Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 162: 287-296, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29407760

RESUMO

Low doses of mercury (Hg) promote deleterious effects on cardiovascular system, but the mechanisms implicated remain unclear. This study analyzed whether angiotensin II AT-1 receptors are involved in the vascular dysfunction caused by chronic exposure to low HgCl2 doses. For this, rats were divided into four groups and untreated (saline by im injections and tap water by gavage) or treated for 30 days as follows: Mercury (HgCl2im, first dose of 4.6 µg kg-1 and subsequent doses of 0.07 µg kg-1 day-1, and tap water by gavage); Losartan (saline im and losartan, 15 mg kg-1 day-1, by gavage); Losartan-Mercury (HgCl2im and Losartan by gavage). Systolic blood pressure was measured by tail plethysmography, vascular reactivity in aorta by isolated organ bath, oxidative stress by measuring the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and antioxidant capacity (FRAP) and protein expression of AT-1 receptors by Western Blot. As results, co-treatment with losartan prevented the increased aortic vasoconstrictor responses to phenylephrine (Phe), the involvement of ROS and prostanoids on the response to Phe and the reduced negative endothelial modulation by nitric oxide on these responses. Moreover, this co-treatment avoided the increase in plasmatic and vascular oxidative stress and AT-1 protein expression in aorta. In conclusion, these results suggest that AT-1 receptors upregulation might play a key role in the vascular damage induced by Hg exposure by increasing oxidative stress and probably by reducing NO bioavailability.


Assuntos
Angiotensina II , Mercúrio , Estresse Oxidativo , Receptor Tipo 1 de Angiotensina , Receptores de Angiotensina , Angiotensina II/efeitos dos fármacos , Angiotensina II/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular , Mercúrio/toxicidade , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Angiotensina/efeitos dos fármacos , Receptores de Angiotensina/metabolismo , Regulação para Cima , Vasoconstrição
2.
Neuroscience ; 340: 521-529, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27856342

RESUMO

A single exposure to amphetamine induces neurochemical sensitization in striatal areas. The neuropeptide angiotensin II, through AT1 receptors (AT1-R) activation, is involved in these responses. However, amphetamine-induced alterations can be extended to extra-striatal areas involved in blood pressure control and their physiological outcomes. Our aim for the present study was to analyze the possible role for AT1-R in these events using a two-injection protocol and to further characterize the proposed AT1-R antagonism protocol. Central effect of orally administered AT1-R blocker (Candesartan, 3mg/kg p.o.×5days) in male Wistar rats was analyzed by spontaneous activity of neurons within locus coeruleus. In another group of animals pretreated with the AT1-R blocker or vehicle, sensitization was achieved by a single administration of amphetamine (5mg/kg i.p. - day 6) followed by a 3-week period off drug. On day 27, after receiving an amphetamine challenge (0.5mg/kg i.p.), we evaluated: (1) the sensitized c-Fos expression in locus coeruleus (LC), nucleus of the solitary tract (NTS), caudal ventrolateral medulla (A1) and central amygdala (CeAmy); and (2) the blood pressure response. AT1-R blockade decreased LC neurons' spontaneous firing rate. Moreover, sensitized c-Fos immunoreactivity in TH+neurons was found in LC and NTS; and both responses were blunted by the AT1-R blocker pretreatment. Meanwhile, no differences were found neither in CeAmy nor A1. Sensitized blood pressure response was observed as sustained changes in mean arterial pressure and was effectively prevented by AT1-R blockade. Our results extend AT1-R role in amphetamine-induced sensitization over noradrenergic nuclei and their cardiovascular output.


Assuntos
Anfetamina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Simpatomiméticos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Pressão Sanguínea/fisiologia , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/efeitos dos fármacos , Núcleo Central da Amígdala/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Bulbo/citologia , Bulbo/efeitos dos fármacos , Bulbo/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distribuição Aleatória , Ratos Wistar , Núcleo Solitário/citologia , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA