despite the success rate, it is not possible to definitively conclude which method is most sensitive due to the limited number of samples. These results show that with careful sampling and optimized PCR methods, pathogenic respiratory viruses can be detected in large buildings using HVAC return air.


Assuntos
COVID-19 , Vírus , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Ar Condicionado , Calefação , Teste para COVID-19
16.
mBio ; 15(1): e0295723, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112470

RESUMO

IMPORTANCE: Despite the accumulation of evidence showing that airborne transmissible influenza A virus (IAV) typically has a lower pH threshold for hemagglutinin (HA) fusion activation, the underlying mechanism for such a link remains unclear. In our study, by using a pair of isogenic recombinant A(H9N2) viruses with a phenotypical difference in virus airborne transmission in a ferret model due to an acid-destabilizing mutation (HA1-Y17H) in the HA, we demonstrate that an acid-stable A(H9N2) virus possesses a multitude of advantages over its less stable counterpart, including better fitness in the ferret respiratory tract, more effective aerosol emission from infected animals, and improved host susceptibility. Our study provides supporting evidence for the requirement of acid stability in efficient airborne transmission of IAV and sheds light on fundamental mechanisms for virus airborne transmission.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Animais , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/metabolismo , Aerossóis e Gotículas Respiratórios/virologia , Influenza Humana/transmissão , Humanos , Modelos Animais de Doenças , Substituição de Aminoácidos
17.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38108005

RESUMO

The COVID-19 pandemic has demonstrated the detrimental effects of a lack of understanding of public health measures. During the pandemic, lockdowns, social distancing, and mask mandates introduced by governments were met with skepticism, doubt, and an unwillingness to comply, increasing the extent of negative outcomes as a result. Albeit devastating, the pandemic has offered an invaluable opportunity to observe the correlation between the prevalence of public health education and compliance with public health measures during critical times. In this article, we describe a card game that was developed during the COVID-19 pandemic to educate the public (including children) about how specific public health measures address the pandemic and how global cooperation is essential in addressing even one country's problems. The game can be used in primary, secondary, or tertiary education classrooms, initiating conversations about the topic and providing a basic understanding before more in-depth learning.

18.
Biophys Rev ; 15(5): 1359-1366, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37975001

RESUMO

Influenza virus transmission is a crucial factor in understanding the spread of the virus within populations and developing effective control strategies. Studying the transmission patterns of influenza virus allows for better risk assessment and prediction of disease outbreaks. By monitoring the spread of the virus and identifying high-risk populations and geographic areas, it is possible to allocate resources more effectively, implement timely interventions, and provide targeted healthcare interventions to diminish the burden of influenza virus on vulnerable populations. Theoretical models of virus transmission are used to study and simulate of influenza virus spread within populations. These models aim to capture the complex dynamics of transmission, including factors such as population size, contact patterns, infectiousness, and susceptibility. Animal models serve as valuable tools for studying the dynamics of influenza virus transmission. This article presents a brief overview of existing research on the qualitative and quantitative study of influenza virus transmission in animal models. We discuss the methodologies employed, key insights gained from these studies, and their relevance.

19.
Virol J ; 20(1): 275, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001529

RESUMO

This study investigates the presence of SARS-CoV-2 in indoor and outdoor environments in two cities in Norway between April and May 2022. With the lifting of COVID-19 restrictions in the country and a focus on vaccination, this research aims to shed light on the potential for virus transmission in various settings. Air sampling was conducted in healthcare and non-healthcare facilities, covering locations frequented by individuals across different age groups. The study found that out of 31 air samples, only four showed the presence of SARS-CoV-2 RNA by RT-qPCR, with no viable virus detected after RNAse pre-treatment. These positive samples were primarily associated with environments involving children and the elderly. Notably, sequencing revealed mutations associated with increased infectivity in one of the samples. The results highlight the importance of considering children as potential sources of virus transmission, especially in settings with prolonged indoor exposure. As vaccination coverage increases globally, and with children still representing a substantial unvaccinated population, the study emphasizes the need to re-implement mask-wearing mandates indoors and in public transport to reduce virus transmission. The findings have implications for public health strategies to control COVID-19, particularly in the face of new variants and the potential for increased transmission during the autumn and winter seasons.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Humanos , Criança , SARS-CoV-2/genética , COVID-19/epidemiologia , RNA Viral/genética , Cidades , Noruega/epidemiologia
20.
EMBO Mol Med ; 15(12): e17932, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970627

RESUMO

Viruses are vulnerable as they transmit between hosts, and we aimed to exploit this critical window. We found that the ubiquitous, safe, inexpensive and biodegradable small molecule propylene glycol (PG) has robust virucidal activity. Propylene glycol rapidly inactivates a broad range of viruses including influenza A, SARS-CoV-2 and rotavirus and reduces disease burden in mice when administered intranasally at concentrations commonly found in nasal sprays. Most critically, vaporised PG efficiently abolishes influenza A virus and SARS-CoV-2 infectivity within airborne droplets, potently preventing infection at levels well below those tolerated by mammals. We present PG vapour as a first-in-class non-toxic airborne virucide that can prevent transmission of existing and emergent viral pathogens, with clear and immediate implications for public health.


Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Aerossóis e Gotículas Respiratórios , COVID-19/prevenção & controle , Propilenoglicóis , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...