Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Expert Rev Clin Pharmacol ; : 1-9, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39317404

RESUMO

INTRODUCTION: Obesity is a pandemic, linked with increased morbidity including diabetes mellitus (DM) and certain cancer types. Amylin is a major regulatory hormone for satiation and food intake perception in humans. Amylin analogs (pramlintide and cagrilintide) are emerging as promising anti-obesity agents in non-DM subjects. AREAS COVERED: Pramlintide, the first amylin analog, initially used for the treatment of both type 1 and type 2 DM, has demonstrated weight-lowering action. Clinical trials confirmed a weight loss exceeding 3% in the study period without major untoward effects, which was maintained beyond the follow-up period. Recently, cagrilintide, a long-lasting synthetic amylin analog has been introduced. Cagrilintide has achieved adequate weight loss, reaching even more than 10% of the total weight in early clinical trials. However, adverse gastrointestinal effects, particularly nausea, were more frequent compared with pramlintide. Clinical trials have also confirmed the effectiveness of cagrilintide in comparison with glucagon-like peptide 1 receptor agonists. EXPERT OPINION: Amylin analogs will certainly enrich the growing therapeutic armamentarium aimed at tackling obesity. The most exciting future research venue could be the development of their combinations with other weight-lowering drugs, especially dual and triple incretin-based co-agonists, thus potentially providing massive weight-loss effects.

2.
Biomolecules ; 14(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39199339

RESUMO

Amylin is part of the endocrine pancreatic system that contributes to glycemic control, regulating blood glucose levels. However, human amylin has a high tendency to aggregate, forming isolated amylin deposits that are observed in patients with type 2 diabetes mellitus. In search of new inhibitors of amylin aggregation, we undertook the chemical analyses of five marine macroorganisms encountered in high populations in the Red Sea and selected a panel of 10 metabolites belonging to different chemical classes to evaluate their ability to inhibit the formation of amyloid deposits in the human amylin peptide. The thioflavin T assay was used to examine the kinetics of amyloid aggregation, and atomic force microscopy was employed to conduct a thorough morphological examination of the formed fibrils. The potential ability of these compounds to interact with the backbone of peptides and compete with ß-sheet formation was analyzed by quantum calculations, and the interactions with the amylin peptide were computationally examined using molecular docking. Despite their structural similarity, it could be observed that the hydrophobic and hydrogen bond interactions of pyrrolidinones 9 and 10 with the protein sheets result in one case in a stable aggregation, while in the other, they cause distortion from aggregation.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Agregados Proteicos/efeitos dos fármacos , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Amiloide/metabolismo , Amiloide/química , Amiloide/antagonistas & inibidores , Microscopia de Força Atômica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética
3.
ACS Chem Neurosci ; 15(17): 3113-3123, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39150403

RESUMO

Early-stage aggregates of amyloid-forming proteins, specifically soluble oligomers, are implicated in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Protein aggregation is typically monitored by fluorescence using the amyloid-binding fluorophore thioflavin T (ThT). Thioflavin T interacts, however, preferentially with fibrillar amyloid structures rather than with soluble, early-stage aggregates. In contrast, the two fluorophores, aminonaphthalene 2-cyanoacrylate-spiropyran (AN-SP) and triazole-containing boron-dipyrromethene (taBODIPY), were reported to bind preferentially to early-stage aggregates of amyloidogenic proteins. The present study compares ThT with AN-SP and taBODIPY with regard to their ability to monitor early stages of aggregation of four different amyloid-forming proteins, including amyloid-ß (Aß), tau protein, amylin, and α-synuclein. The results show that the three fluorophores vary in their suitability to monitor the early aggregation of different amyloid-forming proteins. For instance, in the presence of Aß and amylin, the fluorescence intensity of AN-SP increased at an earlier stage of aggregation than the fluorescence of ThT, albeit with only a small fluorescence increase in the case of AN-SP. In contrast, in the presence of tau and amylin, the fluorescence intensity of taBODIPY increased at an earlier stage of aggregation than the fluorescence of ThT. Finally, α-synuclein aggregation could only be monitored by ThT fluorescence; neither AN-SP nor taBODIPY showed a significant increase in fluorescence over the course of aggregation of α-synuclein. These results demonstrate the ability of AN-SP and taBODIPY to monitor the formation of early-stage aggregates from specific amyloid-forming proteins at an early stage of aggregation, although moderate increases in fluorescence intensity, relatively large uncertainties in fluorescence values, and limited solubility of both fluorophores limit their usefulness for some amyloid proteins. The capability to monitor early aggregation of some amyloid proteins, such as amylin, might accelerate the discovery of aggregation inhibitors to minimize the formation of toxic oligomeric species for potential therapeutic use.


Assuntos
Peptídeos beta-Amiloides , Polipeptídeo Amiloide das Ilhotas Pancreáticas , alfa-Sinucleína , Proteínas tau , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Corantes Fluorescentes , Agregados Proteicos/fisiologia , Agregados Proteicos/efeitos dos fármacos , Fluorescência , Benzotiazóis , Agregação Patológica de Proteínas/metabolismo
4.
Pharmacol Res Perspect ; 12(4): e1243, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39016695

RESUMO

Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.


Assuntos
Fármacos Antiobesidade , Regulação do Apetite , Colecistocinina , Obesidade , Humanos , Animais , Obesidade/tratamento farmacológico , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Regulação do Apetite/efeitos dos fármacos , Grelina/farmacologia , Grelina/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Peptídeo YY/farmacologia , Peptídeo YY/uso terapêutico , Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêutico
5.
Front Aging Neurosci ; 16: 1373477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974903

RESUMO

Type-2 diabetes (T2D) is a metabolic disorder that is considered a risk factor for Alzheimer's disease (AD). Cognitive impairment can arise due to hypoglycemia associated with T2D, and hyperamylinemia associated with insulin resistance can enhance AD pathology. We explored whether changes occur in the hippocampus in aging (6-12 months old) female V-Lep○b-/- transgenic (tg) mice, comprising an animal model of T2D. We also investigated whether an increase in vulnerability to Aß (1-42), a known pathological hallmark of AD, is evident. Using magnetic resonance imaging we detected significant decreases in hippocampal brain volume in female tg-mice compared to wild-type (wt) littermates. Long-term potentiation (LTP) was impaired in tg compared to wt mice. Treatment of the hippocampus with Aß (1-42) elicited a stronger debilitation of LTP in tg compared to wt mice. Treatment with an amylin antagonist (AC187) significantly enhanced LTP in wt and tg mice, and rescued LTP in Aß (1-42)-treated tg mice. Taken together our data indicate that a T2D-like state results in an increased vulnerability of the hippocampus to the debilitating effects of Aß (1-42) and that effects are mediated in part by changes in amylin receptor signaling.

6.
Protein Sci ; 33(8): e5119, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39012029

RESUMO

Despite causing over 1 million deaths annually, Type 2 Diabetes (T2D) currently has no curative treatments. Aggregation of the islet amyloid polypeptide (hIAPP) into amyloid plaques plays an important role in the pathophysiology of T2D and thus presents a target for therapeutic intervention. The mechanism by which hIAPP aggregates contribute to the development of T2D is unclear, but it is proposed to involve disruption of cellular membranes. However, nearly all research on hIAPP-lipid interactions has focused on anionic phospholipids, which are primarily present in the cytosolic face of plasma membranes. We seek here to characterize the effects of three gangliosides, the dominant anionic lipids in the outer leaflet of the plasma membrane, on the aggregation, structure, and toxicity of hIAPP. Our results show a dual behavior that depends on the molar ratio between the gangliosides and hIAPP. For each ganglioside, a low-lipid:peptide ratio enhances hIAPP aggregation and alters the morphology of hIAPP fibrils, while a high ratio eliminates aggregation and stabilizes an α-helix-rich hIAPP conformation. A more negative lipid charge more efficiently promotes aggregation, and a larger lipid headgroup improves inhibition of aggregation. hIAPP also alters the phase transitions of the lipids, favoring spherical micelles over larger tubular micelles. We discuss our results in the context of the available lipid surface area for hIAPP binding and speculate on a role for gangliosides in facilitating toxic hIAPP aggregation.


Assuntos
Gangliosídeos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Gangliosídeos/química , Gangliosídeos/metabolismo , Humanos , Agregados Proteicos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Conformação Proteica
7.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39062913

RESUMO

Pancreas-derived islet amyloid polypeptide (IAPP) aggregates and deposits in the pancreas and periphery of Type 2 Diabetes (T2D) patients, contributing to diabetic complications. The excess IAPP can be removed by autoantibodies, and increased levels of immunoglobulin (Ig) G against IAPP have been reported in T2D patients. However, whether other Ig classes are also affected and if the levels can be managed is less known. This pre-post study examines IgA levels against IAPP oligomers (IAPPO-IgA) in T2D patients and assesses the impact of the Okinawa-based Nordic (O-BN) diet-a low-carbohydrate, high-fiber diet-on these levels after following the diet for 3 months. IAPP, IAPPO-IgA, and total IgA levels were measured in plasma and fecal samples from n = 30 T2D patients collected at baseline, after 3 months of diet, and after additional 4 months of unrestricted diets (a clinical follow-up). The IAPP and IAPPO-IgA levels were significantly lower after 3 months, with the latter also being significantly reduced at the clinical follow-up. The reduction in plasma IAPP and IAPPO-IgA levels correlated with reductions in plasma levels of metabolic and inflammatory markers. Hence, following the O-BN diet for at least 3 months is sufficient to reduce circulating IAPP and IAPPO-IgA levels, which may be principal in managing T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Imunoglobulina A , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Imunoglobulina A/sangue , Imunoglobulina A/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Japão , Adulto
8.
Islets ; 16(1): 2379650, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39028826

RESUMO

Islet amyloid polypeptide (IAPP) is a factor that regulates food intake and is secreted from both pancreatic islets and insulinoma cells. Here, we aimed to evaluate IAPP immunohistochemically in islets or insulinoma cells in association with clinical characteristics. We recruited six insulinoma patients and six body mass index-matched control patients with pancreatic diseases other than insulinoma whose glucose tolerance was confirmed to be normal preoperatively. IAPP and IAPP-insulin double staining were performed on pancreatic surgical specimens. We observed that the IAPP staining level and percentage of IAPP-positive beta cells tended to be lower (p = 0.1699) in the islets of insulinoma patients than in those of control patients, which might represent a novel IAPP expression pattern under persistent hyperinsulinemia and hypoglycemia.


Assuntos
Insulinoma , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Neoplasias Pancreáticas , Insulinoma/metabolismo , Insulinoma/patologia , Humanos , Masculino , Feminino , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Adulto , Idoso , Imuno-Histoquímica , Insulina/metabolismo
9.
Front Chem ; 12: 1419019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39072260

RESUMO

Human amylin (hIAPP) is found in the form of amyloid deposits within the pancreatic cells of nearly all patients diagnosed with type 2 diabetes mellitus (T2DM). However, rat amylin (rIAPP) and pramlintide - hIAPP analogs - are both non-toxic and non-amyloidogenic. Their primary sequences exhibit only slight variations in a few amino acid residues, primarily concentrated in the central region, spanning residues 20 to 29. This inspired us to study this fragment and investigate the impact on the aggregation properties of substituting residues within the central region of amylin and its analogs. Six fragments derived from amylin have undergone comprehensive testing against various metal ions by implementing a range of analytical techniques, including Nuclear Magnetic Resonance (NMR) spectroscopy, Thioflavin T (ThT) assays, Atomic Force Microscopy (AFM), and cytotoxicity assays. These methodologies serve to provide a thorough understanding of how the substitutions and interactions with metal ions impact the aggregation behavior of amylin and its analogs.

10.
Anticancer Res ; 44(8): 3593-3604, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060042

RESUMO

BACKGROUND/AIM: This study aimed to investigate the role of transient receptor potential vanilloid 2 (TRPV2) in a mouse model with non-alcoholic steatohepatitis (NASH) and to examine the effects of tranilast on TRPV2 and fibrosis-related cytokines. MATERIALS AND METHODS: C57BL/6N mice were fed a Gubra-Amylin NASH (GAN) diet for 20 weeks to induce NASH. The tranilast groups received oral administration of tranilast at doses of 300, 400 and 500 mg/kg/day, five days per week for 20 weeks, in addition to the GAN diet. The effects of tranilast were assessed based on the dosage of food intake, changes in body weight, liver weight, blood biochemical parameters, histopathological examination, and expression of TRPV2 and inflammatory cytokines. RESULTS: Hepatic expression of TRPV2 was observed in the GAN-fed NASH mouse model. The tranilast groups showed significantly suppressed increases in body and liver weights. The development of intrahepatic fat deposition and liver fibrosis, assessed histopathologically, was inhibited. Tranilast administration improved the expression of TRPV2 and inflammatory cytokines in the liver. Additionally, blood tests indicated a reduction in elevated liver enzyme levels. CONCLUSION: In GAN diet NASH models, TRPV2 was up-regulated in the liver and tranilast inhibited TRPV2 and suppressed fibrosis. Therefore, it might prevent the incidence of hepatocellular carcinoma associated with NASH.


Assuntos
Modelos Animais de Doenças , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Canais de Cátion TRPV , Aumento de Peso , ortoaminobenzoatos , Animais , Canais de Cátion TRPV/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , ortoaminobenzoatos/farmacologia , Camundongos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Aumento de Peso/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Progressão da Doença , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Citocinas/metabolismo , Canais de Cálcio
11.
Mol Nutr Food Res ; 68(15): e2300845, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966885

RESUMO

SCOPE: The overall changes of colon under nonalcoholic fatty liver disease (NAFLD) remain to be further elucidated. METHODS AND RESULTS: This study establishes a mouse model of NAFLD through a long-term Gubra Amylin-nonalcoholic steatohepatitis (NASH) diet (GAN diet). The results show that GAN diet significantly induces weight gain, liver steatosis, colonic oxidative stress, and lipid accumulation in blood, liver, and adipose tissue in mice. GAN feeding reduces the diversity of the gut microbiota, alters the composition and abundance of the gut microbiota, and leads to an increase in microbial metabolites such as long-chain fatty acids (LCFAs) and secondary bile acids (BAs), as well as a decrease in short-chain fatty acids (SCFAs). The RNA-seq and immunofluorescence results reveal that the GAN diet alters the expression of proteins and their coding genes involved in oxidative stress, immune response, and barrier function in colon tissue, such as lipocalin-2 (Lcn2, p < 0.05), heme oxygenase-1 (HO-1/Hmox1, p < 0.05), interferon-gamma (IFN-γ), and claudin-3/7. In addition, correlation analysis indicates a strong correlation between the changes in gut microbiota and lipid biomarkers. Additionally, the expression of immune related genes in colon tissue is related to the LCFAs produced by microbial metabolism. CONCLUSION: GAN-induced NAFLD is related to microbiota and its metabolic imbalance, oxidative stress, immune disorders, and impaired barrier function in colon.


Assuntos
Colo , Disbiose , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Colo/efeitos dos fármacos , Masculino , Camundongos , Dieta , Fígado/metabolismo , Fígado/efeitos dos fármacos , Modelos Animais de Doenças
12.
Arthritis Res Ther ; 26(1): 129, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997785

RESUMO

BACKGROUND: Despite the extensive research to provide a disease-modifying osteoarthritis drug (DMOAD), there is still no approved DMOAD. Dual amylin and calcitonin receptor agonists (DACRA) can provide metabolic benefits along with antinociceptive and potential structural preserving effects. In these studies, we tested a DACRA named KBP-336 on a metabolic model of OA in meniscectomised (MNX) rats. METHODS: We evaluated KBP-336's effect on pain-like symptoms in Sprague Dawley (SD) rats on high-fat diet (HFD) that underwent meniscectomy using the von Frey test to measure the 50% paw withdrawal threshold (PWT) and analyzed using one-way ANOVA. Short in vivo studies and in vitro cell receptor expression systems were used to illustrate receptor pharmacology. RESULTS: After 30 weeks on HFD, including an 8-week treatment, female MNX animals receiving KBP-336 4.5 nmol/Kg/72 h had lower body weight and smaller adipose tissues than their vehicle-treated counterparts. After 20 weeks on HFD, including an 8-week treatment, male rats receiving KBP-336 had lower body weight than the vehicle group. In both the female and male rats, the MNX groups on KBP-336 treatment had a higher PWT than the vehicle-treated MNX group. Aiming to identify the receptor influencing pain alleviation, KBP-336 was compared to the long-acting human calcitonin (hCTA). Single-dose studies on 12-week-old male rats showed that hCTA lowers CTX-I without affecting food intake, confirming its calcitonin receptor selectivity. On the metabolic OA model with 18 weeks of HFD, including 6-week treatment, hCTA at 100 nmol/Kg/24 h and KBP-336 at 0.5, 1.5, and 4.5 nmol/Kg/72 h produced significantly higher PWT in MNX animals compared to MNX animals on vehicle treatment. hCTA and KBP-336 at 0.5 nmol/Kg did not affect body weight and fat tissues. CONCLUSION: Overall, KBP-336 improved the pain observed in the metabolic OA model. Calcitonin receptor activation proved to be essential in this antinociceptive effect.


Assuntos
Agonistas dos Receptores da Amilina , Osteoartrite , Ratos Sprague-Dawley , Receptores da Calcitonina , Redução de Peso , Animais , Receptores da Calcitonina/agonistas , Receptores da Calcitonina/metabolismo , Ratos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Agonistas dos Receptores da Amilina/farmacologia , Feminino , Redução de Peso/efeitos dos fármacos , Analgésicos/farmacologia , Masculino , Dieta Hiperlipídica/efeitos adversos , Humanos , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico
13.
J Prev Alzheimers Dis ; 11(4): 1122-1131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044524

RESUMO

BACKGROUND AND OBJECTIVES: Diabetes and especially insulin resistance are associated with an increased risk of developing cognitive dysfunction, making anti-diabetic drugs an interesting therapeutic option for the treatment of neurodegenerative disorders. Dual amylin and calcitonin receptor agonists (DACRAs) elicit beneficial effects on glycemic control and insulin sensitivity. However, whether DACRAs affect cognition is unknown. DESIGN AND INTERVENTION: Zucker Diabetic Fatty rats were treated with either the DACRA KBP-336 (4.5 nmol/kg Q3D), the amylin analog AM1213 (25 nmol/kg QD), or vehicle for 18 weeks. Further, the efficacy of a late KBP-336 intervention was evaluated by including a group starting treatment on day 30. Glucose control and tolerance were evaluated throughout the study and spatial learning and memory were evaluated by Morris Water Maze after 17 weeks of treatment. RESULTS: When evaluating spatial learning, rats receiving KBP-336 throughout the study performed significantly better than AM1213, vehicle, and late intervention KBP-336. Both KBP-336 and AM1213 treatments improved spatial memory compared to the vehicle. The overall performance in the cognitive tests was reflected in the treatment efficacy on glycemic control, where KBP-336 was superior to AM1213. CONCLUSION: In summary, the DACRA KBP-336 ameliorates diabetes-induced spatial learning and memory impairment in diabetic rats. Further, KBP-336 improves long-term glycemic control superior to the amylin analog AM1213. Taken together, KBP-336 is, due to its anti-diabetic and insulin-sensitizing properties, a promising candidate for the treatment of cognitive impairments.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Ratos Zucker , Animais , Ratos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Masculino , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Resistência à Insulina , Glicemia/efeitos dos fármacos , Glicemia/metabolismo
14.
Small ; 20(40): e2312046, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38829034

RESUMO

Accurate construction of artificial nano-chaperones' structure is crucial for precise regulation of protein conformational transformation, facilitating effective treatment of proteopathy. However, how the ligand-anchors of nano-chaperones affect the spatial conformational changes in proteins remains unclear, limiting the development of efficient nano-chaperones. In this study, three types of gold nanoparticles (AuNPs) with different core/ligands interface anchor structures (Au─NH─R, Au─S─R, and Au─C≡C─R, R = benzoic acid) are synthesized as an ideal model to investigate the effect of interfacial anchors on Aß and amylin fibrillization. Computational results revealed that the distinct interfacial anchors imparted diverse distributions of electrostatic potential on the nanointerface and core/ligands bond strength of AuNPs, leading to differential interactions with amyloid peptides. Experimental results demonstrated that all three types of AuNPs exhibit site-specific inhibitory effects on Aß40 fibrillization due to preferential binding. For amylin, amino-anchored AuNPs demonstrate strong adsorption to multiple sites on amylin and effectively inhibit fibrillization. Conversely, thiol- and alkyne-anchored AuNPs adsorb at the head region of amylin, promoting folding and fibrillization. This study not only provided molecular insights into how core/ligands interfacial anchors of nanomaterials induce spatial conformational changes in amyloid peptides but also offered guidance for precisely engineering artificial-chaperones' nanointerfaces to regulate the conformational transformation of proteins.


Assuntos
Peptídeos beta-Amiloides , Ouro , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Nanopartículas Metálicas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Nanopartículas Metálicas/química , Peptídeos beta-Amiloides/química , Ouro/química , Ligantes , Amiloide/química , Humanos
15.
Biophys Chem ; 312: 107285, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38941872

RESUMO

Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to ß-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced ß-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through "spectral fingerprints". This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.


Assuntos
Espectrometria de Mobilidade Iônica , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Espectrometria de Massas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Humanos
16.
Anat Histol Embryol ; 53(4): e13074, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864153

RESUMO

In this study, we investigated amylin-like substance distribution in the pancreas of Japanese quail (Coturnix japonica) using a specific anti-rat amylin serum. We detected amylin-immunoreactive cells dispersed in the pancreatic extra-islet region but not in the islet region. The synthetic rat amylin-containing serum pre-absorption abolished the staining profile. Almost all amylin-immunoreactive cells were immuno-positive for peptide YY (PYY). In addition, certain amylin-immunoreactive cells stained immuno-positive for glucagon. Amylin and PYY co-secreted from the extra-islet cells might participate in the insulin and glucagon release regulation in the pancreas and food intake modulation through the central nervous system.


Assuntos
Coturnix , Glucagon , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Pâncreas , Peptídeo YY , Animais , Peptídeo YY/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Coturnix/metabolismo , Glucagon/metabolismo , Pâncreas/metabolismo , Imuno-Histoquímica/veterinária , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos
17.
J Trace Elem Med Biol ; 85: 127480, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875759

RESUMO

INTRODUCTION: Increasing epidemiological evidence highlights the association between systemic insulin resistance and Alzheimer's disease (AD). It is known that peripheral insulin resistance in the early stages of AD precedes and is a precursor to amyloid-ß (Aß) deposition. Although it is known that improving the CNS insulin sensitivity of AD patients is an important therapeutic goal and that the majority of insulin in the brain comes from the periphery, there has been little attention to the changes that occur in the pancreatic tissue of AD patients. Therefore, it is crucial to elucidate the mechanisms affecting insulin resistance in pancreatic tissue in AD. It is known that zinc (Zn2+) chelation is effective in reducing peripheral insulin resistance, cell apoptosis, cell death, and oxidative stress. OBJECTIVE: It was aimed to determine the changes in bioactive lipids, amylin (AIPP), oxidative stress and apoptosis in pancreatic cells in the early stages of Alzheimer's disease. The main aim is to reveal the therapeutic effect of the Cyclo-Z agent on these changes seen in the pancreas due to AD disease. METHODS: AD and ADC rats were intracerebroventricular (i.c.v.) Aß1-42 oligomers. Cyclo-Z gavage was applied to ADC and SHC rats for 21 days. First of all, the effects of AIPP, bioactive ceramides, apoptosis and oxidative stress on the pancreatic tissue of AD group rats were evaluated. Then, the effect of Cyclo-Z treatment on these was examined. ELISA kit was used in biochemical analyses. RESULTS: AIPP and ceramide (CER) levels and CER/ sphingosine-1 phosphate (S1P) ratio were increased in the pancreatic tissue of AD rats. It also increased the level of CER kinase (CERK), which is known to increase the concentration of CER 1-phosphate (C1P), which is known to be toxic to cells in the presence of excessive CER concentration. Due to the increase in CER level, it was observed that apoptosis and oxidative stress increased in the pancreatic cells of AD group rats. CONCLUSION: Cyclo-Z, which has Zn2+ chelating properties, reduced AD model rats' AIPP level and oxidative stress and could prevent pancreatic apoptosis. Similar therapeutic effects were not observed in the pancreatic tissue of Cyclo-Z administered to the SH group. For this reason, it is thought that Cyclo-Z agent may have a therapeutic effect on the peripheral hyperinsulinemia observed in the early stages of AD disease and the resulting low amount of insulin transported to the brain, by protecting pancreatic cells from apoptosis and oxidative stress by regulating their bioactive metabolites.


Assuntos
Doença de Alzheimer , Apoptose , Quelantes , Modelos Animais de Doenças , Estresse Oxidativo , Pâncreas , Zinco , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ratos , Zinco/metabolismo , Zinco/farmacologia , Pâncreas/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Quelantes/farmacologia , Masculino , Lipídeos , Peptídeos beta-Amiloides/metabolismo
18.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791099

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive loss of motor neurons. Emerging evidence suggests a potential link between metabolic dysregulation and ALS pathogenesis. This study aimed to investigate the relationship between metabolic hormones and disease progression in ALS patients. A cross-sectional study was conducted involving 44 ALS patients recruited from a tertiary care center. Serum levels of insulin, total amylin, C-peptide, active ghrelin, GIP (gastric inhibitory peptide), GLP-1 active (glucagon-like peptide-1), glucagon, PYY (peptide YY), PP (pancreatic polypeptide), leptin, interleukin-6, MCP-1 (monocyte chemoattractant protein-1), and TNFα (tumor necrosis factor alpha) were measured, and correlations with ALSFRS-R, evolution scores, and biomarkers were analyzed using Spearman correlation coefficients. Subgroup analyses based on ALS subtypes, progression pattern of disease, and disease progression rate patterns were performed. Significant correlations were observed between metabolic hormones and ALS evolution scores. Insulin and amylin exhibited strong correlations with disease progression and clinical functional outcomes, with insulin showing particularly robust associations. Other hormones such as C-peptide, leptin, and GLP-1 also showed correlations with ALS progression and functional status. Subgroup analyses revealed differences in hormone levels based on sex and disease evolution patterns, with male patients showing higher amylin and glucagon levels. ALS patients with slower disease progression exhibited elevated levels of amylin and insulin. Our findings suggest a potential role for metabolic hormones in modulating ALS progression and functional outcomes. Further research is needed to elucidate the underlying mechanisms and explore the therapeutic implications of targeting metabolic pathways in ALS management.


Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Insulina , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Estudos Transversais , Biomarcadores/sangue , Insulina/metabolismo , Insulina/sangue , Progressão da Doença , Leptina/sangue , Leptina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo C/sangue , Peptídeo C/metabolismo , Grelina/metabolismo , Grelina/sangue , Glucagon/sangue , Glucagon/metabolismo , Adulto , Hormônios/metabolismo , Hormônios/sangue
19.
Anal Biochem ; 692: 115570, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38763320

RESUMO

Zinc plays a crucial role both in the immune system and endocrine processes. Zinc restriction in the diet has been shown to lead to degeneration of the endocrine pancreas, resulting in hormonal imbalance within the ß-cells. Proteostasismay vary depending on the stage of a pathophysiological process, which underscores the need for tools aimed at directly analyzing biological status. Among proteomics methods, MALDI-ToF-MS can serve as a rapid peptidomics tool for analyzing extracts or by histological imaging. Here we report the optimization of MALDI imaging mass spectrometry analysis of histological thin sections from mouse pancreas. This optimization enables the identification of the major islet peptide hormones as well as the major accumulated precursors and/or proteolytic products of peptide hormones. Cross-validation of the identified peptide hormones was performed by LC-ESI-MS from pancreatic islet extracts. Mice subjected to a zinc-restricted diet exhibited a relatively lower amount of peptide intermediates compared to the control group. These findings provide evidence for a complex modulation of proteostasis by micronutrients imbalance, a phenomenon directly accessed by MALDI-MSI.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Zinco , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Camundongos , Zinco/análise , Zinco/metabolismo , Hormônios Pancreáticos/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo , Masculino
20.
Neurobiol Dis ; 196: 106485, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38643861

RESUMO

Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA