Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol Res ; 54(1): 38, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903297

RESUMO

BACKGROUND: Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS: Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator deferoxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION: These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.


Assuntos
Fibrose Cística , Ferroptose , Morte Celular , Células Epiteliais , Humanos , Peroxidação de Lipídeos
2.
Biol. Res ; 54: 38-38, 2021. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1505823

RESUMO

BACKGROUND: Defective chloride transport in airway epithelial cells (AECs) and the associated lung disease are the main causes of morbidity and early mortality in cystic fibrosis (CF). Abnormal airway iron homeostasis and the presence of lipid peroxidation products, indicative of oxidative stress, are features of CF lung disease. RESULTS: Here, we report that CF AECs (IB3-1) are susceptible to ferroptosis, a type of cell death associated with iron accumulation and lipid peroxidation. Compared to isogenic CFTR corrected cells (C38), the IB3-1 cells showed increased susceptibility to cell death upon exposure to iron in the form of ferric ammonium citrate (FAC) and the ferroptosis inducer, erastin. This phenotype was accompanied by accumulation of intracellular ferrous iron and lipid peroxides and the extracellular release of malondialdehyde, all indicative of redox stress, and increased levels of lactate dehydrogenase in the culture supernatant, indicating enhanced cell injury. The ferric iron chelator defer-oxamine (DFO) and the lipophilic antioxidant ferrostatin-1 inhibited FAC and erastin induced ferroptosis in IB3-1 cells. Glutathione peroxidase 4 (GPX4) expression was decreased in IB3-1 cells treated with FAC and erastin, but was unchanged in C38 AECs. Necroptosis appeared to be involved in the enhanced susceptibility of IB3-1 AECs to ferroptosis, as evidenced by partial cell death rescue with necroptosis inhibitors and enhanced mixed lineage kinase domain-like (MLKL) localisation to the plasma membrane. CONCLUSION: These studies suggest that the increased susceptibility of CF AECs to ferroptosis is linked to abnormal intracellular ferrous iron accumulation and reduced antioxidant defences. In addition, the process of ferroptotic cell death in CF AECs does not appear to be a single entity and for the first time we describe necroptosis as a potential contributory factor. Iron chelation and antioxidant treatments may be promising therapeutic interventions in cystic fibrosis.


Assuntos
Humanos , Fibrose Cística , Ferroptose , Peroxidação de Lipídeos , Morte Celular , Células Epiteliais
3.
Am J Respir Crit Care Med ; 202(7): 962-972, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459537

RESUMO

Rationale: Puerto Ricans have the highest childhood asthma prevalence in the United States (23.6%); however, the etiology is uncertain.Objectives: In this study, we sought to uncover the genetic architecture of lung function in Puerto Rican youth with and without asthma who were recruited from the island (n = 836).Methods: We used admixture-mapping and whole-genome sequencing data to discover genomic regions associated with lung function. Functional roles of the prioritized candidate SNPs were examined with chromatin immunoprecipitation sequencing, RNA sequencing, and expression quantitative trait loci data.Measurements and Main Results: We discovered a genomic region at 1q32 that was significantly associated with a 0.12-L decrease in the lung volume of exhaled air (95% confidence interval, -0.17 to -0.07; P = 6.62 × 10-8) with each allele of African ancestry. Within this region, two SNPs were expression quantitative trait loci of TMEM9 in nasal airway epithelial cells and MROH3P in esophagus mucosa. The minor alleles of these SNPs were associated with significantly decreased lung function and decreased TMEM9 gene expression. Another admixture-mapping peak was observed on chromosome 5q35.1, indicating that each Native American ancestry allele was associated with a 0.15-L increase in lung function (95% confidence interval, 0.08-0.21; P = 5.03 × 10-6). The region-based association tests identified four suggestive windows that harbored candidate rare variants associated with lung function.Conclusions: We identified common and rare genetic variants that may play a critical role in lung function among Puerto Rican youth. We independently validated an inflammatory pathway that could potentially be used to develop more targeted treatments and interventions for patients with asthma.


Assuntos
Asma/genética , População Negra/genética , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 5/genética , Volume Expiratório Forçado/genética , Indígenas Norte-Americanos/genética , Pulmão/fisiopatologia , Adolescente , Asma/fisiopatologia , Brônquios/citologia , Estudos de Casos e Controles , Linhagem Celular , Criança , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Mucosa Esofágica/metabolismo , Feminino , Expressão Gênica , Humanos , Desequilíbrio de Ligação , Pulmão/fisiologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso , Mucosa Nasal/metabolismo , Polimorfismo de Nucleotídeo Único , Porto Rico , Locos de Características Quantitativas , Análise de Sequência de RNA , População Branca/genética , Sequenciamento Completo do Genoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA