Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.156
Filtrar
1.
Brain Commun ; 6(3): fcae131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707710

RESUMO

New treatments are needed to improve the prognosis of pneumococcal meningitis. We performed a systematic review on adjunctive treatments in animal models of pneumococcal meningitis in order to identify treatments with the most potential to progress to clinical trials. Studies testing therapy adjunctive to antibiotics in animal models of pneumococcal meningitis were included. A literature search was performed using Medline, Embase and Scopus for studies published from 1990 up to 17 February 2023. Two investigators screened studies for inclusion and independently extracted data. Treatment effect was assessed on the clinical parameters disease severity, hearing loss and cognitive impairment and the biological parameters inflammation, brain injury and bacterial load. Adjunctive treatments were evaluated by their effect on these outcomes and the quality, number and size of studies that investigated the treatments. Risk of bias was assessed with the SYRCLE risk of bias tool. A total of 58 of 2462 identified studies were included, which used 2703 experimental animals. Disease modelling was performed in rats (29 studies), rabbits (13 studies), mice (12 studies), gerbils (3 studies) or both rats and mice (1 study). Meningitis was induced by injection of Streptococcus pneumoniae into the subarachnoid space. Randomization of experimental groups was performed in 37 of 58 studies (64%) and 12 studies (12%) were investigator-blinded. Overall, 54 treatment regimens using 46 adjunctive drugs were evaluated: most commonly dexamethasone (16 studies), daptomycin (5 studies), complement component 5 (C5; 3 studies) antibody and Mn(III)tetrakis(4-benzoicacid)porphyrin chloride (MnTBAP; 3 studies). The most frequently evaluated outcome parameters were inflammation [32 studies (55%)] and brain injury [32 studies (55%)], followed by disease severity [30 studies (52%)], hearing loss [24 studies (41%)], bacterial load [18 studies (31%)] and cognitive impairment [9 studies (16%)]. Adjunctive therapy that improved clinical outcomes in multiple studies was dexamethasone (6 studies), C5 antibodies (3 studies) and daptomycin (3 studies). HMGB1 inhibitors, matrix metalloproteinase inhibitors, neurotrophins, antioxidants and paquinimod also improved clinical parameters but only in single or small studies. Evaluating the treatment effect of adjunctive therapy was complicated by study heterogeneity regarding the animal models used and outcomes reported. In conclusion, 24 of 54 treatment regimens (44%) tested improved clinically relevant outcomes in experimental pneumococcal meningitis but few were tested in multiple well-designed studies. The most promising new adjunctive treatments are with C5 antibodies or daptomycin, suggesting that these drugs could be tested in clinical trials.

2.
Cell Host Microbe ; 32(5): 639-650, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723604

RESUMO

There is rapidly growing awareness of microbiome assembly and function in early-life gut health. Although many factors, such as antibiotic use and highly processed diets, impinge on this process, most research has focused on people residing in high-income countries. However, much of the world's population lives in low- and middle-income countries (LMICs), where, in addition to erratic antibiotic use and suboptimal diets, these groups experience unique challenges. Indeed, many children in LMICs are infected with intestinal helminths. Although helminth infections are strongly associated with diverse developmental co-morbidities and induce profound microbiome changes, few studies have directly examined whether intersecting pathways between these components of the holobiont shape health outcomes in early life. Here, we summarize microbial colonization within the first years of human life, how helminth-mediated changes to the gut microbiome may affect postnatal growth, and why more research on this relationship may improve health across the lifespan.


Assuntos
Microbioma Gastrointestinal , Helmintíase , Helmintos , Microbioma Gastrointestinal/fisiologia , Humanos , Helmintos/fisiologia , Animais , Lactente , Enteropatias Parasitárias
3.
Front Psychiatry ; 15: 1364858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716113

RESUMO

The hippocampus is one of the brain areas affected by autism spectrum disorder (ASD). Individuals with ASD typically have impairments in hippocampus-dependent learning, memory, language ability, emotional regulation, and cognitive map creation. However, the pathological changes in the hippocampus that result in these cognitive deficits in ASD are not yet fully understood. In the present review, we will first summarize the hippocampal involvement in individuals with ASD. We will then provide an overview of hippocampal structural and functional abnormalities in genetic, environment-induced, and idiopathic animal models of ASD. Finally, we will discuss some pharmacological and non-pharmacological interventions that show positive impacts on the structure and function of the hippocampus in animal models of ASD. A further comprehension of hippocampal aberrations in ASD might elucidate their influence on the manifestation of this developmental disorder and provide clues for forthcoming diagnostic and therapeutic innovation.

4.
Biotechnol J ; 19(5): e2400091, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719615

RESUMO

Microalgal emergence is a promising platform with two-decade historical background for producing vaccines and biopharmaceuticals. During that period, microalgal-based vaccines have reported successful production for various diseases. Thus, species selection is important for genetic transformation and delivery methods that have been developed. Although many vaccine prototypes have been produced for infectious and non-infectious diseases, fewer studies have reached immunological and immunoprotective evaluations. Microalgae-made vaccines for Staphylococcus aureus, malaria, influenza, human papilloma, and Zika viruses have been explored in their capacity to induce humoral or cellular immune responses and protective efficacies against experimental challenges. Therefore, specific pathogen antigens and immune system role are important and addressed in controlling these infections. Regarding non-communicable diseases, these vaccines have been investigated for breast cancer; microalgal-produced therapeutic molecules and microalgal-made interferon-α have been explored for hypertension and potential applications in treating viral infections and cancer, respectively. Thus, conducting immunological trials is emphasized, discussing the promising results observed in terms of immunogenicity, desired immune response for controlling affections, and challenges for achieving the desired protection levels. The potential advantages and hurdles associated with this innovative approach are highlighted, underlining the relevance of assessing immune responses in preclinical and clinical trials to validate the efficacy of these biopharmaceuticals. The promising future of this healthcare technology is also envisaged.


Assuntos
Microalgas , Humanos , Vacinas/imunologia , Animais
5.
One Health ; 18: 100744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725960

RESUMO

The emergence of SARS-CoV-2 in 2019 and its rapid spread throughout the world has caused the largest pandemic of our modern era. The zoonotic origin of this pathogen highlights the importance of the One Health concept and the need for a coordinated response to this kind of threats. Since its emergence, the virus has caused >7 million deaths worldwide. However, the animal source for human outbreaks remains unknown. The ability of the virus to jump between hosts is facilitated by the presence of the virus receptor, the highly conserved angiotensin-converting enzyme 2 (ACE2), found in various mammals. Positivity for SARS-CoV-2 has been reported in various species, including domestic animals and livestock, but their potential role in bridging viral transmission to humans is still unknown. Additionally, the virus has evolved over the pandemic, resulting in variants with different impacts on human health. Therefore, suitable animal models are crucial to evaluate the susceptibility of different mammalian species to this pathogen and the adaptability of different variants. In this work, we established a transgenic mouse model that expresses the feline ACE2 protein receptor (cACE2) under the human cytokeratin 18 (K18) gene promoter's control, enabling high expression in epithelial cells, which the virus targets. Using this model, we assessed the susceptibility, pathogenicity, and transmission of SARS-CoV-2 variants. Our results show that the sole expression of the cACE2 receptor in these mice makes them susceptible to SARS-CoV-2 variants from the initial pandemic wave but does not enhance susceptibility to omicron variants. Furthermore, we demonstrated efficient contact transmission of SARS-CoV-2 between transgenic mice that express either the feline or the human ACE2 receptor.

7.
OMICS ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808529

RESUMO

The axolotl (Ambystoma mexicanum) is renowned for its remarkable regenerative capabilities, which are not diminished by the transition from a neotenic to a metamorphic state. This study explored the microbiome dynamics in axolotl limb regeneration by examining the microbial communities present in neotenic and metamorphic axolotls at two critical stages of limb regeneration: pre-amputation and during blastema formation. Utilizing 16S rRNA amplicon sequencing, we investigated the variations in microbiome profiles associated with different developmental and regenerative states. Our findings reveal a distinct separation in the microbiome profiles of neotenic and metamorphic samples, with a clear demarcation in microbial composition at both the phylum and genus levels. In neotenic 0DPA samples, Proteobacteria and Firmicutes were the most abundant, whereas in neotenic 7DPA samples, Proteobacteria and Bacteroidetes dominated. Conversely, metamorphic samples displayed a higher abundance of Firmicutes and Bacteroidetes at 0DPA and Proteobacteria and Firmicutes at 7DPA. Alpha and beta diversity analyses, along with dendrogram construction, demonstrated significant variations within and between the sample groups, suggesting a strong influence of both developmental stage and regenerative state on the microbiome. Notably, Flavobacterium and Undibacterium emerged as distinctive microbial entities in neotenic 7DPA samples, highlighting potential key players in the microbial ecology of regeneration. These findings suggest that the axolotl's microbiome is dynamically responsive to blastema formation, and they underscore the potential influence of microbial communities on the regeneration process. This study lays the groundwork for future research into the mechanisms by which the microbiome may modulate regenerative capacity.

8.
Front Pharmacol ; 15: 1379389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783940

RESUMO

Introduction: Curcumin is gaining recognition as an agent for cancer chemoprevention and is presently administered to humans. However, the limited number of clinical trials conducted for the treatment of prostate cancer is noteworthy. Animal models serve as valuable tools for enhancing our understanding of disease mechanisms and etiology in humans. The objective of this study was to examine the anti-prostate cancer effects of curcumin in vivo for comprehending its current research status and potential clinical applicability. Methods: Our methodology involved a systematic exploration of animal studies pertaining to curcumin and prostate cancer, as documented in PubMed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang database, Vip database, and SinoMed, up to 03 September 2023. Risk of bias was assessed using the SYRCLE Animal Study Risk of Bias tool. The results were combined using the RevMan 5.3. Results: A comprehensive analysis was conducted on 17 studies encompassing 263 mouse transplantation tumor models. The findings of this meta-analysis demonstrated that curcumin exhibited a superior inhibitory effect on the volume of prostate cancer tumors in mice compared to the control group (standardized mean difference [SMD]: 1.16, 95% confidence interval [CI]: 0.52, 1.80, p < 0.001). Additionally, curcumin displayed a more effective inhibition of mice prostate cancer tumor weight (SMD: -3.27, 95% CI: -4.70, -1.83, p < 0.001). Furthermore, in terms of tumor inhibition rate, curcumin exhibited greater efficacy (SMD: 0.25, 95% CI: 0.23, 0.27, p < 0.001). Moreover, curcumin more effectively inhibited PCNA mRNA (SMD: -3.11, 95% CI: -4.60, -1.63, p < 0.001) and MMP2 mRNA (SMD: -3.19, 95% CI: 5.85, -0.53, p < 0.001). Conclusion: Curcumin exhibited inhibitory properties towards prostate tumor growth and demonstrated a beneficial effect on prostate cancer treatment, thereby offering substantiation for further clinical investigations. It is important to acknowledge that the included animal studies exhibited considerable heterogeneity, primarily because of the limited number of studies included. Consequently, additional randomized controlled trials are required to comprehensively assess the efficacy of curcumin in humans. Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023464661), identifier (CRD42023464661).

9.
Eur J Immunol ; : e2350949, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778498

RESUMO

Type 1 diabetes (T1D) is characterized by T-cell responses to islet antigens. Investigations in humans and the nonobese diabetic (NOD) mouse model of T1D have revealed that T-cell reactivity to insulin plays a central role in the autoimmune response. As there is no convenient NOD-based model to study human insulin (hIns) or its T-cell epitopes in the context of spontaneous T1D, we developed a NOD mouse strain transgenically expressing hIns in islets under the control of the human regulatory region. Female NOD.hIns mice developed T1D at approximately the same rate and overall incidence as NOD mice. Islet-infiltrating T cells from NOD.hIns mice recognized hIns peptides; both CD8 and CD4 T-cell epitopes were identified. We also demonstrate that islet-infiltrating T cells from HLA-transgenic NOD.hIns mice can be used to identify potentially patient-relevant hIns T-cell epitopes. Besides serving as an antigen, hIns was expressed in the thymus of NOD.hIns mice and could serve as a protector against T1D under certain circumstances, as previously suggested by genetic studies in humans. NOD.hIns mice and related strains facilitate human-relevant epitope discovery efforts and the investigation of fundamental questions that cannot be readily addressed in humans.

10.
Zhongguo Fei Ai Za Zhi ; 27(4): 257-265, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38769828

RESUMO

BACKGROUND: Bone is a common site for metastasis in lung adenocarcinoma, but the mechanism behind lung adenocarcinoma bone metastasis is still unclear. And currently, there is a lack of easily traceable and stable lung adenocarcinoma bone metastasis cell models, which limits the research on the mechanism of lung adenocarcinoma bone metastasis. The establishment of human lung adenocarcinoma cell line that are highly metastatic to bone, labeled with green fluorescent proteins (GFP) and fireflies luciferase (LUC), along with transcriptomic characterization, would be beneficial for research on lung adenocarcinoma bone metastasis and provide new experimental methods. METHODS: The human lung adenocarcinoma cell line A549-GFP-LUC was injected into nude mice via the left ventricle to construct a bone metastasis model, and was domesticated in vivo for three consecutive times to obtain the human high bone metastasis lung adenocarcinoma cell line A549-GFP-LUC-BM3; cell counting kit-8 (CCK-8), colony formation assay, scratch wound assays, Transwell assay and Western blot were used to compare the proliferation and invasion abilities of A549-GFP-LUC-BM3 with the parental cells. A549-GFP-LUC-BM3 cells and parental cells were further analyzed by transcriptomic sequencing. RESULTS: Human high-bone metastatic lung adenocarcinoma cells A549-GFP-LUC-BM3 was successfully established. Compared to parental cells, this cells exhibited a significantly higher incidence of bone metastasis and enhanced in vitro proliferation, migration, and invasion abilities. Transcriptomic sequencing results revealed that the A549-GFP-LUC-BM3 cell line had 2954 differentially expressed genes compared to the parental cells, with 1021 genes up-regulated and 1933 genes down-regulated. Gene Ontology (GO) functional enrichment analysis indicated that the differentially expressed genes were primarily localized in cellular components such as the cell periphery. The molecular functions identified as significantly enriched included signaling receptor activity, calcium ion binding, and extracellular matrix structural constituent. Additionally, the biological processes found to be enriched were cell adhesion and biological adhesion. The enrichment analysis conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the differentially expressed genes were primarily involved in the metabolism of xenobiotics by cytochrome P450, retinol metabolism, drug metabolism-cytochrome P450, cell adhesion molecules, steroid hormone biosynthesis, and the nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS: The highly bone-metastatic human lung adenocarcinoma cell line with GFP and luciferase double labeling was successfully established. The biological behavior and transcriptome sequencing of the cell line suggest that it has a high bone-metastatic potential.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Ósseas , Neoplasias Pulmonares , Camundongos Nus , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Camundongos , Animais , Células A549 , Perfilação da Expressão Gênica , Transcriptoma , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Camundongos Endogâmicos BALB C , Proliferação de Células
11.
Neurosci Biobehav Rev ; 162: 105726, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762128

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) emerged as a non-invasive brain stimulation technique in the treatment of psychiatric disorders. Both preclinical and clinical studies as well as systematic reviews provide a heterogeneous picture, particularly concerning the stimulation protocols used in rTMS. Here, we present a review of rTMS effects in rodent models of depressive-like symptoms with the aim to identify the most relevant factors that lead to an increased therapeutic success. The influence of different factors, such as the stimulation parameters (stimulus frequency and intensity, duration of stimulation, shape and positioning of the coil), symptom severity and individual characteristics (age, species and genetic background of the rodents), on the therapeutic success are discussed. Accumulating evidence indicates that rTMS ameliorates a multitude of depressive-like symptoms in rodent models, most effectively at high stimulation frequencies (≥5 Hz) especially in adult rodents with a pronounced pathological phenotype. The therapeutic success of rTMS might be increased in the future by considering these factors and using more standardized stimulation protocols.

12.
Hum Mol Genet ; 33(R1): R61-R79, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779771

RESUMO

Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.


Assuntos
Modelos Animais de Doenças , Mitocôndrias , Doenças Mitocondriais , Proteínas Mitocondriais , Fosforilação Oxidativa , Biossíntese de Proteínas , Animais , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Genoma Mitocondrial , Mutação
13.
Ageing Res Rev ; : 102340, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759892

RESUMO

Parkinson's disease is a neurodegenerative illness linked to ageing, marked by the gradual decline of dopaminergic neurons in the midbrain. The exact aetiology of Parkinson's disease (PD) remains uncertain, with genetic predisposition and environmental variables playing significant roles in the disease's frequency. Epidemiological data indicates a possible connection between pesticide exposure and brain degeneration. Specific pesticides have been associated with important characteristics of Parkinson's disease, such as mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation, which are crucial for the advancement of the disease. Recently, many animal models have been developed for Parkinson's disease study. Although these models do not perfectly replicate the disease's pathology, they provide valuable insights that improve our understanding of the condition and the limitations of current treatment methods. Drosophila, in particular, has been useful in studying Parkinson's disease induced by toxins or genetic factors. The review thoroughly analyses many animal models utilised in Parkinson's research, with an emphasis on issues including pesticides, genetic and epigenetic changes, proteasome failure, oxidative damage, α-synuclein inoculation, and mitochondrial dysfunction. The text highlights the important impact of pesticides on the onset of Parkinson's disease (PD) and stresses the need for more research on genetic and mechanistic alterations linked to the condition.

14.
Prog Neurobiol ; 237: 102616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723884

RESUMO

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Etanol , Camundongos Transgênicos , Núcleo Accumbens , Receptores de Glicina , Recompensa , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Receptores de Glicina/metabolismo , Etanol/administração & dosagem , Etanol/farmacologia , Camundongos , Masculino , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Consumo de Bebidas Alcoólicas/metabolismo
15.
Am J Clin Exp Urol ; 12(2): 52-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736617

RESUMO

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPSS) is a debilitating condition characterized by prostate inflammation, pain and urinary symptoms. The immune system's response to self-antigens is a contributing factor to CP/CPSS. In this review, we examine the use of experimental autoimmune prostatitis (EAP) in rodents to model salient features of autoimmune mediated CP/CPSS. By exploring etiological factors, immunological mechanisms, and emerging therapeutic strategies, our aim is to enhance our understanding of CP/CPSS pathogenesis and promote the development of strategies to test innovative interventions using the EAP pre-clinical model.

16.
Microbiol Res ; 285: 127744, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38735242

RESUMO

Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with seafood consumption worldwide. Not all members of the species are thought to be pathogenic, thus identification of virulent organisms is essential to protect public health and the seafood industry. Correlations of human disease and known genetic markers (e.g. thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH)) appear complex. Some isolates recovered from patients lack these factors, while their presence has become increasingly noted in isolates recovered from the environment. Here, we used whole-genome sequencing in combination with mammalian and insect models of infection to assess the pathogenic potential of V. parahaemolyticus isolated from European Atlantic shellfish production areas. We found environmental V. parahaemolyticus isolates harboured multiple virulence-associated genes, including TDH and/or TRH. However, carriage of these factors did not necessarily reflect virulence in the mammalian intestine, as an isolate containing TDH and the genes coding for a type 3 secretion system (T3SS) 2α virulence determinant, appeared avirulent. Moreover, environmental V. parahaemolyticus lacking TDH or TRH could be assigned to groups causing low and high levels of mortality in insect larvae, with experiments using defined bacterial mutants showing that a functional T3SS1 contributed to larval death. When taken together, our findings highlight the genetic diversity of V. parahaemolyticus isolates found in the environment, their potential to cause disease and the need for a more systematic evaluation of virulence in diverse V. parahaemolyticus to allow better genetic markers.

17.
Expert Opin Drug Discov ; 19(6): 755-768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747534

RESUMO

INTRODUCTION: Narcolepsy is a chronic and rare neurological disorder characterized by disordered sleep. Based on animal models and further research in humans, the dysfunctional orexin system was identified as a contributing factor to the pathophysiology of narcolepsy. Animal models played a larger role in the discovery of some of the pharmacological agents with established benefit/risk profiles. AREAS COVERED: In this review, the authors examine the phenotypes observed in animal models of narcolepsy and the characteristics of clinically used pharmacological agents in these animal models. Additionally, the authors compare the effects of clinically used pharmacological agents on the phenotypes in animal models with those observed in narcolepsy patients. EXPERT OPINION: Research in canine and mouse models have linked narcolepsy to the O×R2mutation and orexin deficiency, leading to new diagnostic criteria and a drug development focus. Advancements in pharmacological therapies have significantly improved narcolepsy management, with insights from both clinical experience and from animal models having led to new treatments such as low sodium oxybate and solriamfetol. However, challenges persist in addressing symptoms beyond excessive daytime sleepiness and cataplexy, highlighting the need for further research, including the development of diurnal animal models to enhance understanding and treatment options for narcolepsy.


Assuntos
Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Descoberta de Drogas , Narcolepsia , Orexinas , Narcolepsia/tratamento farmacológico , Narcolepsia/fisiopatologia , Animais , Humanos , Cães , Descoberta de Drogas/métodos , Camundongos , Orexinas/metabolismo , Fenótipo
18.
Int J Artif Organs ; 47(5): 321-328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38738648

RESUMO

Performance evaluation of new dialysis membranes is primarily performed in vitro, which can lead to differences in clinical results. Currently, data on dialysis membrane performance and safety are available only for haemodialysis patients. Herein, we aimed to establish an in vivo animal model of dialysis that could be extrapolated to humans. We created a bilateral nephrectomy pig model of renal failure, which placed a double-lumen catheter with the hub exposed dorsally. Haemodialysis was performed in the same manner as in humans, during which clinically relevant physiologic data were evaluated. Next, to evaluate the utility of this model, the biocompatibility of two kinds of membranes coated with or without vitamin E used in haemodiafiltration therapy were compared. Haemodialysis treatment was successfully performed in nephrectomized pigs under the same dialysis conditions (4 h per session, every other day, for 2 weeks). In accordance with human clinical data, regular dialysis alleviated renal failure in pigs. The vitamin E-coated membrane showed a significant reduction rate of advanced oxidation protein products during dialysis than non-coated membrane. In conclusion, this model mimics the pathophysiology and dialysis condition of patients undergoing haemodialysis. This dialysis treatment model of renal failure will be useful for evaluating the performance and safety of dialysis membranes.


Assuntos
Modelos Animais de Doenças , Membranas Artificiais , Diálise Renal , Animais , Diálise Renal/instrumentação , Suínos , Vitamina E , Teste de Materiais , Materiais Revestidos Biocompatíveis , Nefrectomia , Hemodiafiltração/instrumentação , Hemodiafiltração/métodos
19.
Front Pain Res (Lausanne) ; 5: 1405488, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784787

RESUMO

Interstitial cystitis (IC) presents as a chronic pain condition with variable combinations of symptoms depending on the species and individual patient. It is diagnosed by the presence of lower urinary tract signs and symptoms in combination with a variety of comorbid health problems, a history of life adversities, and the absence of other conditions that could cause the lower urinary tract signs. IC occurs naturally in humans and cats as a dimensional condition, with patients presenting with mild, moderate, and severe symptoms. Most patients appear to recover without specific treatment. A number of rodent models of IC have been used to study its causes and treatments. Unfortunately, current therapies generally fail to ameliorate IC symptoms long-term. The recent classification of IC as a chronic primary pain disorder calls for a rethinking of current clinical and research approaches to it. Beginning when a patient encounters a clinician, precipitating, perpetuating, and palliating risk factors can be addressed until a cause or reliably effective therapy is identified, and identifying predisposing and preventive factors can inform epidemiological studies and health promotion interventions. Predisposing, precipitating, and perpetuating risk factors, including environmental, psychological, and biological, increase the activity of the central threat response system (CTRS), which plays a clinically important role in IC symptoms. Studies in cats and rodent models have revealed that environmental enrichment (EE), in the absence of bladder-directed therapies, leads to amelioration of IC symptoms, implying a central role for the CTRS in symptom precipitation and perpetuation. Conceptually moving the source of IC pain to the brain as a motivational state rather than one resulting from peripheral nociceptive input offers both clinicians and researchers novel opportunities to improve care for patients with IC and for researchers to use more ecologically valid rodent models. It may even be that IC results from an excess of risk to protective factors, making this imbalance a targetable cause rather than a consequence of IC.

20.
Exp Neurol ; 378: 114835, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38789024

RESUMO

Cerebral Palsy (CP) is the main motor disorder in childhood resulting from damage to the developing brain. Treatment perspectives are required to reverse the primary damage caused by the early insult and consequently to recover motor skills. Resveratrol has been shown to act as neuroprotection with benefits to skeletal muscle. This study aimed to investigate the effects of neonatal resveratrol treatment on neurodevelopment, skeletal muscle morphology, and cerebellar damage in CP model. Wistar rat pups were allocated to four experimental groups (n = 15/group) according CP model and treatment: Control+Saline (CS), Control+Resveratrol (CR), CP + Saline (CPS), and CP + Resveratrol (CPR). CP model associated anoxia and sensorimotor restriction. CP group showed delay in the disappearance of the palmar grasp reflex (p < 0.0001) and delay in the appearance of reflexes of negative geotaxis (p = 0.01), and free-fall righting (p < 0.0001), reduced locomotor activity and motor coordination (p < 0.05) than CS group. These motor skills impairments were associated with a reduction in muscle weight (p < 0.001) and area and perimeter of soleus end extensor digitorum longus muscle fibers (p < 0.0001), changes in muscle fibers typing pattern (p < 0.05), and the cerebellum showed signs of neuroinflammation due to elevated density and percentage of activated microglia in the CPS group compared to CS group (p < 0.05). CP animals treated with resveratrol showed anticipation of the appearance of negative geotaxis and free-fall righting reflexes (p < 0.01), increased locomotor activity (p < 0.05), recovery muscle fiber types pattern (p < 0.05), and reversal of the increase in density and the percentage of activated microglia in the cerebellum (p < 0.01). Thus, we conclude that neonatal treatment with resveratrol can contribute to the recovery of the delay neurodevelopment resulting from experimental CP due to its action in restoring the skeletal muscle morphology and reducing neuroinflammation from cerebellum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...