Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Talanta ; 275: 126147, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677170

RESUMO

Rapid testing has become an indispensable strategy to identify the most infectious individuals and prevent the transmission of SARS-CoV-2 in vulnerable populations. As such, COVID-19 rapid antigen tests (RATs) are being manufactured faster than ever yet lack relevant comparative analyses required to inform on absolute analytical sensitivity and performance, limiting end-user ability to accurately compare brands for decision making. To date, more than 1000 different COVID-19 RATs are commercially available in the world, most of which detect the viral nucleocapsid protein (NP). Here, we examine and compare the analytical sensitivity of 26 RATs that are readily available in Canada and/or Australia using two NP reference materials (RMs) - a fluorescent NP-GFP expressed in bacterial cells and NCAP-1 produced in a mammalian expression system. Both RMs generate highly comparable results within each RAT, indicating minimal bias due to differing expression systems and final buffer compositions. However, we demonstrate orders of magnitude differences in analytical sensitivities among distinct RATs, and find little correlation with the median tissue culture infectious dose (TCID50) assay values reported by manufacturers. In addition, two COVID-19/Influenza A&B combination RATs were evaluated with influenza A NP-GFP. Finally, important logistics considerations are discussed regarding the robustness, ease of international shipping and safe use of these reference proteins. Taken together, our data highlight the need for and practicality of readily available, reliable reference proteins for end-users that will ensure that manufacturers maintain batch-to-batch quality and accuracy of RATs. They will aid international public health and government agencies, as well as health and aged care facilities to reliably benchmark and select the best RATs to curb transmission of future SARS-CoV-2 and influenza outbreaks.


Assuntos
Antígenos Virais , Teste Sorológico para COVID-19 , COVID-19 , SARS-CoV-2 , Canadá , Austrália , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , Humanos , Teste Sorológico para COVID-19/métodos , Antígenos Virais/análise , Antígenos Virais/imunologia , Sensibilidade e Especificidade , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Animais
3.
Mod Pathol ; 37(1): 100384, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972928

RESUMO

Tumor-agnostic testing for NTRK1-3 gene rearrangements is required to identify patients who may benefit from TRK inhibitor therapies. The overarching objective of this study was to establish a high-quality pan-TRK immunohistochemistry (IHC) screening assay among 18 large regional pathology laboratories across Canada using pan-TRK monoclonal antibody clone EPR17341 in a ring study design. TRK-fusion positive and negative tumor samples were collected from participating sites, with fusion status confirmed by panel next-generation sequencing assays. Each laboratory received: (1) unstained sections from 30 cases of TRK-fusion-positive or -negative tumors, (2) 2 types of reference standards: TRK calibrator slides and IHC critical assay performance controls (iCAPCs), (3) EPR17341 antibody, and (4) suggestions for developing IHC protocols. Participants were asked to optimize the IHC protocol for their instruments and detection systems by using iCAPCs, to stain the 30 study cases, and to report the percentage scores for membranous, cytoplasmic, and nuclear staining. TRK calibrators were used to assess the analytical sensitivity of IHC protocols developed by using the 2 reference standards. Fifteen of 18 laboratories achieved diagnostic sensitivity of 100% against next-generation sequencing. The diagnostic specificity ranged from 40% to 90%. The results did not differ significantly between positive scores based on the presence of any type of staining vs the presence of overall staining in ≥1% of cells. The median limit of detection measured by TRK calibrators was 76,000 molecules/cell (range 38,000 to >200,000 molecules/cell). Three different patterns of staining were observed in 19 TRK-positive cases, cytoplasmic-only in 7 samples, nuclear and cytoplasmic in 9 samples, and cytoplasmic and membranous in 3 samples. The Canadian multicentric pan-TRK study illustrates a successful strategy to accelerate the multicenter harmonization and implementation of pan-TRK immunohistochemical screening that achieves high diagnostic sensitivity by using laboratory-developed tests where laboratories used centrally developed reference materials. The measurement of analytical sensitivity by using TRK calibrators provided additional insights into IHC protocol performance.


Assuntos
Neoplasias , Humanos , Imuno-Histoquímica , Canadá , Anticorpos Monoclonais , Receptor trkA/genética , Proteínas de Fusão Oncogênica/genética , Biomarcadores Tumorais/genética
4.
Clin Chim Acta ; 552: 117625, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923102

RESUMO

BACKGROUND: Cystic fibrosis is the most common hereditary recessive disease with an incidence of about 1:2500/3000. It has long been known that the disease is caused by deleterious mutations in the CFTR gene. Conventionally, the disease is diagnosed in several phases. The analysis of all the possible disease-causing molecular alterations is time consuming and may not lead to a definitive diagnosis in several cases. Consequently, we propose, in this paper, a rapid sequencing method that, in a single procedural asset, reveals the presence of small mutations and also the copy number variants (CNVs) from the DNA extracted from the Guthrie Spot. MATERIALS AND METHODS: We first sequenced 30 blood spots, then we validated the method on 100 spots that underwent both traditional analyses and this complete NGS sequencing, and lastly, we tested the strategy on patients who normally do not reach the molecular sequencing step because of low level of Immune-Reactive Trypsinogen. RESULTS: Using this procedure, we identified 97 variants in the CFTR gene of our samples and 6 CNVs. Notably, the significant data were obtained in the group of patients with borderline or negative IRT who routinely would not undergo molecular testing. We also identified 6 carriers of "disease-causing" variants. CONCLUSION: This method is very robust. Indeed, there was a 100% concordance with Sanger sequencing validation, and 6 mutation carriers were identified who normally escaped molecular testing with actual conventional procedure. There were also 3 duplications of almost the entire gene in heterozygosity, which were not seen with traditional methods. Being quick and easy to perform, we suggest that complete sequencing of the CFTR gene, as in this study be considered for all newborns.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Recém-Nascido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Triagem Neonatal/métodos , Projetos Piloto , Sensibilidade e Especificidade , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Mutação , Testes Genéticos/métodos
5.
Microbiol Spectr ; : e0149723, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606383

RESUMO

Currently, DNA-based nucleic acid amplification tests (NAATs) and RNA-based NAATs are employed to detect reproductive tract infection (RTI) pathogens including Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Ureaplasma urealyticum (UU). Although evaluations of DNA-based NAATs have already existed, the comparison of the two methods is scarce. Thus, we compared the limits of detection (LODs) of DNA-based and RNA-based NAATs on the same experimental conditions. Inactivated culture supernatants of CT, NG, and UU with determined pathogen DNA and RNA load were used to evaluate LODs of seven DNA kits and one RNA kit. The LODs of the seven DNA kits for CT, NG, and UU ranged between 38-1,480, 94-20,011, and 132-2,011 copies/mL, respectively. As for RNA kits, they could detect samples at RNA concentrations of 3,116, 2,509, and 2,896 copies/mL, respectively. The RNA concentrations of CT, NG, and UU were 40, 885, and 42 times that of corresponding pathogen DNA concentrations in the employed supernatants, so RNA kits could detect pathogen DNA concentrations as low as 78 copies/mL, 3 copies/mL, and 69 copies/mL, respectively, but the level of pathogen load that the RNA tests could detect was primarily dependent on the infectious phase and transcriptional level of RNA. Thus, a schematic of bacterial dynamics during the period of reproductive tract infections was provided, which suggests that in terms of the analytical sensitivity of pathogen detection, RNA tests are more suitable for detecting active infection and recovery phase, while DNA tests are more suitable for detection in the early stage of infection. IMPORTANCE Reproductive tract infections have considerable effects on the health of humans. CT, NG , and UU are common pathogens. Although evaluation of DNA-based tests has already existed, the comparison between DNA-based and RNA-based tests is rare. Therefore, this study compared the limits of detection of the two tests on the same experimental conditions. Results suggested that most DNA-based NAATs could detect CT, NG, and UU at DNA concentrations lower than 1,000 copies/mL, while RNA-based NAATs could detect bacteria at RNA concentrations around 3,000 copies/mL. Considering the copy number of RNA per bacterium is dynamic through the growth cycle, further comparison is combined with a schematic of bacterial dynamics. Results suggested that in terms of the analytical sensitivity of pathogen detection, RNA tests are more suitable for detecting active infection and recovery phase, while DNA tests are more suitable for detection in the early stage of infection.

6.
Plants (Basel) ; 12(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375989

RESUMO

Among the cucurbit-infecting viruses, watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV) (Potyvirus: Potyviridae) are responsible for severe symptoms on cucumber, melon, watermelon, and zucchini cultivations worldwide. In this study, reverse transcription real-time PCR (real-time RT-PCR) and droplet-digital PCR (RT-ddPCR) assays targeting the coat protein (CP) genes of WMV and ZYMV were developed and validated according to the international standards of plant pest diagnosis (EPPO PM 7/98 (5)). First, the diagnostic performance of WMV-CP and ZYMV-CP real-time RT-PCRs was evaluated, and the assays displayed an analytical sensitivity of 10-5 and 10-3, respectively. The tests also showed an optimal repeatability, reproducibility and analytical specificity, and were reliable for the virus detection in naturally infected samples and across a wide range of cucurbit hosts. Based on these results, the real-time RT-PCR reactions were adapted to set up RT-ddPCR assays. These were the first RT-ddPCR assays aiming at the detection and quantification of WMV and ZYMV and showed a high sensitivity, being able to detect until 9 and 8 copies/µL of WMV or ZYMV, respectively. The RT-ddPCRs allowed the direct estimation of the virus concentrations and opened to a broad range of applications in disease management, such as the evaluation of partial resistance in breeding processes, identification of antagonistic/synergistic events, and studies on the implementation of natural compounds in the integrated management strategies.

7.
Talanta ; 260: 124650, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167679

RESUMO

The sensitivity of ELISA-based devices strongly depends on the right orientation of antibodies on the sensor surface. The aim of this work was to increase the analytical performance of a commercial ELISA-based medical device (VIDAS®), thanks to the specific orientation of antibodies on gold nanostructured disposables. For this purpose, fPSA VIDAS® assay was used as model and the disposable providing the antigen binding surface (SPR®) was functionalized with gold nanostructures coated with monovalent half-fragment antibodies (reduced IgG, rIgG). The functionalization of polystyrene SPRs® with gold nanostructures was achieved through a one-step incubation of gold dispersions in a mixture of non-toxic solvents. Five different concentrations of gold nanoparticles (NPs) were tested with a maximum fluorescence enhancement for NPs density around 3-8 *103 NPs/µm2 (752 ± 11 RFV vs 316 ± 5 RFV of bare SPRs®). The comparison of the dose-response curve obtained with commercial and gold coated-SPRs® revealed a significant improvement (p < 0.0001) of the analytical sensitivity of the VIDAS® system using nanostructured disposables. This improved version of SPRs® allows to distinguish small variations of fPSA concentrations opening the way to the application of this biomarker to other kinds of cancer as recently described in the literature.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Anticorpos/química , Ensaio de Imunoadsorção Enzimática
8.
J Clin Virol ; 161: 105424, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963141

RESUMO

BACKGROUND: The current global mpox virus (MPXV) outbreak has been declared a Public Health Emergency of International Concern by WHO, with more than 80,000 cases confirmed across multiple continents. Diagnosis is confirmed by PCR of viral DNA from vesicle and other swabs. OBJECTIVE: The aim of this study was to assess commercial RT PCR assays for Orthopoxvirus (OPX) and MPXV for analytical sensitivity, and percent agreements and compare them to primer/probe sets employed at the Victorian Infectious Diseases Reference Laboratory (VIDRL), Centers for Disease Control andPrevention (CDC) and US Army Medical Research Institute of Infectious Diseases (USAMRIID). Limits of detection (LOD), intra-run variability, cross-reactivity and performance on forty clinical samples was assessed on eleven commercial assays and five primer/probe combinations used at VIDRL, CDC and USAMRIID. RESULTS: All assays were able to detect OPX and MPXV (LOD 57 to 14,495 copies/mL) with intra-run coefficients of variation between Cycle thresholds of 0.58 and 3.44, and there was no unexpected cross-reactivity. All assays demonstrated 100% negative percent agreement with clinical samples and all but one yielded 100% positive percent agreement. CONCLUSIONS: Variations in LOD between assays may be dependent on the platform used and sample type. Despite the overall comparable performance of the assays assessed, it is important that routine laboratories perform in-house validations before implementing RT PCR for OPX and/or MPXV as reliable and accurate laboratory diagnosis of MPXV and isolation is crucial to containing the spread of this current outbreak and informing public health interventions and response.


Assuntos
Doenças Transmissíveis , Mpox , Humanos , Monkeypox virus/genética , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase , Limite de Detecção , Mpox/diagnóstico
9.
Pathogens ; 12(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839429

RESUMO

Tuberculosis (TB) is a significant public health threat and has remained a leading cause of death in many parts of the world. Rapid and accurate testing and timely diagnosis can improve treatment efficacy and reduce new exposures. The Cepheid Xpert® MTB/RIF tests have two marketed products (US-IVD and Ultra) that are widely accepted for diagnosis of TB but have not yet been approved for non-sputum specimens. Despite numerous studies in the literature, no data for the analytical sensitivity of these two products on the non-sputum samples are available to date. This is the first study that systematically determined the analytical sensitivities of both US-IVD and Ultra tests on cerebrospinal fluid (CSF), tissue, and bronchoalveolar lavage (BAL). The limits of detection (LoDs) on the US-IVD test for both Mycobacterium tuberculosis and rifampin resistance in CFU/mL, respectively, were as follows: CSF (3.3 and 4.6), tissue (15 and 23), and bronchoalveolar lavage (BAL) (45 and 60), and on the Ultra test: CSF (0.16 and 2.7), tissue (0.11 and 12), and BAL (0.65, and 7.5). Overall, the analytical sensitivities of the Ultra test were substantially better than US-IVD for all sample types tested. This study provided a foundation for using either the US-IVD or Ultra test for the early detection of both pulmonary and extrapulmonary (EP) TB. Furthermore, using Ultra could result in higher TB case detection rates in subjects with paucibacillary TB and EP TB, positively impacting WHO goals to eradicate TB.

10.
Talanta Open ; 7: 100187, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36718384

RESUMO

Aggressive diagnostic testing remains an indispensable strategy for health and aged care facilities to prevent the transmission of SARS-CoV-2 in vulnerable populations. The preferred diagnostic platform has shifted towards COVID-19 rapid antigen tests (RATs) to identify the most infectious individuals. As such, RATs are being manufactured faster than at any other time in our history yet lack the relevant quantitative analytics required to inform on absolute analytical sensitivity enabling manufacturers to maintain high batch-to-batch reproducibility, and end-users to accurately compare brands for decision making. Here, we describe a novel reference standard to measure and compare the analytical sensitivity of RATs using a recombinant GFP-tagged nucleocapsid protein (NP-GFP). Importantly, we show that the GFP tag does not interfere with NP detection and provides several advantages affording streamlined protein expression and purification in high yields as well as faster, cheaper and more sensitive quality control measures for post-production assessment of protein solubility and stability. Ten commercial COVID-19 RATs were evaluated and ranked using NP-GFP as a reference standard. Analytical sensitivity data of the selected devices as determined with NP-GFP did not correlate with those reported by the manufacturers using the median tissue culture infectious dose (TCID50) assay. Of note, TCID50 discordance has been previously reported. Taken together, our results highlight an urgent need for a reliable reference standard for evaluation and benchmarking of the analytical sensitivity of RAT devices. NP-GFP is a promising candidate as a reference standard that will ensure that RAT performance is accurately communicated to healthcare providers and the public.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA