RESUMO
Chronic wounds pose significant health concerns. Current treatment options include natural compounds like natural rubber latex (NRL) from Hevea brasiliensis. NRL, particularly the F1 protein fraction, has demonstrated bioactivity, biocompatibility, and angiogenic effects. So far, there is no study comparing F1 protein with total NRL serum, and the necessity of downstream processing remains unknown. Here, we evaluated the angiogenic potential of F1 protein compared to total NRL serum and the need for downstream processing. For that, ion exchange chromatography (DEAE-Sepharose), antioxidant activity, physicochemical characterization, cell culture in McCoy fibroblasts, and wound healing in Balb-C mice were performed. Also, the evaluation of histology and collagen content and the levels of inflammatory mediators were quantified. McCoy fibroblast cell assay showed that F1 protein (0.01 %) and total NRL serum (0.01 %) significantly increased cell proliferation by 47.1 ± 11.3 % and 25.5 ± 2.5 %, respectively. However, the AA of F1 protein (78.9 ± 0.8 %) did not show a significant difference compared to NRL serum (77.0 ± 1.1 %). F1 protein and NRL serum were more effective in wound management in rodents. Histopathological analysis confirmed accelerated healing and advanced tissue repair. Similarly, the F1 protein (0.01 %) increased collagen, showing that this fraction can stimulate the synthesis of collagen by fibroblastic cells. Regarding cytokines production (IL-10, TNF-α, IFN-γ), F1 protein and NRL serum did not exert an impact on the synthesis of these cytokines. Furthermore, we did not observe statistically significant changes in dosages of enzymes (MPO and EPO) among the groups. Nevertheless, Nitric Oxide dosage was reduced drastically when the F1 protein (0.01 %) protein was applied topically. These findings contribute to the understanding of F1 protein and NRL serum properties and provide insights into cost-effectiveness and practical applications in medicine and biotechnology. Therefore, further research is needed to assess the economic feasibility of downstream processing for NRL-based herbal medicine derived from Hevea brasiliensis.
Assuntos
Hevea , Borracha , Animais , Camundongos , Látex , Hevea/química , Cicatrização , Colágeno , CitocinasRESUMO
UNLABELLED: Mesenchymal stem cells (MSCs) of placental origin have become increasingly translational owing to their abundance and accessibility. MSCs of different origin share several features but also present biological differences that might point to distinct clinical properties. Hence, mixing fetal and maternal cells from the same placenta can lead to contradicting results. We analyzed the biological characteristics of haploidentical MSCs isolated from fetal sources, including the umbilical cord (UC-MSCs) and chorion (Ch-MSCs), compared with maternal decidua MSCs (Dc-MSCs). All MSCs were analyzed for general stem cell properties. In addition, immunosuppressive capacity was assessed by the inhibition of T-cell proliferation, and angiogenic potential was evaluated in a Matrigel transplantation assay. The comparison between haploidentical MSCs displayed several distinct features, including (a) marked differences in the expression of CD56, (b) a higher proliferative capacity for Dc-MSCs and UC-MSCs than for Ch-MSCs, (c) a diversity of mesodermal differentiation potential in favor of fetal MSCs, (d) a higher capacity for Ch-MSCs to inhibit T-cell proliferation, and (e) superior angiogenic potential of Ch-MSCs evidenced by a higher capability to form tubular vessel-like structures and an enhanced release of hepatocyte growth factor and vascular endothelial growth factor under hypoxic conditions. Our results suggest that assessing the prevalence of fetomaternal contamination within placental MSCs is necessary to increase robustness and limit side effects in their clinical use. Finally, our work presents evidence positioning fetoplacental cells and notably Ch-MSCs in the forefront of the quest for cell types that are superior for applications in regenerative medicine. SIGNIFICANCE: This study analyzed the biological characteristics of mesenchymal stem cells (MSCs) isolated from fetal and maternal placental origins. The findings can be summarized as follows: (a) important differences were found in the expression of CD56, (b) a different mesodermal differentiation potential was found in favor of fetal MSCs, (c) a higher immunosuppressive capacity for chorion MSCs was noted, and (d) superior angiogenic potential of Ch-MSCs was observed. These results suggest that assessing the prevalence of fetomaternal contamination within placental MSCs is necessary to increase robustness and limit side effects in their clinical use. The evidence should allow clinicians to view fetoplacental cells, notably Ch-MSCs, favorably as candidates for use in regenerative medicine.
Assuntos
Córion/citologia , Decídua/citologia , Células-Tronco Mesenquimais/citologia , Antígeno CD56/biossíntese , Antígeno CD56/genética , Diferenciação Celular , Células Cultivadas , Feminino , Sangue Fetal/citologia , Feto/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Terapia de Imunossupressão , Recém-Nascido , Masculino , Neovascularização Fisiológica , Especificidade de Órgãos , Medicina Regenerativa , Linfócitos T/imunologiaRESUMO
OBJECTIVE: To quantitate 2-methoxyestradiol (2-ME) in human corpus luteum (CL) of different ages and to determine the expression of cytochrome-P450-1A1 (CYP1A1) and catechol-O-methyl transferase (COMT) in CL and the action of 2-ME on P, vascular endothelial growth factor (VEGF) secretion, and luteal angiogenesis. DESIGN: Experimental study. SETTING: University division of reproductive endocrinology. PATIENT(S): Twenty-four women of reproductive age. INTERVENTION(S): CL was collected from 15 women during the minilaparotomy for tubal sterilization. Granulosa lutein cells were harvested 36 hours after hCG administration in patients undergoing IVF. MAIN OUTCOMES MEASURE(S): Levels of 2-ME were determined by high-performance liquid chromatography in CL. CYP1A1 and COMT were assessed by immunohistochemistry and Western blot. P and VEGF were measured by radioimmunoassay and ELISA. The angiogenic potential was analyzed using EA.hy926 cells. RESULT(S): Plasma levels of E2 decreased in the late luteal phase in association with an increase in luteal tissue of 2-ME concentrations. Concomitantly, there was a significant reduction of angiogenic activity in late CL. There was no significant variation in CYP1A1 and COMT expression in all CL. In physiological doses, 2-ME inhibited basal VEGF by granulosa lutein cells and diminished the angiogenic activity in conditioned media but did not prevent P and VEGF production stimulated by hCG. CONCLUSION(S): These data suggest the participation of 2-ME in physiological luteolysis by reducing angiogenesis. However, 2-ME did not prevent in vitro hCG stimulation of P biosynthesis, providing a mechanism for CL rescue in the cycle of conception.